The present invention concerns the field of wireless communication systems, for example wireless mobile communication systems, in which data is transmitted between apparatuses of the wireless communication system, which may act as transmitters and receivers and may be base stations or mobile terminals.
An OFDMA system for data transmission makes use of an OFDMA-based physical resource grid which comprises a set of resource elements to which various physical channels and physical signals are mapped. For example, in accordance with the LTE standard, the physical channels may include the physical downlink shared channel (PDSCH) carrying user specific data, also referred to as downlink payload data, the physical broadcast channel (PBCH) carrying for example the master information block, the physical downlink control channel (PDCCH) carrying for example the downlink control information (DCI), etc. The physical signals may comprise reference signals (RS), synchronization signals and the like. The LTE resource grid comprises a 10 milliseconds frame in the time domain having a given bandwidth in the frequency domain. The frame has 10 subframes of 1 millisecond length, and each subframe includes two slots of 6 or 7 OFDM symbols depending on the cyclic prefix (CP) length.
The resource elements 108, 110, 112 allocated to the physical control channels and to the physical reference signals are not evenly distributed over time. More specifically, in slot 0 of the subframe the resource elements associated with the symbol 0 and the symbol 1 are allocated to the physical control channels or to the physical reference signals, no resource elements in the symbols 0 and 1 are allocated to payload data. The resource elements associated with symbol 4 in slot 0 as well as the resource elements associated with symbols 7 and 11 in slot 1 of the subframe are allocated in part to the physical control channels or to the physical reference signals. The white resource elements shown in
The duration of the subframe is 1 millisecond, and in accordance with the LTE standard, the TTI is 1 millisecond. When transmitting data using the resource grid structure shown in
As explained above, the PDCCH is defined by a pre-defined number of OFDM symbols, i.e., there the size of the PDCCH is limited which, consequently, also limits how many DCIs may be carried in one subframe having a length of 1 millisecond. This may, in turn, limit the number of UEs which may receive an allocation for the subframe when using dynamic scheduling. To support more allocations, without increasing the size of the PDCCH, semi-persistent scheduling (SPS) may be used. When using SPS, the UE is pre-configured by the transmitter or base station with a SPS-RNTI (radio network temporary identifier), also be referred to as an allocation ID, and a periodicity. Once pre-configured, the UE may receive a further message defining an allocation for a downlink and/or uplink transmission of data on the basis of the associated SPS-RNTI. This allocation will repeat according to the pre-configured periodicity; in other words, once allocated, the resources may be repeatedly used for receiving/transmitting data by the UE without the need to perform scheduling in each subframe. In case the radio link conditions change, the base station may provide to the UE a resource allocation message for re-allocating resources. Currently, the SPS interval, i.e., the periodicity with which the transmission/reception of data on the certain allocated resources is performed, is defined on a subframe basis. Further, after pre-configuring the UE, additional messages need to be provided to the UE for SPS activation/release, for example by a DCI message sent in the PDCCH. Further, any control data for controlling an operation of a UE not directly associated with SPS needs to be transmitted by a DCI on the PDCCH.
An embodiment may have an apparatus for a wireless communication system, wherein the apparatus is configured to perform semi-persistent scheduling(SPS), wherein a size of an SPS interval is based on one or more transmission time intervals (TTIs), wherein the apparatus is configured to receive and process a configuration message, the configuration message including one or more data fields indicative of the size of the SPS interval, wherein the configuration message indicates a listening window at the beginning of an SPS interval, the listening window having predefined size shorter than the size of the SPS interval, and wherein the apparatus is configured to listen for a control messages directed to the apparatus during the listening window.
Another embodiment may have an apparatus for a wireless communication system, wherein the apparatus is configured to perform semi-persistent scheduling(SPS), wherein a size of an SPS interval is based on one or more transmission time intervals (TTIs), wherein the apparatus is configured to receive and process a configuration message, the configuration message including one or more data fields indicative of the size of the SPS interval, and wherein the configuration message indicates several SPS intervals or SPS configuration modes and the apparatus is configured to switch between the several SPS intervals or SPS configuration modes, or selectively activate and deactivate one or more of the SPS intervals or SPS configuration modes, subsequent to the configuration message responsive to further configuration messages or control messages subsequent to the configuration message.
Another embodiment may have an apparatus for a wireless communication system, wherein the apparatus is configured to perform semi-persistent scheduling, wherein the apparatus is configured such that the semi-persistent scheduling is controlled via a configuration message, and wherein the configuration message includes one or more of: control data activating, releasing or indicating a duration of the semi-persistent scheduling, control data indicating resources to be allocated for the semi-persistent scheduling, control data indicating transmission parameters for the semi-persistent scheduling, control data indicating frequency hopping information, control data indicating one or more certain downlink payload data messages triggering a direct or delayed uplink message, control data indicating several SPS intervals or SPS configuration modes among which one or more may be activated or deactivated by further configuration messages or control messages subsequent to the configuration message, control data indicating a listening window at the beginning of a SPS interval, the listening window having predefined size shorter than the size of the SPS interval and allowing for control messages during the listening window to be listened.
Another embodiment may have an apparatus for a wireless communication system, wherein the apparatus is configured to perform semi-persistent scheduling (SPS) for resources of first payload data transmissions in an SPS direction being a downlink or uplink direction, wherein the apparatus is configured so that SPS times at which the resources for the first payload data transmissions are scheduled, are triggered by second payload data transmissions in an opposite direction being opposite to the SPS direction.
Another embodiment may have an apparatus for a wireless communication system, wherein the apparatus is configured to perform semi-persistent scheduling (SPS), wherein the apparatus is configured so that a configuration mode of the SPS is changed, or SPS is established, triggered by a first entity communicating with another entity via payload data transmitted over the wireless communication system, or a message indicating an event which depends on physical environmental conditions of the apparatus.
Another embodiment may have a wireless communication system including an inventive apparatus.
According to another embodiment, a method may have the steps of: performing semi-persistent scheduling so as to receive or transmit data in a wireless communication system, wherein a size of an SPA interval is based on one or more transmission time intervals, wherein the method includes receiving and processing a configuration message, the configuration message including one or more data fields indicative of the size of the SPS interval, wherein the configuration message indicates a listening window at the beginning of an SPS interval, the listening window having predefined size shorter than the size of the SPS interval, and wherein the method includes listening for a control messages directed to an apparatus of the wireless communication system during the listening window.
According to another embodiment, a method may have the steps of: performing semi-persistent scheduling so as to receive or transmit data in a wireless communication system, controlling the semi-persistent scheduling via a configuration message, and wherein the configuration message includes one or more of: control data activating, releasing or indicating a duration of the semi-persistent scheduling, control data indicating resources to be allocated for the semi-persistent scheduling, control data indicating transmission parameters for the semi-persistent scheduling, control data indicating frequency hopping information, control data indicating one or more certain downlink payload data messages triggering a direct or delayed uplink message, control data indicating several SPS intervals or SPS configuration modes among which one or more may be activated or deactivated by further configuration messages or control messages subsequent to the configuration message, control data indicating a listening window at the beginning of a SPS interval, the listening window having predefined size shorter than the size of the SPS interval and allowing for control messages during the listening window to be listened.
