A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
This invention relates generally to the field of encryption. More particularly, this invention relates to a encryption method and apparatus particularly useful for scrambling packetized video content such as that provided by cable and satellite television systems.
The above-referenced commonly owned patent applications describe inventions relating to various aspects of methods generally referred to herein as partial encryption or selective encryption. More particularly, systems are described therein wherein selected portions of a particular selection of digital content are encrypted using two (or more) encryption techniques while other portions of the content are left unencrypted. By properly selecting the portions to be encrypted, the content can effectively be encrypted for use under multiple decryption systems without the necessity of encryption of the entire selection of content. In some embodiments, only a few percent of data overhead is needed to effectively encrypt the content using multiple encryption systems. This results in a cable or satellite system being able to utilize Set-top boxes or other implementations of conditional access (CA) receivers from multiple manufacturers in a single system—thus freeing the cable or satellite company to competitively shop for providers of Set-top boxes.
The features of the invention believed to be novel are set forth with particularity in the appended claims. The invention itself however, both as to organization and method of operation, together with objects and advantages thereof, may be best understood by reference to the following detailed description of the invention, which describes certain exemplary embodiments of the invention, taken in conjunction with the accompanying drawings in which:
While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail specific embodiments, with the understanding that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described. In the description below, like reference numerals are used to describe the same, similar or corresponding parts in the several views of the drawings.
The terms “scramble” and “encrypt” and variations thereof are used synonymously herein. Also, the term “television program” and similar terms can be interpreted in the normal conversational sense, as well as a meaning wherein the term means any segment of A/V content that can be displayed on a television set or similar monitor device. The term “video” is often used herein to embrace not only true visual information, but also in the conversational sense (e.g., “video tape recorder”) to embrace not only video signals but associated audio and data. The term “legacy” as used herein refers to existing technology used for existing cable and satellite systems. The exemplary embodiments disclosed herein are decoded by a television Set-Top Box (STB), but it is contemplated that such technology will soon be incorporated within television receivers of all types whether housed in a separate enclosure alone or in conjunction with recording and/or playback equipment or Conditional Access (CA) decryption module or within a television set itself. The present document generally uses the example of a “dual partial encryption” embodiment, but those skilled in the art will recognize that the present invention can be utilized to realize multiple partial encryption without departing from the invention. Partial encryption and selective encryption are used synonymously herein.
Turning now to
Head end 100 receives scrambled content from one or more suppliers, for example, using a satellite dish antenna 108 that feeds a satellite receiver 110. Satellite receiver 110 operates to demodulate and descramble the incoming content and supplies the content as a stream of clear (unencrypted) data to a selective encryption encoder 114. The selective encryption encoder 114, according to certain embodiments, uses two passes or two stages of operation, to encode the stream of data. Encoder 114 utilizes a secondary conditional access system (and thus a second encryption method) in conjunction with the primary encryption encoder 104 which operates using a primary conditional access system (and thus a primary encryption method). A user selection provided via a user interface on a control computer 118 configures the selective encryption encoder 114 to operate in conjunction with either a Motorola or Scientific Atlanta cable network (or other cable or satellite network).
It is assumed, for purposes of the present embodiment of the invention, that the data from satellite receiver 110 is supplied as MPEG (Moving Pictures Expert Group) compliant packetized data. In the first stage of operation the data is passed through a Special Packet Identifier (PID) 122. Special Packet Identifier 122 identifies specific programming that is to be dual partially encrypted according to the present invention. The Special Packet Identifier 122 signals the Special Packet Duplicator 126 to duplicate special packets. The Packet Identifier (PID) Remapper 130, under control of the computer 118, remaps the PIDs of the elementary streams (ES) (i.e., audio, video, etc.) of the programming that shall remain clear and the duplicated packets to new PID values. The payload of the elementary stream packets are not altered in any way by Special Packet Identifier 122, Special Packet Duplicator 126, or PID remapper 130. This is done so that the primary encryption encoder 104 will not recognize the clear unencrypted content as content that is to be encrypted.
The packets may be selected by the special packet identifier 122 according to one of the selection criteria described in the above-referenced applications or may use another selection criteria such as those which will be described later herein. Once these packets are identified in the packet identifier 122, packet duplicator 126 creates two copies of the packet. The first copy is identified with the original PID so that the primary encryption encoder 104 will recognize that it is to be encrypted. The second copy is identified with a new and unused PID, called a “secondary PID” (or shadow PID) by the PID Remapper 130. This secondary PID will be used later by the selective encryption encoder 114 to determine which packets are to be encrypted according to the secondary encryption method.
