This application claims the priority benefit of Taiwan application serial no. 107128513, filed on Aug. 15, 2018. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
The disclosure relates to a projection technique, and more particularly to a scenario projection system and a controlling method thereof.
Flat-panel displays can present images exquisitely, so they are commonly used in daily life; for example, flat-panel displays may be used as virtual windows or for creating virtual scenes. However, the real scenery often has a directional light source, such as sunlight or street lights, and the directional light source in the real scenery can cause light-shadow variation along with the indoor space. However, the light source of the flat-panel display has a scattering field pattern and thus unable to exhibit light-shadow interaction between the directional light source and space when displaying scenery, which reduces the sense of reality felt by the user.
In view of the foregoing, it is an issue for practitioners of the field to find out how to improve the sense of reality felt by the user.
In view of foregoing, the disclosure provides a scenario projection system and a controlling method thereof, which utilizes the interaction between the display device and the projection device so that light and shadow in the image could be extended beyond the screen area of the display device, the space where the viewer is located, so that the viewer can feel the light from the image and the image realism of virtual scenery can be improved.
An embodiment of the disclosure provides a scenario projection system, including: a display device, a reflective device, and a scenario light source. The display device is used to display an image in the screen area of the display device. The reflective device is configured in the screen area. The scenario light source is configured on the slide rail to project the scenario beam to the screen area, and the scenario beam is reflected by the reflective device to form a characteristic image outside the screen area, wherein the characteristic image has a linkage relationship with the above image.
An embodiment of the disclosure provides a controlling method of a scenario projection system. The scenario projection system includes a display device, a reflective device disposed in a screen area of the display device, and a scenario light source configured on the slide rail. The controlling method includes: making a screen area to display an image; making the scenario light source to project the scenario beam to the screen area, and the scenario beam is reflected by the reflective device to form a characteristic image outside the screen area, wherein the characteristic image has a linkage relationship with the above image.
Based on the above, in the scenario projection system and the controlling method of the embodiment of the disclosure, the screen area of the display device is provided with a reflective device, and the projection device provides the scenario beam to the reflective device, and the reflected scenario beam may serve as the beam emitted by directional light source within the image and the extended light-shadow relationship from the image can be exhibited, such that the realism of the scenario projection system can be improved.
In order to make the aforementioned features and advantages of the disclosure more comprehensible, embodiments accompanying figures are described in detail below.
The embodiments of the disclosure are disclosed in the following drawings, and for the purpose of clarity, details for implementation are incorporated below. However, it should be understood that the details are not intended to limit the scope of disclosure. That is, in some embodiments of the disclosure, these details are not necessarily required. Moreover, for simplicity of the drawings, some of the conventional structures and components are described in a simplified schematic manner.
The technical contents, characteristics and advantages of the disclosure are clearly described in the following detailed preferred embodiments with reference to drawings. The directional terms mentioned in the following embodiments, for example, up, down, left, right, front or back, etc., are only directions referred in the accompanying drawings. Therefore, the directional terminologies used are for the purpose of illustration and not limitation. Throughout the specification, the same reference symbols denote the same elements.
The scenario light source 130 is, for example, a projection lamp or a projector, but is not limited thereto, and is configured on a slide rail SR for projecting a scenario beam SB to a screen area DA. The scenario beam SB is, for example, a monochromatic beam and has directivity. The projecting position of the scenario light source 130 on the slide rail SR corresponds to a mirror position of the light source object LS relative to the screen area DA, so that the scenario beam SB simulates the light emitted by the light source object LS, as shown by light A. In the embodiment, the light source object LS represents the sun, so the scenario light source 130 emits a directional beam. The slide rail SR is disposed above the opposite of the display device 110, the projecting position of the scenario light source 130 disposed on the slide rail SR is higher than the display device 110, and the optical axis of the scenario beam SB is aligned with the center of the screen area DA, so that the scenario beam SB simulates the light-shadow phenomenon as the sunlight is illuminated on the trees.
The reflective device 120 is configured in the screen area DA. The reflective device 120 allows the image beam IB to pass through or its configuration does not hinder the image beam IB from being transmitted, but the reflective device 120 reflects the scenario beam SB, and the scenario beam SB is reflected by the reflective device 120 to form a characteristic image CI outside the screen area DA. Specifically, the characteristic image CI has a linkage relationship with the image DI. In the embodiment, the linkage relationship refers to that the characteristic image CI displays the light-shadow variation caused by the light source object LS to the object OB. For example, the scenario beam SB in
It should be noted that, in the embodiment, the transmitting direction of the reflected scenario beam SB is different from the image beam IB. The image beam IB is directly transmitted to the eyes of the viewer 200, whereas the scenario beam SB enters the eyes of the viewer 200 after being reflected at least two times by the reflective device 120 and the ground G (which may be other objects in the space such as a desk or a cabinet). Herein, the plane of the image DI is perpendicular to the plane of the characteristic image CI.