According to another embodiment, a method may have the steps of: performing semi-persistent scheduling so as to receive or transmit data in a wireless communication system, wherein a size of an SPA interval is based on one or more transmission time intervals, wherein the method includes receiving and processing a configuration message, the configuration message including one or more data fields indicative of the size of the SPS interval, and wherein the configuration message indicates several SPS intervals or SPS configuration modes and the apparatus is configured to switch between the several SPS intervals or SPS configuration modes, or selectively activate and deactivate one or more of the SPS intervals or SPS configuration modes, subsequent to the configuration message responsive to further configuration messages or control messages subsequent to the configuration message.
According to another embodiment, a method may have the steps of: performing semi-persistent scheduling (SPS) for resources of first payload data transmissions in a wireless communication system in an SPS direction being a downlink or uplink direction, triggering SPS times at which the resources for the first payload data transmissions are scheduled, by second payload data transmissions in an opposite direction being opposite to the SPS direction.
According to another embodiment, a method may have the steps of: performing semi-persistent scheduling (SPS) in a wireless communication system, changing a configuration of the SPS is changed, or establishing the SPS, triggered by a first entity communicating with another entity via payload data transmitted over the wireless communication system, or a message indicating an event which depends on physical environmental conditions.
Another embodiment may have a non-transitory digital storage medium having a computer program stored thereon to perform the method having the steps of: performing semi-persistent scheduling so as to receive or transmit data in a wireless communication system, wherein a size of an SPA interval is based on one or more transmission time intervals, wherein the method includes receiving and processing a configuration message, the configuration message including one or more data fields indicative of the size of the SPS interval, wherein the configuration message indicates a listening window at the beginning of an SPS interval, the listening window having predefined size shorter than the size of the SPS interval, and wherein the method includes listening for a control messages directed to an apparatus of the wireless communication system during the listening window, when said computer program is run by a computer.
Another embodiment may have a non-transitory digital storage medium having a computer program stored thereon to perform the method having the steps of: performing semi-persistent scheduling so as to receive or transmit data in a wireless communication system, controlling the semi-persistent scheduling via a configuration message, and wherein the configuration message includes one or more of: control data activating, releasing or indicating a duration of the semi-persistent scheduling, control data indicating resources to be allocated for the semi-persistent scheduling, control data indicating transmission parameters for the semi-persistent scheduling, control data indicating frequency hopping information, control data indicating one or more certain downlink payload data messages triggering a direct or delayed uplink message, control data indicating several SPS intervals or SPS configuration modes among which one or more may be activated or deactivated by further configuration messages or control messages subsequent to the configuration message, control data indicating a listening window at the beginning of a SPS interval, the listening window having predefined size shorter than the size of the SPS interval and allowing for control messages during the listening window to be listened, when said computer program is run by a computer.
Another embodiment may have a non-transitory digital storage medium having a computer program stored thereon to perform the method having the steps of: performing semi-persistent scheduling so as to receive or transmit data in a wireless communication system, wherein a size of an SPA interval is based on one or more transmission time intervals, wherein the method includes receiving and processing a configuration message, the configuration message including one or more data fields indicative of the size of the SPS interval, and wherein the configuration message indicates several SPS intervals or SPS configuration modes and the apparatus is configured to switch between the several SPS intervals or SPS configuration modes, or selectively activate and deactivate one or more of the SPS intervals or SPS configuration modes, subsequent to the configuration message responsive to further configuration messages or control messages subsequent to the configuration message, when said computer program is run by a computer.
Another embodiment may have a non-transitory digital storage medium having a computer program stored thereon to perform the method having the steps of: performing semi-persistent scheduling (SPS) for resources of first payload data transmissions in a wireless communication system in an SPS direction being a downlink or uplink direction, triggering SPS times at which the resources for the first payload data transmissions are scheduled, by second payload data transmissions in an opposite direction being opposite to the SPS direction, when said computer program is run by a computer.
Another embodiment may have a non-transitory digital storage medium having a computer program stored thereon to perform the method having the steps of: performing semi-persistent scheduling (SPS) in a wireless communication system, changing a configuration of the SPS is changed, or establishing the SPS, triggered by a first entity communicating with another entity via payload data transmitted over the wireless communication system, or a message indicating an event which depends on physical environmental conditions, when said computer program is run by a computer.
Embodiments of the present invention will be detailed subsequently referring to the appended drawings, in which:
In the following, embodiments of the present invention are described in further detail with reference to the enclosed drawings in which elements having the same or similar function are referenced by the same reference signs.
A data transmission in a wireless communication system, like an OFDMA system as depicted in
In
As mentioned above, for improving the performance of UEs in a wireless communication system, as it is for example described with reference to
UE to perform SPS at any time. Typically, this is done at the time of the dedicated bearer establishment for the service by RRC (radio resource control). The SPS may be configured/re-configured by RRC at any time using a configuration message that is also referred to as “SPS-Config”. The SPS-Config message may include the SPS-RNTI as well as configuration information for the downlink and for the uplink. The configuration message does not allow a UE to start the SPS, rather, the base station serving the UE has to explicitly activate SPS so as to allow the UE to use SPS grants/assignments.
Once the UE has received the SPS-Config message including the SPS-RNTI associated with the UE, the UE may be configured by higher layers to decode the PDCCH with CRC (cyclic redundancy check) scrambled by the SPS-RNTI in every subframe, as the eNB may activate/release SPS at any time using a DCI message. A SPS activation/release message is validated by the UE as is explained in detail in reference [4].
After a valid activation, the UE decodes the PDCCH for CRC scrambled by the SPR-RNTI to check for SPS-validated DCI control information in every SPS subframe, i.e., in every subframe as defined by the SPS interval, the UE looks for information regarding possible changes, e.g. changes in the assigned resources, in the transmission mode, the MCS (modulation and coding scheme) or the like. The assignment of the resource blocks within the subframe is subject to the choice of the base station, and in case the UE does not receive any SPS-validated DCI, the resource block assignment and the other transmission parameters, like transmission mode and MCS, remain as currently configured, thereby avoiding a control signaling overhead.
SPS is used for services with periodic resource demands, and different applications may involve different arrival times of transport blocks which may be configured by the SPS interval parameters. For example, Voice over IP (VoIP) is an application where data arrives in periodic bursts of 20 milliseconds. Beyond that, as mentioned above, there are mission-critical and latency-constrained communications services; for example, URLLC (ultra reliable low latency communication) services, such as in machine-type communication and in vehicular communication, which involve pre-configured resources in shorter periods of time; for example, in periods of below 10 milliseconds down to the micro-second level and below. Applying SPS to such applications or services leads to the least possible signaling overhead when compared to frequent dynamic configuration updates, and embodiments of the present invention address SPS for such latency-constrained applications.
Further, for the aforementioned latency-constrained applications, but also for conventional applications, respective services and higher OSI layers, such as on the Application Layer, as well as rate-controlled protocols on the Network Layer (for example, TCP), may gain performance in terms of network throughput, adaption latency or RTT (round trip time) reduction if SPS may be directly influenced and/or adapted by the application, service or protocol.