As previously noted, the two primary commercial providers of cable head end encryption and modulation equipment are (at this writing) Motorola, Inc. and Scientific-Atlanta, Inc. While similar in operation, there are significant differences that should be discussed before proceeding since the present selective encryption encoder 114 is desirably compatible with either system. In the case of Motorola equipment, the Integrated Receiver Transcoder (IRT), an unmodulated output is available and therefore there is no need to demodulate the output before returning a signal to the selective encryption encoder 114, whereas no such unmodulated output is available in a Scientific-Atlanta device. Also, in the case of current Scientific-Atlanta equipment, the QAM, the primary encryption encoder carries out a PID remapping function on received packets. Thus, provisions are made in the selective encryption encoder 114 to address this remapping.
In addition to the above processing, the Program Specific Information (PSI) is also modified to reflect this processing. The original, incoming Program Association Table (PAT) is appended with additional Program Map Table (PMT) entries at a PMT inserter 134. Each added PMT entry contains the new, additional streams (remapped & shadow PIDs) created as part of the selective encryption (SE) encoding process for a corresponding stream in a PMT of the incoming transport. These new PMT entries will mirror their corresponding original PMTs. The program numbers will be automatically assigned by the selective encryption encoder 114 based upon open, available program numbers as observed from the program number usage in the incoming stream. The selective encryption System 114 system displays the inserted program information (program numbers, etc) on the configuration user interface of control computer 118 so that the Multiple System Operator (MSO, e.g., the cable system operator) can add these extra programs into the System Information (SI) control system and instruct the system to carry these programs in the clear.
The modified transport PSI is illustrated as 144 in
In order to assure that the Scientific-Atlanta PID remapping issue is addressed, if the selective encryption encoder 114 is configured to operate with a Scientific-Atlanta system, the encoder adds a user private data descriptor to each elementary stream found in the original PMTs in the incoming data transport stream (TS) per the format below (of course, other formats may also be suitable):
The selective encryption encoder 114 of the current embodiment also adds a user private data descriptor to each elementary stream placed in the temporary PMTs created as described above per the format below:
The “????” in the tables above is the value of the “orig_pid” which is a variable while the “??” is a “stream_type” value. The data field for “orig_pid” is a variable that contains the original incoming PID or in the case of remap or shadow PIDs, the original PID that this stream was associated with. The data field “stream_type” is a variable that describes the purpose of the stream based upon the chart below:
These descriptors will be used later to re-associate the legacy elementary streams, which are encrypted by the Scientific-Atlanta, Inc. primary encryption encoder 104, with the corresponding shadow and remapped clear streams after PID remapping in the Scientific-Atlanta, Inc. modulator prior to the second phase of processing of the Selective Encryption Encoder. Those skilled in the art will appreciate that the above specific values should be considered exemplary and other specific values could be used without departing from the present invention.
In the case of a Motorola cable system being selected in the selective encryption encoder configuration GUI, the original PAT and PMTs can remain unmodified, providing the system does not remap PIDs within the primary encryption encoder. The asterisks in
The data stream from selective encryption encoder 114 is passed along to the input of the primary encryption encoder 104 which first carries out a PID filtering process at 150 to identify packets that are to be encrypted. At 152, in the case of a Scientific-Atlanta device, a PID remapping may be carried out. The data are then passed along to an encrypter 154 that, based upon the PID of the packets encrypts certain packets (in accord with the present invention, these packets are the special packets which are mapped by the packet remapper 130 to the original PID of the incoming data stream for the current program). The remaining packets are unencrypted. The data then passes through a PSI modifier 156 that modifies the PSI data to reflect changes made at the PID remapper. The data stream is then modulated by a quadrature amplitude modulation (QAM) modulator 158 (in the case of the Scientific-Atlanta device) and passed to the output thereof. This modulated signal is then demodulated by a QAM demodulator 160. The output of the demodulator 160 is directed back to the selective encryption encoder 114 to a PSI parser 164.
The second phase of processing of the transport stream for selective encryption is to recover the stream after the legacy encryption process is carried out in the primary encryption encoder 104. The incoming Program Specific Information (PSI) is parsed at 164 to determine the PIDs of the individual elementary streams and their function for each program, based upon the descriptors attached in the first phase of processing. This allows for the possibility of PID remapping, as seen in Scientific-Atlanta primary encryption encoders. The elementary streams described in the original program PMTs are located at PSI parser 164 where these streams have been reduced to just the selected packets of interest and encrypted in the legacy CA system format in accord with the primary encryption method at encoder 104. The elementary streams in the temporary programs appended to the original PSI are also recovered at elementary stream concatenator 168. The packets in the legacy streams are appended to the remapped content, which is again remapped back to the PID of the legacy streams, completing the partial, selective encryption of the original elementary streams.