An implementation way of the scenario projection system 10 is described in detail below with reference to other embodiments.
Specifically, the display device 110 is, for example, a liquid crystal display (LCD), a light-emitting diode (LED) display, a field emission display (FED) or other types of displays.
The reflective device 120 may be a multi-layer coating structure disposed throughout the screen area DA, allowing the image beam IB to penetrate, but reflecting the scenario beam SB. The reflective device 120 may be configured inside the display device 110. In other embodiments, the reflective device 120 is implemented by changing the liquid crystal structure in the display panel, thereby controlling the reflectivity and the transmittance. The reflective device 120 may also be a reflective area structure in a transflective display. The disclosure provides no limitation to the implementation of the reflective device 120.
Referring to
The memory 140 is configured to store a plurality of instructions and a plurality of characteristic signals corresponding to a plurality of scenario characteristic parameters and a plurality of display signals, wherein each of the scenario characteristic parameters includes at least one of time, weather, season, azimuth, scenery, ambient light characteristics, and location. The processor 150 is coupled to the memory 140, the display device 110, and the scenario light source 130, and is configured to execute the instructions to implement the function of the scenario projection system 10.
The processor 150 and the memory 140 may be integrated into the display device 110 or the scenario light source 130, or may exist in the form of an independent host, the disclosure is not limited thereto.
First, in step S410, the display device 110 is turned on, and in step S420, the scenario characteristic parameters are determined. The scenario characteristic parameter may be manually input by the user or automatically selected by the processor 150. According to the scenario characteristic parameter, the processor 150 obtains the corresponding display signal DS and characteristic signal CS from the memory 140, and the scenario light source 130 projects the scenario beam SB according to the characteristic signal CS; accordingly, the display device 110 displays the image DI according to the display signal DS.
For example, the scenario characteristic parameters include, for example: the image content to be displayed by the image DI, such as a window scenery, the time of the image is five o'clock in the evening in the winter of Taiwan, the weather is sunny, the light source object LS of the window scenery is the sun, the object OB is a dead tree nearby the window, as shown in
After the scenario characteristic parameter is determined, in step S430, the processor 150 may determine whether the scenario light source 130 needs to be turned on. For example, when the scenario characteristic parameter determines that a rainy day scenario is to be presented, then the scenario light source 130 is not turned on, and step S470 is directly performed, so that the screen area DA displays the image DI. In another embodiment, the scenario projection system 10 may further include an environment sensor 160 coupled to the processor 150 for sensing the ambient light in a space where the display device 110 is located, and generating an ambient light characteristic SS. When the environment sensor 160 senses that the space is very bright, the processor 150 may also choose not to turn on the scenario light source 130. Therefore, the scenario projection system 10 of the embodiment also has energy saving effects.
It should be noted that the environment sensor 160 is not required. In another embodiment, the scenario projection system 10 may not include the environment sensor 160.
When the processor 150 determines that the scenario light source 130 needs to be turned on, then step S440 is performed to set the scenario light source 130. The processor 150 may determine the projecting position and projection angle of the scenario light source 130 on the slide rail SR, wherein the projection angle is an included angle between the optical axis of the scenario beam SB and the horizontal line.
In the present embodiment, the scenario characteristic parameter determines that the virtual window to be displayed is five o'clock in the evening in the winter, the virtual window faces the south, it is sunny outside the window and there is a dead tree by the window. Based on the scenario and geographical location, the sun is currently on the west side, so the position of the scenario light source 130 needs to be adjusted to one side of the display device 110, such as the position where the horizontal azimuth angle is 40 to 50 degrees, that is, the projecting position P1. On this occasion, the shadow of the object OB (that is, the dead tree) should be long, so the projection angle of the scenario light source 130 should be small, for example, the projection angle θ is 30 degrees.
Furthermore, the evening sun is typically warm-toned with lower color temperature, so the color temperature of the projection beam SB may be set as 2000K as the warm white color of the bright part of the light and shadow. In addition, when the ambient light characteristic SS shows that the brightness of the indoor illumination light is 30 W (Watt), considering that the light-shadow contrast is usually high on a sunny day, 60 W that is two times the indoor light source is chosen as the light source intensity of the scenario light source 130.
When the scenario light source 130 is not facing the center of the screen area DA, the distance of the scenario beam SB to edges of the screen area DA may be different, so the processor 150 may further perform distortion adjustment on the characteristic signal CS to prevent the projection beam SB from being projected beyond the screen area DA and causing interference.