First Aspect
In accordance with the present invention, a first aspect provides SPS for the user equipment using a SPS interval or periodicity that is no longer tied to the subframe domain but is tied to the transmission time interval (TTI) domain, thereby allowing implementing the SPS also for latency-constrained applications in which the periodic transmission of transport blocks is involved at certain intervals which may be freely defined on the basis of the TTI. In accordance with embodiments, the base station may configure the UE to perform SPS on the basis of a predefined interval as needed by an application, and the SPS interval may be any multiple of the TTI used by the user equipment for data transmission. The TTI to be used by the user equipment may be specified by the base station upon setting up the user equipment. Also, applications may be serviced using SPS, wherein such applications involve a periodicity for the transmission of data on allocated resources at intervals which are below the length of one subframe down to as slow as 1 millisecond or even to below 1 millisecond.
Thus, in accordance with embodiments of the present invention defining the first aspect, an apparatus may be configured to receive or transmit data on certain allocated resources over the wireless communication system with a predefined periodicity, wherein the periodicity is based on the transmission time interval for a data block to be received at or transmitted by the apparatus, with the apparatus being a receiver, such as a mobile terminal or UE, configured to receive and process a corresponding configuration message from a transmitter, such as a base station, to perform the semi-persistent scheduling or the apparatus is a transmitter, such as a base station, configured to transmit to a receiver, such as a mobile terminal, a configuration message to configure the receiver to perform semi-persistent scheduling in a manner coinciding with the apparatus' semi-persistant scheduling. The semi-persistent scheduling may be used for uplink or downlink. Depending on the apparatus being base station or mobile terminal, the apparatus may transmit payload data via allocated resources including, but not exclusively, those scheduled semi-persistently, in units of the transmission time intervals by scrambling and/or interleaving the payload data along with FEC data protecting the payload data before mapping the payload data onto the allocated resources, or receives payload data via allocated resources in units of transmission time intervals by descrambling and/or deinterleaving the payload data along with FEC data protecting the payload data upon demapping the payload data from the allocated resources. In other words, in accordance with embodiments, the apparatus is configured to perform a semi-persistent scheduling so as to receive or transmit data in plurality of subsequent intervals on certain allocated resources of the wireless communication system, wherein the size of an interval is based on the transmission time interval for a data block to be received at or transmitted by the apparatus.
This approach is advantageous as it allows changing the “granularity” at which data is repeatedly transmitted on certain allocated resources so that SPS is no longer tied to a subframe length as is done in conventional approaches, rather, the inventive approach allows adapting the size of the interval for SPS to any desired number of TTIs, dependent on the specific requirements of wireless applications. Embodiments allow for adapting the SPS interval to times substantially below a subframe length, even below 1 millisecond when the TTI is exemplarily defined as below 1 ms so as to be applicable also for low latency communication services.
Second Aspect
In accordance with a second aspect, the present invention provides an approach to implement SPS at a UE faster, for example, by providing an interface mechanism to let a higher layer in the communication system directly or indirectly communicate and/or control the SPS settings, which may change over time. Such a control mechanism, in accordance with embodiment of the present invention, allows, for example in TCP, for an optimized setting of the SPS parameters for a slow start phase in order to quickly reach a congestion avoidance phase, after which a more relaxed setting may be used and thus channel resources may be released. Another use case may be an ultra-low delay video live contribution, which over time adjusts its bit rate and/or latency requirements, so that also in such a case, general resources no longer needed may be released. On the other hand, in case the requirements for such a video transmission increase, an adjustment of the needed channel resources may be performed at the earliest possible point in time.
In accordance with embodiments of the present invention, the second aspect provides a apparatus configured to perform semi-persistent scheduling so as to receive or transmit data in a priority of subsequent intervals on certain allocated resources over the wireless communication system, wherein the apparatus is configured to controlling the semi-persistent scheduling via a configuration message. In case of the apparatus being a receiver such as a mobile terminal or UE, it may receive and process a configuration message which includes control data from controlling an operation of the receiver. In other words, in accordance with the second aspect, the use of SPS is improved as, other than in conventional approaches, the configuration message now already includes control data which may specify, for example, an activation time already at the time of configuration, for example by indicating a specific system frame number at which the SPS should be started or the like, thereby avoiding additional DCI communication overhead. Also, the configuration message may already include the information about the resources allocated and the like, so that no further message for transmitting this information to the UE is needed.
In accordance with embodiments, the configuration message may be a single message or may include a plurality of messages which may also be hierarchically structured so that upon configuring the UE for a specific service, dependent on foreseen changes of requirement of an application and/or radio link conditions, the application or service or protocol may signal the UE to change from one configuration to another configuration which means a substantial reduction in control data transmission overhead as only a trigger signal for changing from one configuration to another configuration needs to be sent but not the entire new configuration.
Third Aspect
In accordance with a third aspect, the present invention provides semi-persistent scheduling (SPS) for resources of first payload data transmissions in an SPS direction being a downlink or uplink direction, where the SPS times at which the resources for the first payload data transmissions are scheduled, are triggered by second payload data transmissions in an opposite direction being opposite to the SPS direction. The configuration may again be performed via SPS configurations which may be contained in the RRC. Configurations of such SPS may relate to the delay between the triggering second payload data transmissions such as DL transmissions, and the SPS times where the next first payload data transmissions in SPS direction, such as UL, may take place. Listening windows may be placed at such SPS times as in the first aspect. The apparatus configured to perform semi-persistent scheduling (SPS) in such a manner may be a receiver, such as a mobile terminal or UE, configured to receive and process a corresponding configuration message from a transmitter, such as a base station, to perform the counter-direction triggered semi-persistent scheduling in a manner configured according to the configuration message or the apparatus is a transmitter, such as a base station, configured to transmit to a receiver, such as a mobile terminal, a configuration message to configure the receiver to perform the counter-direction triggered semi-persistent scheduling in a manner coinciding with the apparatus' semi-persistant scheduling.
Fourth Aspect
In accordance with a fourth aspect, a configuration of the SPS is changed, or SPS is established, in a manner triggerd by a first entity, for example. The first entity is, for example, a HTTP server or a client such as in bitrate-adaptive streaming, which communicates with another entity via payload data transmitted over the wireless communication system. The message by way of which the first entity triggers the SPS configuration mode change or establishment, is not necessarily sent over the wireless communication system, but through a core network, e.g. the HTTP server sending something to the eNodeB. Another trigger may be a message indicating an event which depends on physical environmental conditions of the apparatus. The apparatus may be configured to change the configuration of, or establish, the SPS in terms of SPS interval, SPS bitrate, coding and modulation used for the SPS resources. The apparatus may be configured to change the configuration of, or establish, the SPS responsive to one or more of the following a message from the first entity informing the apparatus on a TCP slow start or TCP congestion avoidance (i.e. change of status of TCP), or a change in a bitrate version bitrate-adaptively streamed between the first and second entities; a hint on an improvement or worsening of tranmssion conditions along SPS direction;
a change in resoulion, quality or coding complexity of video or picture data transmitted over the wireless communication system using the SPS; an handover situation; TCP packet loss; and speech to pause/silence transition. The apparatus configured to trigger a configuration change or establishment of semi-persistent scheduling (SPS) in such a manner may be a receiver, such as a mobile terminal or UE, configured to initiate, for example, the SPS change or establishment by a corresponding SPS request upon which the transmitter such as a bse station may or may not confirm the SPS by issuing corresponding SPS configuration meassages, or the apparatus is a transmitter, such as a base station, configured to issue to a receiver, such as a mobile terminal, a corresponding SPS configuration meassage for a change in configuration or establishment of SPS.