The temporary PMTs and the associated PAT entries are discarded and removed from the PSI. The user private data descriptors added in the first phase of processing are also removed from the remaining original program PMTs in the PSI. For a Motorola system, no PMT or PAT reprocessing is required and only the final secondary encryption of the transport stream occurs.
During the second phase of processing, the SE encoder 114 creates a shadow PSI structure that parallels the original MPEG PSI, for example, having a PAT origin at PID 0×0000. The shadow PAT will be located at a PID specified in the SE encoder configuration as indicated by the MSO from the user interface. The shadow PMT PIDs will be automatically assigned by the SE encoder 114 dynamically, based upon open, available PID locations as observed from PID usage of the incoming stream. The PMTs are duplicates of the original PMTs, but also have CA descriptors added to the entire PMT or to the elementary streams referenced within to indicate the standard CA parameters and optionally, shadow PID and the intended operation upon the associated elementary stream. The CA descriptor can appear in the descriptor1( ) or descriptor2( ) loops of the shadow PMT. If found in descriptor1( ), the CA_PID called out in the CA descriptor contains the non-legacy ECM PID which would apply to an entire program. Alternatively, the ECM PID may be sent in descriptor2( ). The CA descriptor should not reference the selective encryption elementary PID in the descriptor1( ) area.
This shadow PSI insertion occurs regardless of whether the selective encryption operation is for a Motorola or Scientific Atlanta cable network. The elementary streams containing the duplicated packets of interest that were also assigned to the temporary PMTs are encrypted during this second phase of operation at secondary packet encrypter in the secondary CA format based upon the configuration data of the CA system attached using the DVB (Digital Video Broadcasting) Simulcrypt™ standard.
The data stream including the clear data, primary encrypted data, secondary encrypted data and other information are then passed to a PSI modifier 176 that modifies the transport PSI information by deletion of the temporary PMT tables and incorporation of remapping as described above. The output of the PSI modifier 176 is modulated at a QAM modulator 180 and delivered to the cable plant 184 for distribution to the cable system's customers.
The control processor 100 may be a personal computer based device that is used to control the selective encryption encoder as described herein. An exemplary personal computer based controller 100 is depicted in
The partial encryption process described above utilizes any suitable conditional access encryption method at encrypters 154 and 172. However, these encryption techniques are selectively applied to the data stream using a technique such as those described below or in the above-referenced patent applications. In general, but without the intent to be limiting, the selective encryption process utilizes intelligent selection of information to encrypt so that the entire program does not have to undergo dual encryption. By appropriate selection of appropriate data to encrypt, the program material can be effectively scrambled and hidden from those who desire to hack into the system and illegally recover commercial content without paying. The MPEG (or similar format) data that are used to represent the audio and video data does so using a high degree of reliance on the redundancy of information from frame to frame. Certain data can be transmitted as “anchor” data representing chrominance and luminance data. That data is then often simply moved about the screen to generate subsequent frames by sending motion vectors that describe the movement of the block. Changes in the chrominance and luminance data are also encoded as changes rather than a recoding of absolute anchor data.
In accordance with certain embodiments of the present invention, a method of dual encrypting a digital video signal involves examining unencrypted packets of data in the digital video signal to identify at least one specified packet type, the specified packet type comprising packets of data as will be described hereinafter; encrypting packets identified as being of the specified packet type using a first encryption method to produce first encrypted packets; encrypting the packets identified as being of the specified packet type using a second encryption method to produce second encrypted packets; and replacing the unencrypted packets of the specified packet type with the first encrypted packets and the second encrypted packets in the digital video signal to produce a partially dual encrypted video signal.
The MPEG specification defines a slice as “ . . . a series of an arbitrary number of consecutive macroblocks. The first and last macroblocks of a slice shall not be skipped macroblocks. Every slice shall contain at least one macroblock. Slices shall not overlap. The position of slices may change from picture to picture. The first and last macroblock of a slice shall be in the same horizontal row of macroblocks. Slices shall occur in the bitstream in the order in which they are encountered, starting at the upper-left of the picture and proceeding by raster-scan order from left to right and top to bottom . . . ”
By way of example, to represent an entire frame of NTSC information, for standard resolution, the frame (picture) is divided into 30 slices (but in general j slices may make up a full frame). Each slice contains 33 variable length macroblocks (but in general can include k variable length macroblocks) of information representing a 16×16 pixel region of the image. This is illustrated as standard definition frame 250 of
Scene Change Detection
In accordance with one embodiment consistent with the invention referred to herein as “scene change detection encryption”, scene changes are used as a criterion for selection of data to be encrypted. Whenever a scene change takes place in a digital video signal (e.g., an MPEG digital video signal), there is generally an inability to rely upon prior anchor data such as absolute luminance and chrominance data that is generally transmitted in I Frames or P Frames. Essentially, a new starting point image is created for the image. From this starting point, high degrees of compression can be obtained by use of motion vectors to describe movement of the images. The starting point image is essentially a first frame of the scene change and contains large amounts of intra-coded data. As previously described, this data is coded as intra-coded macroblocks within the slices of video data (video slices).
