1. Field of the Invention
The invention relates to a Schottky diode and, in particular, to a Schottky diode that can reduce the reverse leakage current and has a low forward voltage drop.
2. Description of Related Art
With reference to
From another point of view, when a reverse voltage is imposed, the reverse leakage current of the Schottky diode is obviously larger than that of the P-N diode. This is a drawback of the Schottky diode. However, up to date, there is no Schottky diode that has the advantages of high-speed operations when the forward voltage drop produced under high or low current density and reduces the reverse leakage current under a reverse voltage.
To overcome the shortcomings, the present invention provides a Schottky diode with low reverse leakage current and low forward voltage drop to mitigate or obviate the aforementioned problems.
When the current Schottky diode is imposed with a reverse voltage, it often has a large leakage current that limits its applications. Moreover, when imposed with a forward current load, it cannot have the advantage of relatively low forward voltage drop under both high and low current densities.
An objective of the invention is to provide a Schottky diode that keeps the advantages of high-speed operations and low forward voltage drop under a forward current and suppresses the leakage current under a reverse current.
To achieve the above objective, the Schottky diode comprises a first conductive material semiconductor substrate, an oxide layer and a metal layer.
The first conductive material semiconductor substrate is formed with an annular protection ring therein. The region enclosed by the protection ring is an active area. The active area is formed with a plurality of second conductive material regions in order to produce depletion regions inside the first conductive material semiconductor substrate.
The oxide layer covers the surface of the first conductive material semiconductor substrate. The metal layer covers the oxide layer and the active area of the first conductive material semiconductor substrate. The metal layer and the first conductive material semiconductor substrate form a Schottky contact. The second conductive material regions can be arranged in an array of dots or alternating dots.
In the above-mentioned structure, depletion regions form at the junction between the second conductive material regions and the first conductive material semiconductor substrate. The depletion regions can reduce the leakage current area when the Schottky diode operates under a reverse voltage. Therefore, it can reduce the reverse leakage current and the forward voltage drop.
The Schottky diode in accordance with the present invention contains semiconductor materials. The following description refers to them by “first conductive material” and “second conductive material.” If the first conductive material is a P-type semiconductor material, then the second conductive material is an N-type semiconductor material. If the first conductive material is an N-type semiconductor material, then the second conductive material is a P-type semiconductor material.
With reference to
The first conductive material semiconductor substrate (10) is a substrate made of a first conductive material semiconductor material, such as an N-type substrate made of group-V elements As and P. The surrounding of the first conductive material semiconductor substrate (10) is formed with an annular protection ring (12). The annular protection ring (12) is made of the second conductive material and formed in the first conductive material semiconductor substrate (10). The area enclosed by the protection ring (12) is defined as an active area. Multiple second conductive material regions (14) are formed in the active area of the first conductive material semiconductor substrate (10). The second conductive material regions (14) can dot-shaped. In this embodiment, the dot-shaped second conductive material regions (14) are distributed in an array configuration. Also, the first conductive material is N-type, and the second conductive material is P-type.
The oxide layer (20) is an annular structure that covers the surface of the first conductive material semiconductor substrate (10). The oxide layer (20) covers part of the protection ring (12).
The metal layer (30) covers the oxide layer (20) and the active area of the first conductive material semiconductor substrate (10). A Schottky contact is formed between the metal layer (30) and the first conductive material semiconductor substrate (10).
The second conductive material regions (14) formed in the first conductive material semiconductor substrate (10) can be made into a P-type or N-type semiconductor by doping high-concentration group-III or group-V ions, respectively. Therefore, at the junction between the second conductive material regions (14) and the first conductive material semiconductor substrate (10), the combination of electrons and holes causes depletion regions (16) in the first conductive material semiconductor substrate (10). With the highly dense distribution of second conductive material regions (14), large depletion regions (16) can be formed in the first conductive material semiconductor substrate (10). The depletion regions (16) can reduce the leakage current area when the Schottky diode operates under a reverse voltage, thereby lowering the reverse leakage current.
With reference to
With reference to
With reference to
With reference to
In summary, the invention forms depletion regions at the junction between the first conductive material semiconductor substrate and the second conductive material regions. This improves the electronic properties of the Schottky diode so that it can be widely used in other fields.
While the invention has been described by way of example and in terms of the preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.