In the following, further embodiments of the aforementioned two aspects will be described in detail.
To be consistent with one subframe consisting of 14 OFDM symbols, as current TTI, in accordance with embodiments, the sTTIs may be selected to fit into one subframe, for example, 2+2+2+2+2+2+2 OFDM symbols, 3+4+3+4 OFDM symbols or 7+7 OFDM symbols.
In addition to the standard LTE signaling procedure using the DL and UL control channels (PDCCH, PUCCH), special control channels for DL and UL (sPDCCH, sPUCCH) may be implemented in low latency enabling sTTI modes, and a so-called “fast DCI” may be provided which contains DCI content which applies to one specific sTTI and is carried on the sPDCCH. A “slow DCI” may be provided to carry DCI content which applies to more than one sTTI and this may be carried on the conventional PDCCH also referred to as the legacy PDCCH, see for example the two-level DCI concept in reference [7]. For a sPDSCH or a sPUSCH in a given sTTI, the scheduling information may be obtained from a combination of a slow DCI and a fast DCI. In case the standard grant-based signaling is used for a shortened frame structure, the control message exchange for uplink grants may cause additional latency, may increase jitter in the system and may decrease data rates so that when adapting SPS towards latency-constrained services, an overhead reduction needs to be addressed to benefit from the SPS operation.
In accordance with the first aspect of the present invention, the scheduling interval size for a SPS operation in the LTE downlink and in the LTE uplink are now defined on a TTI basis and are no longer limited to the a number of subframes. This allows for an increased flexibility dependent on applications, services or protocols that may involve a different SPS periodicity or SPS interval for repeatedly receiving/transmitting data. Further, the inventive approach allows to operate the SPS with any change of the TTI size in future communication systems. In accordance with embodiments, the scheduling interval size is based on the sTTI, which allows SPS for latency-constrained services with intervals below 10 milliseconds down to 1 millisecond and even to below 1 millisecond. Using the sTTI as a basis for defining the SPS interval reduces or avoids control signaling overhead due he reduced number of DCI messages that need to be send.
In accordance with an embodiment, the conventional SPS-ConfigDL/UL is adapted from a subframe basis to a TTI or sTTI basis. More specifically, in accordance with an embodiment the currently used SPS-Config message, as it is shown in
The information from the fields sttiA to sttiF may be used by the low latency user when the user is in a low latency mode, however, when the low latency mode is not required but periodic transmission of data is still desired, the low latency user may use the conventional SPS interval as defined by sfN fields.
In accordance with other embodiments, not only the spareX fields of the conventional SPS-Config message may be relabeled, but also the non-spare fields “sfN”.
In accordance with
In accordance with other embodiments, the conventional SPS configuration may be modified so as to define an enhanced SPS configuration, also referred to as eSPS-Config message, and the SPS intervals may be defined as explained above with reference to
In accordance with further embodiments, the enhanced SPS configuration may provide for directly signaling a value of the SPS interval.
In accordance with further embodiments, to reduce the number of bits to be transmitted for representing a specific interval length, a prefix code may be used, like a Huffman code with a variable length of the encoded symbols depending on the probability/occurrence. For example, assuming a SPS interval of 10 sTTI to have the highest probability from a set of five SPS intervals, in accordance with embodiments, this interval may be encoded using the codeword “11”, and the other four SPS intervals may be encoded based on their ranked probabilities as “10”, “00”, “010” and “011” to have a uniquely decodable but variable-length bit representation. This is advantageous because shorter codewords are subject to faster decoding. In accordance with embodiments, also other prefix codes or codewords may be used for representing the SPS interval length.
In accordance with further embodiments of the present invention, a listening window is defined and signaled in addition to signaling the SPS interval.
In accordance with the present embodiment, additional signaling is providing for informing a user or receiver about a listening window size which may be labeled in the modified SPS-Config message as “ListeningPeriodUL” or “ListeningPeriodDL” for the uplink or downlink. The listening window may be of flexible size, and it may be signaled as having a length of only one (s)TTI as conventionally used, or more than one (s)TTI. The scheduling of SPS packets over different window sizes provides for an additional flexibility and is advantageous as longer windows allow for a jitter in the precision of the scheduled packets, and longer listening windows for delay-tolerant services allow for an optimized scheduling of delay-sensitive services at the beginning of a (s)TTI. In other words, services which are more delay-sensitive than other services receive their scheduling information, advantageously without delay, at the beginning of the window, while the other services, which are not so delay-sensitive, receive the scheduling information at some instance within the window which is still sufficient for such delay-tolerant services. A further advantage is that network delays may be compensated with a higher tolerance for late arriving packets as a receiver or user will stay active in the listening mode for a longer period of time than only the one (s)TTI as in the conventional approach.
In accordance with an embodiment, the listening window size may be indicated within the SPS-Config message as an additional parameter field, typically it may be an enumerated parameter field on a subframe basis for legacy users or on a (s)TTI basis for other users, such as latency-constrained users. Similar look-up tables as discussed above with reference to
In accordance with further embodiments regarding the listening window size, a stop-listening scheme may be implemented to allow an early fallback of the user equipment to a sleep mode before the current window reaches its full size. This is advantageous as it allows for energy savings at the receiver. In accordance with embodiments, the early fallback into the sleep mode may be implicitly realized after receiving data, for example directly after receiving one packet unless the one packet received indicates that additional data is to be expected on subsequent (s)TTIs. For example, the receiver may receive a resource allocation message within the listening window, for example at a first (s)TTI, and the message may indicate that there is no change in the resource allocation or the like. Thus, so no further data is expected and the receiver may return to the sleep mode until the time of periodic transmission/reception of data. In a situation in which the resource allocation message indicates a change in the resource allocation or the like, the additional information may be provided in the next (s)TTI so that the receiver remains awake. In accordance with other embodiments, the receiver may be signaled a bit to switch off listening. For example the signaling may be provided by the base station instead of the scheduling message.
The control messages looked for during the listening window may an activating, deactivating or resource allocation message indicating changes.
As can be seen from
In a default mode, quasi as fallback solution, the SPS resources are located at the end of the listening window. I.e., in the preceding TTIs, changes can be signaled. Otherwise, the fallback resource is taken. This reduces signaling overhead. That is, the resource for the semi-persistent scheduling for a current interval is taken for transmission or reception of SPS payload data from a resource block within the last transmission time interval within the listening window, coinciding in intra-TTI position with a default position, depending on whether one or more of the following conditions being fulfilled: the receiver has not yet stopped listening for the control messages, the receiver does not have already accessed the resource for the semi-persistent scheduling for the current interval from a resource block of a transmission time interval preceding the last transmission time interval of the listening window; and there is no control message within a control channel of the last transmission time interval which indicates a position of the resource block within the last transmission time interval. The default position may have been indicated within the configuration message, or is the last intra-TTI position used in the immediately preceding SPS interval.