Thus, during a scene change, the MPEG encoder sends intra-coded information (containing absolute luminance and chrominance information). Ordinarily, the encoder attempts to send this data in an I Frame or I slices (for a progressive refresh P Frame). However, the timing of a scene change may dictate that the encoder must encode this data in other frames and other slices. The data can be sent in either of two ways, either as intra-coded macroblocks or as motion vector macroblocks with luminance and chrominance error correction data (called macroblock pattern). In either case, the amount of data will generally significantly exceed the norm (although, in general, the amount of data needed to encode luminance and chrominance data is more than that needed to encode motion vector information).
The first frame of a scene change thus generally contains large amounts of intra-coded data compared with the data required to define a change in the image from frame to frame when a scene change is not taking place. This fact provides a basis for detection of a scene change. By establishment of a threshold, it can be defined that a scene change, for purposes of this invention, takes place whenever the amount of data in a particular frame or slice exceeds this prescribed threshold. The threshold can, in this example, correspond to a number of bits or bytes making up a particular slice (or frame or other suitable segment of the image) of data. In one exemplary embodiment, using a 3 Mbps test stream, it is noted that a slice of standard definition video data generally carries between about 376 and 752 bits of video data. By observation of the amount of data that constitutes a scene change, a threshold of approximately 1316 bits, which is 1½ to 3 times the nominal size, can be established empirically and refined. The size of the slices will vary with the stream bit rate and nature of the content. For example, whether there are a lot of hard cuts or action scenes in the video. Thus any absolute bit size cannot be conclusive of a scene change. However, in one example consistent with certain embodiments of the present invention, a rule could be made that if the slice size were 1½ to 3 times the size of previous slices, then a scene change is occurring. Thus, it can be deemed that any slice carrying more than this threshold contains data representing a scene change. This slice, and/or the following slice (to capture additional scene change information carried in a subsequent slice) can be encrypted to provide partial encryption of the video image.
When a decoder (such as one incorporated within special packet identifier 122) receives the MPEG encoded digital video stream, it can therefore use the size of a data slice as an indication of a scene change. If the decoder is able to buffer one or more slices of the video data stream, each slice exceeding the threshold in size can be encrypted in accordance with certain embodiments of the present invention. However, in the event such buffering is not available, it can be assumed that a scene change will involve multiple sequential slices of video data. Thus, if a slice exceeds the size threshold, it can reasonably be assumed that the next slice will also contain a portion of the scene change. Thus, if inadequate buffering is available to permit encryption of the current slice of video data (which exceeds the threshold in size), the following slice can be encrypted to capture additional scene change information carried in a subsequent slice to provide partial encryption of the video image. Ideally, of course, all slices involved with the scene change will be encrypted.
This process is depicted as process 300 of
In a similar manner, a process wherein a previous slice is used to determine whether or not to encrypt a current slice is depicted as process 400 of
Those skilled in the art will also appreciate that the processes 300 and 400 can be combined so that both the current slice and the prior slice are encrypted if the prior slice is greater in size than the threshold. The slices can be encrypted in any suitable manner including, but not limited to, encryption of the entire slice, encryption of slice headers for the slice or encryption of all intra-coded macroblocks in the slice, without limitation.
In addition to measuring the size of a slice (or frame or other portion of the image) by number of packets or bytes or bits, the size of the slice can be judged in other ways. For example, the number size of a slice at a scene change is related to the number of intra-coded macroblocks contained in the slice. Thus, in another embodiment consistent with the present invention (which can be viewed as a subset of the first embodiment), the size of a slice can be judged by the number of macroblocks containing intra-coded data within the slice. This process is depicted as process 500 of
In a similar manner, a process wherein a previous slice is used to determine whether or not to encrypt a current slice is depicted as process 600 of
In one exemplary embodiment, it is noted that a P frame slice of standard definition video data generally carries between about 2 and 4 intra-coded macroblocks of video data (out of 33 macroblocks). This varies greatly. By observation of the amount of data that constitutes a scene change, a threshold of approximately 15 intra-coded macroblocks can be established empirically and refined. The threshold value is somewhat subjective. It can depend on the encoder. It can also partly depend on whether or not any scenes detections can be missed. There are major and minor scene changes. It is possible that only major scene changes need be detected. Thus, it can be deemed that any slice carrying more than this threshold contains data representing a scene change. This slice, and/or the following slice can be encrypted to provide partial encryption of the video image.