That is to say, the processor 150 may perform distortion adjustment on the characteristic signal CS according to the projecting position P1 and the projection angle θ to generate a characteristic adjusting signal CMS, and the scenario light source 130 projects the scenario beam SB according to the characteristic adjusting signal CMS, so that the illumination range of the scenario beam SB does not exceed the screen area DA.
In an embodiment, the reflective device 120 has a filterability for the incident angle, the polarization state, and the like other than the wavelength. For example, since the scenario light source 130 is located above the reflective device 120, the scenario beam SB is incident into the upper part and lower part of the screen area DA at different incident angles. The processor 150 may also perform brightness compensation on the characteristic signal CS according to the reflectivity distribution of the reflective device 120 to generate the characteristic adjusting signal CMS. Therefore, the scenario light source 130 projects the scenario beam SB according to the characteristic adjusting signal CMS, so that the brightness of the scenario beam SB that is reflected by the reflective device 120 is uniform.
In step S450, the processor 150 performs image compensation on the display signal DS. In this embodiment, the illumination spectrum of the display device 110 and the transmission spectrum of the reflective device 120 are partially overlapped in terms of the red light and the green light, and therefore the processor 150 may perform image compensation on the display signal DS according to the reflectivity distribution of the reflective device 120 to generate the display adjustment signal DMS. In step S470, the display device 110 displays the image DI according to the display adjustment signal DMS to prevent the image quality from being affected by the reflective device 120. In another embodiment, step S410 may be performed after step S450, the disclosure is not limited thereto.
In the embodiment, the scenario projection system 10 may further present the linkage relationship between the characteristic image CI and the image DI that is changed over time.
In step S460, the processor 150 may calculate a change in the linkage relationship between the characteristic image CI and the display image DI. Specifically, the processor 150 may estimate the characteristic signals between 8 am and 12 noon according to the characteristic signals CS1 and CS2, and estimate the characteristic signals between 12 noon and 5 o'clock in the evening according to the characteristic signals CS2 and CS3, thereby generating characteristic images that change continuously during this period of time. Specifically, the memory 140 stores a characteristic signal processing module CM, and the processor 150 executes the characteristic signal processing module CM to change the projecting position, projection angle and characteristic image of the scenario light source 130 over time, for example, the change is made every 15 minutes to show that the sunlight of the sun is changed over time. In the meantime, the change of the shadow SHAD of the dead tree is estimated correspondingly, because as the angle of the projection light of the scenario light source 130 is changed, the shadow SHAD of the dead tree should also exhibit the effect of changing with the angle of light.
In this manner, the scenario projection system 10 does not need to store a large amount of characteristic signals, and the processor 150 may estimate the characteristic signal changes between at least two different time points according to the characteristic signals CS at the at least two different time points, and the scenario light source 130 is able to correspondingly generate different characteristic images at the at least two different time points.
In summary, the embodiments of the disclosure provide a scenario projection system and a controlling method thereof. The scenario light source projects the scenario beam on the screen area of the display device, and is reflected to the outside of the screen area by the reflective device disposed in the screen area to simulate the light emitted by the light source object in the image, wherein the characteristic image in the scenario beam may show the light-shadow variation that is caused by light from the light source object hitting the object. In this manner, in addition to the image displayed in the screen area, the projected characteristic image may extend the image effect of the display device to the outside of the screen area, and therefore the virtual scenario presented by the scenario projection system and the controlling method thereof provided in the embodiments of the disclosure creates high sense of reality.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed embodiments without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the disclosure covers modifications and variations provided that they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
107128513 A | Aug 2018 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
6986581 | Sun et al. | Jan 2006 | B2 |
9357613 | Van Hoof et al. | May 2016 | B2 |
10197255 | Chien et al. | Feb 2019 | B2 |
20050185251 | Shreeve | Aug 2005 | A1 |
20070222996 | Guan | Sep 2007 | A1 |
20080305713 | Cortenraad | Dec 2008 | A1 |
20130088154 | Van Hoof et al. | Apr 2013 | A1 |
20170041579 | Hung et al. | Feb 2017 | A1 |
20170184950 | Huang et al. | Jun 2017 | A1 |
20180128468 | Chien et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
1373560 | Oct 2002 | CN |
102934523 | Feb 2013 | CN |
103945122 | Jul 2014 | CN |
203827437 | Sep 2014 | CN |
204009347 | Dec 2014 | CN |
200800345 | Jan 2008 | TW |
201818019 | May 2018 | TW |
Entry |
---|
TECH2IPO, “Atmoph Window,” Jul. 6, 2015, Available at: https://www.hksilicon.com/articles/830890. |
Number | Date | Country | |
---|---|---|---|
20200058268 A1 | Feb 2020 | US |