The embodiments described in accordance with the first aspect concern an improvement of the SPS by extending it to SPS intervals no longer being a multiple of a subframe length, but allowing for a definition of arbitrary lengths, e.g., lengths even shorter than 1 millisecond as it may be used for low-latency applications. In the embodiments described above, the conventional SPS-Config message had been modified so as to signal the respective modified SPS interval to a receiver. However, as stated earlier, the SPS-Config message does not start the actual SPS at the user. As explained in reference [3] an additional activation message is involved which needs to be validated by the receiver so as to start the SPS. This additional message provides additional control data transfer overhead which, in accordance with the second aspect of the present invention is reduced by modifying the SPS-Config message so that additional control data for controlling the operation of the receiver is included already in the configuration message as originally sent. The following embodiments concerning the provision of additional control data in the SPS-Config message may be used both for legacy users for which the SPS interval is signaled on the basis of the subframe length, and in the above described embodiments of the first aspect, in which the SPS interval is signaled on the basis of the TTI or sTTI.
In accordance with a first embodiment of the second aspect of the present invention the content of a SPS-validated DCI message, that is currently transmitted separate from the SPS-Config message on the PDCCH or the sPDCCH, is “piggybacked” into the SPS-Config message.
In accordance with other examples, instead of integrating the activation and release information into the SPS-Config message, but to also avoid the just mentioned frequent monitoring and decoding of SPS-validated DCI messages, the activation and release may be signaled by additional control bits that are integrated in the transmitted user payload data on the PDSCH (DL) or the PUSCH (UL), for example as an RRC message.
In accordance with further embodiments, instead of or in addition to the signaling of the activation/release of the SPS is the SPS-Config message, other SPS-relevant DCI content may be incorporated into the SPS-Config message. Embodiments allow to fully skip listening to SPS-validated DCI messages on the PDCCH as all SPS-relevant signaling information may be transferred from a DCI message into the SPS-Config message, e.g., in situations in which stable channel conditions may be assumed. Also, SPS intervals defined on the (s)TTI basis may use this approach as channel dynamics are assumed to not change so quickly, so that frequent SPS reconfigurations are not needed.
More specifically, the table of
In accordance with the conventional approach no signaling of resource block assignment and/or other DCI information in the SPS-Config message is envisaged, rather all such data and information is provided via the SPS-validated DCI message.
If the DCI signaling is completely incorporated into the eSPS-Config, DCI messages are not required for the SPS transmission and may not be transmitted for this purpose. However, the base station would then not be able to deactivate the SPS-transmission of a mobile terminal operating SPS in uplink direction through DCI messages. Therefore, if the base station wants to deactivate this SPS-uplink transmission, it may respond with a NACK (non-acknowledgment) message. ACK/NACK messages are transmitted via a PHICH (Physical
Hybrid ARQ Indicator Channel) which any transmitter of payload data has to listen subsequent to the transmission of the payload data. In case of receiving a NACK, the payload transmitter reads the DCI control messages of the following TTIs so as to, normally, initiate the mitigation of the failure transmission called HARQ. Thus, the mobile terminal operating SPS in uplink direction as described above has to listen to the DCI messages for a (H)ARQ response of the failed SPS-packet. Now, in the DCI-message the cancellation of the SPS-transmission is signaled. The NACKs, thus “abused” by the base station, can be called Fake-NACK, since they are not used to indicate an erroneous packet, but initiate the cancellation of the SPS uplink transmission or otherwise make the receiver or mobile terminal listen to an SPS control related control message. In other words, a mobile terminal may transmit data within resources allocated by the semi-persistent scheduling in uplink, wherein the apparatus is configured to, responsive to a NACK message, look in a control message succeeding the NACK message for an hint on a transmission failure and information concerning a reconfiguration of the semi-persistent scheduling. The base station sends such NACK although correctly having received data having received from the transmitter via the SPS resources in uplink, but inserts a SPS reconfiguring control message into the DCI in the TTI inspected by the mobile terminal responsive to the Fake NACK. Thus, the fact that semi-persistent scheduling is normally configured by way of configuration messages contained within a payload section of resources of the wireless communication system allocated via the semi-persistent scheduling or in a non-semi-persistent manner, does no longer disturb. The semi-persistent scheduling may be reconfigurable, in addition to control messages found responsive to any NACK message, by way of configuration messages contained within a payload section of resources of the wireless communication system allocated via the semi-persistent scheduling or in a non-semi-persistent manner exclusively.
In accordance with the first example of the inventive approach, a full signaling of all resource block assignments and all other related information for the transfer of data is incorporated into the inventive SPS-Config message so that, when also information about the frequency hopping pattern is included, no DCI messages are needed at all for the SPS operation. In case the frequency hopping pattern is not included as part of the SPS-Config message, DCI messages are still not needed.
In accordance with the first example of the inventive approach partial information is included into the SPS-Config message which allows configuring the DCI message as a reduced or narrowband DCI message, e.g., in a self-contained frame structure. This approach may be suited for devices of the internet of things (IoT) or for saving battery power at the receiver.
In accordance with embodiments of the present invention, the above-mentioned approach for frequency hopping as used in the uplink is expanded so as to allow resource allocation hopping patterns in the downlink. In accordance with these embodiments, frequency hop-ping for a downlink SPS is supported. In the downlink, currently frequency hopping is only enabled for UEs in the mode “bandwidth reduced low complexity (BL)” and “coverage enhancement (CE)”, as defined in reference [10]. In accordance with the present embodiment, the frequency hopping will also be enabled for DL SPS by including into the SPS-ConfigDL section of the SPS-Config message the frequency hopping information.
Currently, the frequency hopping works on an inter-subframe basis as illustrated in
Thus, frequency hopping information conveyed by configuration messages may indicate a hopping pattern and/or a hopping basis, i.e. spectral and/or temporal granularity, of the hopping. By way of
In accordance with further embodiments, which concern the third aspect, but may use similar signaling in form of SPS configurations, the inventive approach allows for a conditional SPS UL grant responsive to specific traffic patterns that may be recognized and cause a specific downlink message which, in turn, triggers sending one or more uplink messages. For example, to steer the movement of an industrial robot, like its axes, tool center point and the like, or an automated guided vehicle data on the target, for example precise data on the coordinates for the next step or relative data of the direction assuming constant speed, are sent in a downlink while an answer on a current position, like the coordinates, is transmitted backwards in the uplink. In accordance with the embodiments described herein, for DL/UL message pairs, like the ones mentioned above, a special indicator is provided in the SPS DL configuration so as to trigger SPS UL grants. In case a SPS UL has been already established before the triggering DL message starts, the configuration may be modified by the DL trigger.
In the following embodiments for triggering SPS UL grants will be described with reference to
As became clear from the brief description of the fourth aspect, conditional UL, for instance, can be done with an UL SPS that defines the delay and resources that are activated when data in the DL is received.