Those skilled in the art will also appreciate that the processes 500 and 600 can be combined so that both the current slice and the prior slice are encrypted if the prior slice is greater in size than the threshold. The slices can be encrypted in any suitable manner including, but not limited to, encryption of the entire slice, encryption of slice headers for the slice or encryption of all intra-coded macroblocks in the slice, without limitation.
In another embodiment, consistent with embodiments of the present invention, the size of a slice of video can be measured in terms of the number of packets required to carry the slice's data. Recall that the macroblocks of data forming a slice are variable in size. However, in most commercial embodiments, the transport stream carrying the macroblocks of data is carried using fixed size packets. These fixed size packets, thus, will vary in number depending upon the amount of data in a particular slice of video. Therefore, the size of the video slice can be gauged by the number of packets used to carry the slice of data. Accordingly, a process 700 is depicted in
In a similar manner, a process wherein a previous slice is used to determine whether or not to encrypt a current slice is depicted as process 800 of
In one exemplary embodiment, it is noted that a slice of video data is generally contained in between about three and eleven packets of video data. By observation of the amount of data that constitutes a scene change, a threshold of approximately seven packets can be established empirically and refined. Thus, it can be deemed that any slice carrying more than this threshold contains data representing a scene change. This slice, and/or the following slice can be encrypted to provide partial encryption of the video image. Since scene changes are a relatively infrequent occurrence in a stream of video data, it generally represents a rather small (but content dependent) percentage of the overall data. Encryption of such data, therefore, represents a very small percentage of overhead when used in a multiple encryption environment.
Those skilled in the art will also appreciate that the processes 700 and 800 can be combined so that both the current slice and the prior slice are encrypted if the prior slice is greater in size than the threshold. It should be noted for purposes of this discussion, that encryption of a slice of video information can be accomplished in many ways. In one example, all data in the slice can be encrypted. In another example, the slice header for a slice can be encrypted rendering the remaining data in the slice useless and thus for practical purposes (and purposes of this document) also encrypted. Additionally, by encryption of intra-coded macroblocks in a slice the slice can be effectively rendered encrypted. Other possibilities may also exist consistent with embodiments of the present invention.
Multiple combinations of the encryption techniques are possible to produce encryption that has varying bandwidth requirements, varying levels of security and varying complexity. Such encryption techniques can be selected by control computer 118 in accordance with the needs of the MSO. The above-described encryption techniques can provide several additional choices to enrich a pallette of encryption techniques that can thus be selected by control computer 118 to vary the encryption making hacking more difficult.
Numerous other combinations of the above encryption techniques as well as those described in the above-referenced patent applications and other partial encryption techniques can be combined to produce a rich pallette of encryption techniques from which to select. In accordance with certain embodiments of the present invention, a selection of packets to encrypt can be made by the control computer 118 in order to balance encryption security with bandwidth and in order to shift the encryption technique from time to time to thwart hackers.
While the above embodiments describe encryption of packets containing the selected data type, it is also possible to encrypt the raw data prior to packetizing without departing from this invention and such encryption is considered equivalent thereto.
An authorized set-top box such as 900 illustrated in
While the above embodiments describe encryption of packets containing the selected data type, it is also possible to encrypt the raw data prior to packetizing without departing from this invention and such encryption is considered equivalent thereto.
Those skilled in the art will recognize that the present invention has been described in terms of exemplary embodiments based upon use of a programmed processor (e.g., processor 118, processors implementing any or all of the elements of 114 or implementing any or all of the elements of 900). However, the invention should not be so limited, since the present invention could be implemented using hardware component equivalents such as special purpose hardware and/or dedicated processors which are equivalents to the invention as described and claimed. Similarly, general purpose computers, microprocessor based computers, micro-controllers, optical computers, analog computers, dedicated processors and/or dedicated hard wired logic may be used to construct alternative equivalent embodiments of the present invention.
Those skilled in the art will appreciate that the program steps and associated data used to implement the embodiments described above can be implemented using disc storage as well as other forms of storage such as for example Read Only Memory (ROM) devices, Random Access Memory (RAM) devices; optical storage elements, magnetic storage elements, magneto-optical storage elements, flash memory, core memory and/or other equivalent storage technologies without departing from the present invention. Such alternative storage devices should be considered equivalents.