With regard to the examples described in
As becomes clear from
In addition to using DL messages as an trigger for SPS configuration or SPS changes, such
SPS information could be triggered for UL and/or DL based on other events which are available at and/or signaled to the transmitter and receiver. E.g., it is possible that the base station observes an event and indicates the SPS change, where such event could be a changing rate of DL packet arrivals from the core network (triggering a change of DL SPS) or changing channel conditions (triggering adaption of UL SPS interval frequency and resources). Also, the may UE observe the event and indicates SPS change, e.g. video conferencing where the video application running on the mobile terminal changes the resolution to full screen (triggering a change of DL SPS) or changes of involved UL data rates, e.g. in video records where a rather static observed environment changes to moving environments (triggering a change of UL SPS).. Also, both participating entities (base station and mobile terminal) may have common knowledge about the event meaning no additional signaling is needed. Then, the event itself triggers the action, e.g. assume handover situations (UE changes from cell 1 to cell 2) triggering SPS or events arising from higher layer protocols such as video quality changes, speech pause/silence in audio transmission or TCP packet loss triggering SPS.
In other words, the semi-persistent scheduling (SPS) may be deactivated, activated or reconfigured responsive to an event detectable for the mobile terminal and base station as indicated above as part of the fourth aspect. As also indicated above, messages of an higher layer entity such as an HTTP server or HTTP client may by used as a trigger as well.
In accordance with further embodiments, the present invention provides for an automatic change of a SPS configuration over time. Such a change may be caused by an application, a service or a protocol, e.g., a higher layer protocol, like the TCP. In accordance with embodiments, SPS may be used to optimize the performance of higher layer protocols, like TCP connections. In case of a TCP transfer, an SPS-configuration on a (s)TTI basis may be used during the TCP slow-start phase reach a threshold.
In accordance with further embodiments, an additional analysis may be carried out, like a deep packet inspection or a throughput analysis. This additional analysis allows to recognize timeouts or a restarting of the TCP slow-start procedure. Upon detecting such timeouts or a restarting of the TCP slow-start procedure the low-latency approach described above may be provided again so as to speed up the transfer so as to reach the congestion avoidance (CA) state faster. This is shown in further detail in
The above described approaches for switching between low-latency and legacy operations may be implemented in accordance with an embodiment by adding an additional field to the SPS-Config message. In accordance with a first embodiment, a time to live (TTL) field is added to the SPS-ConfigDL section in the corresponding UL section of the SPS-Config message so that the low-latency operation may be disabled after a given time interval, like the time interval TSS. The scale for the time may be the scheduling intervals and may be realized with a simple counter variable. Alternatively, a different standard time unit, for example (s)TTI, subframe, slot or seconds may be used. Dependent on a use case, instead of signaling the values for the time to live directly, less signaling may be achieved by using an enumerated field with common values or codewords.
In accordance with further embodiments, for implementing the above mentioned automatic change of a SPS configuration, the SPS configuration message may be modified by adding a Time to Start (TTS) field so as to allow starting a certain SPS configuration once a preceding SPS mode has expired. The Time to Start field delays the start of the certain SPS configuration so that an expired SPS configuration may be succeeded by the certain SPS configuration as signaled in advance. The scale for the time may be the scheduling intervals and may be realized with a simple counter variable. Alternatively, a different standard time unit, for example (s)TTI, subframe, slot or seconds may be used. Dependent on a use case, instead of signaling the values for the time to start directly, less signaling may be achieved by using an enumerated field with common values or codewords.
Some specific embodiments for automatically changing SPS configurations have been described above, however, the inventive approach is not limited to such scenarios. In accordance with the teachings of the present invention, an automatic switching between SPS configurations may be provided in a way as schematically represented in
In accordance with further embodiments, that will be described in further detail below, the automatic sequence switching depicted in
In accordance with embodiments, there are several ways to activate the SPS modes in the nested SPS-Config message. For example, a DCI activation message may be sent which activates the first nested SPS-ConfigDL/SPS-ConfigUL, and a further DCI activation message toggles through the nested SPS configuration list. In accordance with another embodiment, a single DCI SPS activation message may be sent on the PDCCH using the correct SPS C-RNTI, for example in case of a VoIP service with additional constant bitrate video service, and this message activates all SPS configurations in the nested list, thereby saving signaling overhead. In accordance with yet another embodiment, a modified DCI may be provided, which enables a specific configuration in the nested list. In accordance with further embodiments, the Time to Live information described above may be used so that, once a configuration in the nested list has expired in accordance with the Time to Live field, the next configuration in the list is automatically activated. In accordance with yet another embodiment, the full signaling information relevant for the SPS operation in the nested SPS configuration may be provided by the RRC thereby avoiding the need to use any DCI on the PDCCH, for example in a similar way as described above with reference to
In accordance with further embodiments, a higher layer interface may be provided for an interaction, a setting and an activation of different SPS settings/parameters. For example, the SPS-Config message may be provided to the base station and may also be activated at the base station. In order to meet possible short-term changes in the requirements of an application/protocol/service using an actual bearer, it is desired to interact with this activation procedure. One or more of the following approaches may be used: an event-driven approach or a message-driven approach. In case of an event-driven approach, the base station may detect an event on which a specific SPS setting is immediately activated or is activated after a specific time. Such events may be based on a deep packet inspection, an interaction with a server (a device not under control of the base station) via messages, or interaction with a client (a device under control of the base station) via messages. The message-driven interaction for setting an activation of different SPS settings/parameters may involve a client interacting with the base station. Like a bearer setup-message in which bitrate requirements and the like are provided, the client may forward a message including a bit rate, a latency, scheduling information, an activation time or an activation event information for an existing bearer to the base station so as to indicate the desired SPS setting for a current time or for a later point in time or when a specific event occurs. Event-driven and message free, an eNB and an UE may agree upfront through SPS config or other means on a specific event (e.g. GPS position, CQI value, MCS Level) on which the SPS configuration and/or resource allocation changes. Switching between different SPS config settings may happen on eNB and UE as soon as the event happens. Here it should be mentioned that, as illustrated above related to the fourth aspect, it may be a higher layer message which is exchanged between a server (e.g. HTTP server) and eNodeB. This message could mean TCP slow start or TCP congestion avoidance, so that the eNodeB could react to it by initiating an SPS switching. The message could be either forwarded to the UE and this react to it or as discussed, could be use to initiate a lower layer message to change the SPS configuration.
Embodiments of the present invention may be implemented in a wireless communication system as depicted in
Although some aspects of the described concept have been described in the context of an apparatus, it is clear that these aspects also represent a description of the corresponding method, where a block or a device corresponds to a method step or a feature of a method step. Analogously, aspects described in the context of a method step also represent a description of a corresponding block or item or feature of a corresponding apparatus.
Depending on certain implementation requirements, embodiments of the invention may be implemented in hardware or in software. The implementation may be performed using a digital storage medium, for example a floppy disk, a DVD, a Blue-Ray, a CD, a ROM, a PROM, an EPROM, an EEPROM or a FLASH memory, having electronically readable control signals stored thereon, which cooperate (or are capable of cooperating) with a programmable computer system such that the respective method is performed. Therefore, the digital storage medium may be computer readable.
Some embodiments according to the invention comprise a data carrier having electronically readable control signals, which are capable of cooperating with a programmable computer system, such that one of the methods described herein is performed.
Generally, embodiments of the present invention may be implemented as a computer program product with a program code, the program code being operative for performing one of the methods when the computer program product runs on a computer. The program code may for example be stored on a machine readable carrier.
Other embodiments comprise the computer program for performing one of the methods described herein, stored on a machine readable carrier. In other words, an embodiment of the inventive method is, therefore, a computer program having a program code for performing one of the methods described herein, when the computer program runs on a computer.
A further embodiment of the inventive methods is, therefore, a data carrier (or a digital storage medium, or a computer-readable medium) comprising, recorded thereon, the computer program for performing one of the methods described herein. A further embodiment of the inventive method is, therefore, a data stream or a sequence of signals representing the computer program for performing one of the methods described herein. The data stream or the sequence of signals may for example be configured to be transferred via a data communication connection, for example via the Internet. A further embodiment comprises a processing means, for example a computer, or a programmable logic device, configured to or adapted to perform one of the methods described herein. A further embodiment comprises a computer having installed thereon the computer program for performing one of the methods described herein.
In some embodiments, a field programmable gate array may cooperate with a microprocessor in order to perform one of the methods described herein. Generally, the methods are advantageously performed by any hardware apparatus.
Further embodiments are now described.
Embodiment 1 provides an apparatus for a wireless communication system,
Embodiment 2 provides the apparatus of embodiment 1, wherein the configuration message indicates a size of the listening window by an integer value indicative of a number of consecutive slots or symbols.
Embodiment 3 provides the apparatus of embodiment 1 or 2, configured to receive or transmit data using a data signal, the data signal comprising a plurality of frames, each frame comprising a plurality of subframes, and each subframe comprising a number of symbols in the time domain and a number of sub-carriers in the frequency domain, wherein the transmission time interval is defined by a predefined number of symbols in the time domain.
Embodiment 4 provides the apparatus of embodiment 3, wherein the transmission time interval is less than one subframe.
Embodiment 5 provides the apparatus of any one of embodiments 1 to 4, wherein the configuration message directly signals the size of the SPS interval using a value indicating a number of transmission time intervals defining the size of the SPS interval.
Embodiment 6 provides the apparatus of any one of embodiments 1 to 5, wherein
Embodiment 7 provides the apparatus of embodiment 6, wherein a length of the codeword depends on the frequency of occurrence of the encoded size of the SPS interval.
Embodiment 8 provides the apparatus of any one of embodiments 1 to 7, wherein the apparatus is configured to stop listening for the control messages prior to an end of the listening window, responsive to a control message during the listening window
indicating a change of a configuration of the semi-persistent scheduling; and/or
Embodiment 9 provides the apparatus of any one of embodiments 1 to 8, wherein the listening window starts one or more transmission time intervals prior to the beginning of an SPS interval and ends at least one transmission time interval after the beginning of the SPS interval.
Embodiment 10 provides the apparatus of embodiment 8, wherein the apparatus is configured to access the resource for the semi-persistent scheduling for a current interval from a resource block within a last transmission time interval within the listening window, coinciding in intra-TTI position with a default position, depending on whether one or more of the following conditions being fulfilled:
Embodiment 11 provides the apparatus of any one of embodiments 1 to 10, wherein the apparatus is configured to listen for the control messages within a physical downlink control channel.
Embodiment 12 provides the apparatus of any one of embodiments 1 to 11, wherein
Embodiment 13 provides the apparatus of embodiment 12, wherein the control data comprises one or more of:
Embodiment 14 provides the apparatus of embodiment 13, wherein the frequency hopping information indicates a temporal hopping basis out of different bases comprising a OFDM symbol basis or a below-slot basis.
Embodiment 15 provides the apparatus of any one of embodiments 1 to 14, wherein the configuration message is comprised by a payload section of resources of the wireless communication system allocated via the semi-persistent scheduling or in a non-semi-persistent manner.
Embodiment 16 provides the apparatus of any one of embodiments 1 to 16, wherein the configuration message is a first configuration message, with the size of the SPS interval being valid
Embodiment 17 provides the apparatus of any one of embodiments 1 to 16, wherein the configuration message indicates several SPS intervals or SPS configuration modes and the apparatus is configured to switch between the several SPS intervals or SPS configuration modes, or selectively activate and deactivate one or more of the SPS intervals or SPS configuration modes, subsequent to the configuration message responsive to further configuration messages or control messages subsequent to the configuration message.
Embodiment 18 provides an apparatus for a wireless communication system,
Embodiment 19 provides the apparatus of embodiment 18, wherein the control message is a DCI, and wherein the configuration message indicates several SPS configurations, the several SPS configurations being referenced by the DCI using a common SPS RNTI, the DCI comprising a SPS configuration index to discriminate between the several SPS configurations, the DCI causing a selective activation and deactivation of one of more of the several SPS configurations.
Embodiment 20 provides the apparatus of any one of embodiments 1 to 19, configured to deactivate, activate or reconfigure the semi-persistent scheduling (SPS) responsive to an event detectable for the apparatus and a further apparatus of the wireless communication system from which the apparatus receives, or to which the apparatus transmits, payload data via resources of the semi-persistent scheduling.
Embodiment 21 provides the apparatus of any one of embodiments 1 to 20, wherein the apparatus is a mobile terminal transmitting data within resources allocated by the semi-persistent scheduling, wherein the apparatus is configured to, responsive to a NACK message, look in a control message succeeding the NACK message for an hint on a transmission failure and information concerning a reconfiguration of the semi-persistent scheduling.
Embodiment 22 provides the apparatus of embodiment 21, wherein the apparatus is configured such that the semi-persistent scheduling is reconfigured by way of configuration messages comprised by a payload section of resources of the wireless communication system allocated via the semi-persistent scheduling or in a non-semi-persistent manner.
Embodiment 23 provides the apparatus of embodiment 21, wherein the apparatus is configured such that the semi-persistent scheduling is reconfigurable, in addition to control messages found responsive to any NACK message, by way of configuration messages comprised by a payload section of resources of the wireless communication system allocated via the semi-persistent scheduling or in a non-semi-persistent manner exclusively.
Embodiment 24 provides the apparatus of any one of embodiments 1 to 23, wherein the apparatus is configured to generate and transmit a configuration message, the configuration message comprising one or more data fields indicative of the size of the SPS interval, wherein
Embodiment 25 provides the apparatus of embodiment 24, wherein the codewords are variable length codewords.
Embodiment 26 provides an apparatus for a wireless communication system,
Embodiment 27 provides the apparatus of embodiment 26, wherein the configuration message is a SPS configuration message to be provided by RRC and indicating
Embodiment 28 provides the apparatus of embodiment 26 or 27, wherein the configuration message is a SPS configuration message provided by RRC.
Embodiment 29 provides the apparatus of any one of embodiments 26 to 28, wherein the configuration message is comprised by payload sections of resources of the wireless communication system allocated to a mobile terminal via the semi-persistent scheduling or in a non-semi-persistent manner, wherein the apparatus is the mobile terminal or a further apparatus of the wireless communication system from which the apparatus receives, or to which the apparatus transmits, payload data via resources of the semi-persistent scheduling.
Embodiment 30 provides the apparatus of any one of embodiments 26 to 29, wherein the configuration message is a first configuration message, with a configuration of the SPS defined in the first configuration message being valid
Embodiment 31 provides the apparatus of any one of embodiments 26 to 30, wherein the configuration message indicates several SPS intervals or SPS configuration modes and the apparatus is configured to switch between the several SPS intervals or SPS configuration modes, or selectively activate and deactivate one or more of the SPS intervals or SPS configuration modes, subsequent to the configuration message responsive to further configuration messages or control messages subsequent to the configuration message.