The present invention, as described in embodiments herein, is implemented using a programmed processor executing programming instructions that are broadly described above form that can be stored on any suitable electronic storage medium or otherwise be present in any computer readable medium. However, those skilled in the art will appreciate that the processes described above can be implemented in any number of variations and in many suitable programming languages without departing from the present invention. For example, the order of certain operations carried out can often be varied, additional operations can be added or operations can be deleted without departing from the invention. Error trapping can be added and/or enhanced and variations can be made in user interface and information presentation without departing from the present invention. Such variations are contemplated and considered equivalent.
Software code and/or data embodying certain aspects of the present invention may be present in any computer readable medium, or storage medium including, but not limited to, electronic storage devices such as those described above, and other media that stores, the code and/or data. Such media may store the software code and/or data. In the present exemplary embodiments, MPEG compliant packets, slices, tables and other data structures are used, but this should not be considered limiting since other data structures can similarly be used without departing from the present invention.
While the invention has been described in conjunction with specific embodiments, it is evident that many alternatives, modifications, permutations and variations will become apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended that the present invention embrace all such alternatives, modifications and variations as fall within the scope of the appended claims.
This application is a Divisional of patent application Ser. No. 10/274,019, filed Oct. 18, 2002 now U.S. Pat. No. 7,292,690, which is a continuation in part of patent applications entitled “Critical Packet Partial Encryption” to Unger et al., Ser. No. 10/038,217 now U.S. Pat. No. 7,336,787; patent applications entitled “Time Division Partial Encryption” to Candelore et al., Ser. No. 10/038,032 now U.S. Pat. No. 7,139,398; entitled “Elementary Stream Partial Encryption” to Candelore, Ser. No. 10/037,914 now U.S. Pat. No. 7,124,303; entitled “Partial Encryption and PID Mapping” to Unger et al., Ser. No. 10/037,499 now U.S. Pat. No. 7,151,831; and entitled “Decoding and Decrypting of Partially Encrypted Information” to Unger et al., Ser. No. 10/037,498 all of which were filed on Jan. 2, 2002 now U.S. Pat. No. 7,127,619 and are hereby incorporated by reference herein; and which further claims priority benefit of U.S. Provisional patent application Ser. No. 60/409,675 filed Sep. 9, 2002 to Candelore, et al. entitled “Generic PID Remapping for Content Replacement”, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4964126 | Musicus et al. | Oct 1990 | A |
5151782 | Ferraro | Sep 1992 | A |
5414852 | Kramer et al. | May 1995 | A |
5477263 | O'Callaghan et al. | Dec 1995 | A |
5515107 | Chiang et al. | May 1996 | A |
5526427 | Thomas et al. | Jun 1996 | A |
5594507 | Hoarty | Jan 1997 | A |
5600378 | Wasilewski | Feb 1997 | A |
5629866 | Carrubba et al. | May 1997 | A |
5696906 | Peters et al. | Dec 1997 | A |
5726702 | Hamaguchi et al. | Mar 1998 | A |
5761180 | Murabayashi et al. | Jun 1998 | A |
5805700 | Nardone et al. | Sep 1998 | A |
5835668 | Yanagihara | Nov 1998 | A |
5838873 | Blatter et al. | Nov 1998 | A |
5892900 | Ginter et al. | Apr 1999 | A |
5905732 | Fimoff et al. | May 1999 | A |
5917830 | Chen et al. | Jun 1999 | A |
5920626 | Durden et al. | Jul 1999 | A |
5943605 | Koepele, Jr. | Aug 1999 | A |
5973726 | Iijima et al. | Oct 1999 | A |
6005940 | Kulinets | Dec 1999 | A |
6064676 | Slattery et al. | May 2000 | A |
6134237 | Brailean et al. | Oct 2000 | A |
6201927 | Comer | Mar 2001 | B1 |
6219358 | Pinder et al. | Apr 2001 | B1 |
6222924 | Salomaki | Apr 2001 | B1 |
6223290 | Larsen et al. | Apr 2001 | B1 |
6314111 | Nandikonda et al. | Nov 2001 | B1 |
6327421 | Tiwari et al. | Dec 2001 | B1 |
6351813 | Mooney et al. | Feb 2002 | B1 |
6377589 | Knight et al. | Apr 2002 | B1 |
6418169 | Datari | Jul 2002 | B1 |
6424717 | Pinder et al. | Jul 2002 | B1 |
6452923 | Gerszberg et al. | Sep 2002 | B1 |
6453116 | Ando et al. | Sep 2002 | B1 |
6473459 | Sugano et al. | Oct 2002 | B1 |
6480551 | Ohishi et al. | Nov 2002 | B1 |
6490728 | Kitazato et al. | Dec 2002 | B1 |
6526144 | Markandey et al. | Feb 2003 | B2 |
6550008 | Zhang et al. | Apr 2003 | B1 |
6590979 | Ryan | Jul 2003 | B1 |
6621979 | Eerenberg et al. | Sep 2003 | B1 |
6640305 | Kocher et al. | Oct 2003 | B2 |
6643298 | Brunheroto et al. | Nov 2003 | B1 |
6697489 | Candelore | Feb 2004 | B1 |
6701258 | Kramb et al. | Mar 2004 | B2 |
6707696 | Turner et al. | Mar 2004 | B1 |
6788882 | Geer et al. | Sep 2004 | B1 |
6853728 | Kahn et al. | Feb 2005 | B1 |
6883050 | Safadi | Apr 2005 | B1 |
6925180 | Iwamura | Aug 2005 | B2 |
6976166 | Herley et al. | Dec 2005 | B2 |
6988238 | Kovacevic et al. | Jan 2006 | B1 |
7039802 | Eskicioglu et al. | May 2006 | B1 |
7039938 | Candelore | May 2006 | B2 |
7055166 | Logan et al. | May 2006 | B1 |
7079752 | Leyendecker | Jul 2006 | B1 |
7089579 | Mao et al. | Aug 2006 | B1 |
7096481 | Forecast et al. | Aug 2006 | B1 |
7096487 | Gordon et al. | Aug 2006 | B1 |
7110659 | Fujie et al. | Sep 2006 | B2 |
7120250 | Candelore | Oct 2006 | B2 |
7124303 | Candelore | Oct 2006 | B2 |
7127619 | Unger et al. | Oct 2006 | B2 |
7139398 | Candelore et al. | Nov 2006 | B2 |
7146007 | Maruo et al. | Dec 2006 | B1 |
7151831 | Candelore et al. | Dec 2006 | B2 |
7151833 | Candelore et al. | Dec 2006 | B2 |
7155012 | Candelore et al. | Dec 2006 | B2 |
7158185 | Gastaldi | Jan 2007 | B2 |
7194758 | Waki et al. | Mar 2007 | B1 |
7221706 | Zhao et al. | May 2007 | B2 |
7292692 | Bonan et al. | Nov 2007 | B2 |
7336785 | Lu et al. | Feb 2008 | B1 |
7391866 | Fukami et al. | Jun 2008 | B2 |
20010013123 | Freeman et al. | Aug 2001 | A1 |
20020021805 | Schumann et al. | Feb 2002 | A1 |
20020044558 | Gobbi et al. | Apr 2002 | A1 |
20020066101 | Gordon et al. | May 2002 | A1 |
20020067436 | Shirahama et al. | Jun 2002 | A1 |
20020083439 | Eldering | Jun 2002 | A1 |
20020100054 | Feinberg et al. | Jul 2002 | A1 |
20020109707 | Lao et al. | Aug 2002 | A1 |
20020144116 | Giobbi | Oct 2002 | A1 |
20020144260 | Devara | Oct 2002 | A1 |
20020157115 | Lu | Oct 2002 | A1 |
20020194589 | Cristofalo et al. | Dec 2002 | A1 |
20020194613 | Unger | Dec 2002 | A1 |
20030021412 | Candelore et al. | Jan 2003 | A1 |
20030026423 | Unger et al. | Feb 2003 | A1 |
20030028879 | Gordon et al. | Feb 2003 | A1 |
20030034997 | McKain et al. | Feb 2003 | A1 |
20030035482 | Klompenhouwer et al. | Feb 2003 | A1 |
20030035540 | Freeman et al. | Feb 2003 | A1 |
20030035543 | Gillon | Feb 2003 | A1 |
20030046687 | Hodges et al. | Mar 2003 | A1 |
20030123664 | Pedlow, Jr. et al. | Jul 2003 | A1 |
20030133570 | Candelore et al. | Jul 2003 | A1 |
20030152224 | Candelore et al. | Aug 2003 | A1 |