Embodiment 32 provides the apparatus of any one of embodiments 26 to 31, configured to deactivate the semi-persistent scheduling (SPS) responsive to an event detectable for the apparatus and a further apparatus of the wireless communication system from which the apparatus receives, or to which the apparatus transmits, payload data via resources of the semi-persistent scheduling.
Embodiment 33 provides the apparatus of embodiment 16, 17 or 24, wherein the further configuration messages or control messages are scrambled by the same RNTI and differentiated by an SPS configuration index.
Embodiment 34 provides the apparatus of any one of embodiments 1 to 33, wherein the apparatus is a receiver, such as a mobile terminal, configured to receive and process a configuration message from a transmitter, such as a base station, to perform the semi-persistent scheduling or the apparatus is a transmitter, such as a base station, configured to transmit to a receiver, such as a mobile terminal, a configuration message to configure the receiver to perform semi-persistent scheduling in a manner coinciding with the apparatus' semi-persistent scheduling.
Embodiment 35 provides the apparatus of any one of embodiments 1 to 34, wherein the apparatus is configured to transmit payload data via allocated resources in units of transmission time intervals by scrambling and/or interleaving the payload data along with FEC data protecting the payload data before mapping the payload data onto the allocated resources, and/or receive payload data via allocated resources in units of transmission time intervals by descrambling and/or deinterleaving the payload data along with FEC data protecting the payload data upon demapping the payload data from the allocated resources.
Embodiment 36 provides an apparatus for a wireless communication system,
Embodiment 37 provides the apparatus of embodiment 36, wherein the apparatus is configured to perform semi-persistent scheduling, SPS, in the uplink, UL, direction, wherein the first payload data transmissions comprise hybrid automatic repeat request, HARQ, retransmissions, and wherein the apparatus is configured so that SPS times at which the resources for the HARQ, retransmissions are scheduled, are triggered by a SPS downlink, DL, message.
Embodiment 38 provides the apparatus of embodiment 36, configured to schedule the SPS times relative to the second payload data transmissions in a manner defined by a configuration message in a downlink configuration message.
Embodiment 39 provides the apparatus of embodiment 38, wherein the configuration message defines the scheduling of the SPS times relative to the second payload data transmissions in terms of
Embodiment 40 provides the apparatus of embodiment 38 or 39, wherein
Embodiment 41 provides the apparatus of embodiment 40, wherein the apparatus is configured to stop listening for the control message prior to an end of the listening window, responsive to a control message during the listening window
Embodiment 42 provides the apparatus of embodiment 40 or 41, wherein the listening window starts one or more transmission time intervals prior to the beginning of an SPS time and ends at least one transmission time interval after the beginning of the SPS time.
Embodiment 43 provides the apparatus of embodiment 42, wherein the apparatus is configured to access the resource for the semi-persistent scheduling for a current SPS time from a resource block within a last transmission time interval within the listening window, coinciding in intra-TTI position with a default position, depending on whether one or more of the following conditions being fulfilled:
Embodiment 44 provides the apparatus of any one of embodiments 40 to 43, wherein the apparatus is configured to listen for the control messages within a physical downlink control channel.
Embodiment 45 provides the apparatus of any one of embodiments 36 to 44, wherein the configuration message is comprised by a payload section of resources of downlink transmissions.
Embodiment 46 provides the apparatus of any one of embodiments 36 to 45, wherein the apparatus is a receiver, such as a mobile terminal, configured to receive and process a configuration message from a transmitter, such as a base station, configuring the semi-persistent scheduling or the apparatus is a transmitter, such as a base station, configured to transmit to a receiver, such as a mobile terminal, a configuration message to configure the receiver to configure semi-persistent scheduling in a manner coinciding with the apparatus' semi-persistent scheduling.
Embodiment 47 provides an apparatus for a wireless communication system,
Embodiment 48 provides the apparatus of embodiment 47, wherein the apparatus is configured to change the configuration mode of, or establish, the SPS in terms of
Embodiment 49 provides the apparatus of embodiment 47 or 48, wherein the apparatus is configured to change the configuration of, or establish, the SPS responsive to one or more of the following
Embodiment 50 provides the apparatus of any one of embodiments 47 to 49, wherein the apparatus is a receiver, such as a mobile terminal or UE, configured to initiate, for example, the change of the configuration of the SPS or establishment the SPS by a SPS request requesting the a transmitter such as a base station to install the SPS and, optionally, confirm the SPS configuration change or establishment by issuing a corresponding SPS configuration message, or the apparatus is a transmitter, such as a base station, configured to issue to a receiver, such as a mobile terminal, a corresponding SPS configuration message for a change in configuration or establishment of SPS
Embodiment 51 provides a wireless communication system, comprising an apparatus according to any one of embodiments 1 to 49.
Embodiment 52 provides a method, comprising:
Embodiment 53 provides a method, comprising:
Embodiment 54 provides a method, comprising:
Embodiment 55 provides the method of any one of embodiments 52 to 53, wherein the method is performed by a transmitter or a base station of the wireless communication system.
Embodiment 56 provides a method comprising
Embodiment 57 provides a method comprising
Embodiment 58 provides a non-transitory digital storage medium having a computer program stored thereon to perform the method, comprising:
Embodiment 59 provides a non-transitory digital storage medium having a computer program stored thereon to perform the method, comprising:
Embodiment 60 A non-transitory digital storage medium having a computer program stored thereon to perform the method, comprising:
Embodiment 61 provides a non-transitory digital storage medium having a computer program stored thereon to perform the method comprising
Embodiment 62 provides a non-transitory digital storage medium having a computer program stored thereon to perform the method comprising
While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and compositions of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations and equivalents as fall within the true spirit and scope of the present invention.
[2] 3GPP TS 36.321 V13.1.0 (2016-03), p. 42ff
[3] 3GPP TS 36.213 V13.1.1 (2016-03), Section 9.2
[4] http://howltestuffworks.blogspot.de/2013/10/semi-persistent-scheduling.html
[5] 3GPP TS 36.331 V13.1.0 (2016-03), p. 354
[6] 3GPP TR36.881 V0.6.0 (2016-02), “Study on latency reduction techniques for LTE”
[7] R1-165571, Ericsson, Intel, Nokia, Alcatel-Lucent Shanghai Bell, “Way forward on scheduling mechanism for sTTI”
[8] 3GPP TS 36.211 V13.1.0 (2016-03), Section 5.3.4
[9] 3GPP TS 36.213 V13.1.1 (2016-03), Section 8.4
[10] 3GPP TS 36.211 V13.1.0 (2016-03), Section 6.4.1
[11] R1-162588, Huawei, HiSilicon, “DCI design for short TTI”
[12] R1-164060, Huawei, HiSllicon, “DCI design for short TTI”
Number | Date | Country | Kind |
---|---|---|---|
16183900.6 | Aug 2016 | EP | regional |
This application is a continuation of copending International Application No. PCT/EP2017/070444, filed Aug. 11, 2017, which is incorporated herein by reference in its entirety, and additionally claims priority from European Applications No. EP 16 183 900.6, filed Aug. 11, 2016, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2017/070444 | Aug 2017 | US |
Child | 16271502 | US |