20030156718 | Candelore et al. | Aug 2003 | A1 |
20030159139 | Candelore et al. | Aug 2003 | A1 |
20030159140 | Candelore | Aug 2003 | A1 |
20030174837 | Candelore et al. | Sep 2003 | A1 |
20030174844 | Candelore | Sep 2003 | A1 |
20030188164 | Okimoto et al. | Oct 2003 | A1 |
20030190054 | Troyansky et al. | Oct 2003 | A1 |
20030222994 | Dawson | Dec 2003 | A1 |
20040037421 | Truman | Feb 2004 | A1 |
20040047470 | Candelore | Mar 2004 | A1 |
20040049688 | Candelore et al. | Mar 2004 | A1 |
20040049690 | Candelore et al. | Mar 2004 | A1 |
20040064688 | Jacobs | Apr 2004 | A1 |
20040073917 | Pedlow, Jr. et al. | Apr 2004 | A1 |
20040083177 | Chen et al. | Apr 2004 | A1 |
20040086127 | Candelore | May 2004 | A1 |
20040088552 | Candelore | May 2004 | A1 |
20040088558 | Candelore | May 2004 | A1 |
20040151314 | Candelore | Aug 2004 | A1 |
20040158721 | Candelore | Aug 2004 | A1 |
20040165586 | Read et al. | Aug 2004 | A1 |
20040172650 | Hawkins et al. | Sep 2004 | A1 |
20040181666 | Candelore | Sep 2004 | A1 |
20040187161 | Cao | Sep 2004 | A1 |
20040240668 | Bonan et al. | Dec 2004 | A1 |
20040247122 | Hobrock et al. | Dec 2004 | A1 |
20040261099 | Durden et al. | Dec 2004 | A1 |
20040264924 | Campisano et al. | Dec 2004 | A1 |
20050015816 | Christofalo et al. | Jan 2005 | A1 |
20050028193 | Candelore et al. | Feb 2005 | A1 |
20050036067 | Ryal et al. | Feb 2005 | A1 |
20050063541 | Candelore | Mar 2005 | A1 |
20050066357 | Ryal | Mar 2005 | A1 |
20050094808 | Pedlow, Jr. et al. | May 2005 | A1 |
20050094809 | Pedlow, Jr. et al. | May 2005 | A1 |
20050097596 | Pedlow, Jr. | May 2005 | A1 |
20050097597 | Pedlow, Jr. et al. | May 2005 | A1 |
20050097598 | Pedlow, Jr. et al. | May 2005 | A1 |
20050097614 | Pedlow, Jr. et al. | May 2005 | A1 |
20050102702 | Candelore et al. | May 2005 | A1 |
20050129233 | Pedlow, Jr. | Jun 2005 | A1 |
20050141713 | Genevois | Jun 2005 | A1 |
20050169473 | Candelore et al. | Aug 2005 | A1 |
20050192904 | Candelore | Sep 2005 | A1 |
20050198586 | Sekiguchi et al. | Sep 2005 | A1 |
20050283797 | Eldering et al. | Dec 2005 | A1 |
20060115083 | Candelore et al. | Jun 2006 | A1 |
20060130119 | Candelore et al. | Jun 2006 | A1 |
20060130121 | Candelore et al. | Jun 2006 | A1 |
20060153379 | Candelore et al. | Jul 2006 | A1 |
20060168616 | Candelore | Jul 2006 | A1 |
20060174264 | Candelore | Aug 2006 | A1 |
20060262926 | Candelore et al. | Nov 2006 | A1 |
20060269060 | Candelore et al. | Nov 2006 | A1 |
20070091886 | Davis et al. | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
2389247 | May 2001 | CA |
0 720 374 | Jul 1996 | EP |
0720374 | Jul 1996 | EP |
0382764 | Apr 1997 | EP |
07-046575 | Feb 1995 | JP |
299634 | Aug 2008 | KR |
WO 9309525 | May 1993 | WO |
WO 9413081 | Jun 1994 | WO |
WO 9808341 | Feb 1998 | WO |
WO 0031964 | Jun 2000 | WO |
WO 0059203 | Oct 2000 | WO |
WO 0060846 | Oct 2000 | WO |
WO 0064164 | Oct 2000 | WO |
WO 0070817 | Nov 2000 | WO |
WO 0126372 | Apr 2001 | WO |
WO 0167667 | Sep 2001 | WO |
WO 0251096 | Jun 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20070291942 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
60409675 | Sep 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10274019 | Oct 2002 | US |
Child | 11708417 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10038217 | Jan 2002 | US |
Child | 10274019 | US | |
Parent | 10038032 | Jan 2002 | US |
Child | 10038217 | US | |
Parent | 10037914 | Jan 2002 | US |
Child | 10038032 | US | |
Parent | 10037499 | Jan 2002 | US |
Child | 10037914 | US | |
Parent | 10037498 | Jan 2002 | US |
Child | 10037499 | US |