Embodiments described herein generally relate to structural support systems for depressible keys of a keyboard and, more particularly, to a keyboard having keys supported by an interlocking scissor mechanism.
Many electronic devices receive user input from a keyboard. Traditionally, keyboards include several rows of depressible keys spaced some distance apart. The distance between keys may be selected for aesthetic, functional, structural, dimensional or other reasons. For example, space-constrained electronic devices such as laptop computers may include an integrated keyboard with closely spaced keys.
In some examples, close spacing of keys may heighten user awareness of subtle differences between adjacent keys. For example, color, texture, or height differences may become more apparent the closer individual keys are arranged. Such perceivable differences between keys, especially height differences, may negatively affect the typing experience.
In many cases, the height of a key may be defined by a multi-part mechanical scissor mechanism also used to translate the key downward a selected distance. Conventional scissor mechanisms may include two scissor members coupled to pivot about a midpoint, with a foot portion of one or both of the scissor members able to slide a certain distance during depression of the key. Once the key is released, the foot portion may slide back, returning the key to the upper height. In this manner, the sliding distance of the foot portion may define the height of the key. Accordingly, to ensure uniform height of closely spaced keys having mechanical scissor mechanisms, each scissor member of each key may require exceptionally low manufacturing tolerance, as slight differences in the dimension of the scissor members may translate to perceivable differences in upper height of adjacent keys. In many cases, low manufacturing tolerances may substantially increase the cost of manufacture by increasing rejection rates, material costs, and manufacture time.
Accordingly, there may be a present need for improved mechanical scissor mechanisms for keyboards requiring uniform height of adjacent keys.
Embodiments described herein may relate to or take the form of a keyboard including at least a plurality of keys with each key including at least a keycap, a scissor mechanism disposed below the keycap, an elastomeric dome disposed at least partially below the scissor mechanism, and electronic switch circuitry disposed below the elastomeric dome.
In these embodiments, the scissor mechanism may include at least a first scissor member defining a pivot track and an up-stop track and a second scissor member including at least a first and second extension portion. The first extension portion may be positioned within the pivot track and a second extension portion may be positioned within the up-stop track. In certain embodiments, each keycap may also include a retaining feature to pivotally interface with an end portion of the second scissor member.
Some embodiments may include a configuration in including a baseplate disposed below the plurality of keys that may include retaining features to pivotally interface with an end portion of a respective first scissor member.
In certain embodiments, the pivot track of may be at least partially curved or in other examples, the pivot track may be at least partially angled with respect to a bottom surface of the respective first scissor member.
In certain embodiments, the second scissor member may be sized to at least partially fit within an aperture within the first scissor member or, in the alternative, the first scissor member may be sized to at least partially fit within an aperture within the second scissor member. In still further embodiments, the first and second members may partially overlap one another.
Further embodiments described herein may relate to, include, or take the form of a keyboard including at least a plurality of keys each including a scissor mechanism. the scissor mechanism may include at least a first scissor member including a pivot track and a second scissor member including at least an extension portion. The extension portion may be positioned within the pivot track. In certain embodiments, each keycap may also include a retaining feature to pivotally interface with an end portion of the second scissor member.
Some embodiments described herein may relate to or take the form of methods of assembling a key including at least the steps of providing a base plate including at least a first and second retaining feature, positioning a membrane over the base plate, positioning over the membrane a scissor mechanism including at least a first scissor member with a pivot track and an up-stop track, and a second scissor member including at least a first extension portion positioned within the pivot track and a second extension portion positioned within the up-stop track, aligning a first end of the first scissor member with the first retaining feature, and aligning a first end of the second scissor member with the second retaining feature.
Reference will now be made to representative embodiments illustrated in the accompanying figures. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the described embodiments as defined by the appended claims.
The use of the same or similar reference numerals in different figures indicates similar, related, or identical items.
Embodiments described herein may relate to or take the form of a key having a scissor mechanism including interlocking scissor members assembled to pivot along a track. It should be appreciated that the various embodiments described herein, as well as functionality, operation, components, and capabilities thereof may be combined with other elements as necessary, and so any physical, functional, or operational discussion of any element or feature is not intended to be limited solely to a particular embodiment to the exclusion of others.
For embodiments described herein, a first scissor member may define a pivot track and an up-stop track and a second scissor member may include at least a first and second extension portion positioned within the pivot track and the up-stop track respectively. In this manner, when the key cap is depressed, the first extension portion may slide and at least partially pivot or rotate within the pivot track, and the second extension portion may slide within the up-stop track.
Upon release of the key, the first extension portion may slide and at least partially pivot in the opposite direction within the pivot track and the second extension portion may move in the opposite direction within the up-stop track. After a certain travel distance, the second extension portion may reach the end of the up-stop track and may be arrested from traveling further. In this manner, the position of the end of the up-stop track may define the upper height of the key. In other words, the up-stop track may rigidly limit the height of the top of the key when the key is uncompressed or otherwise in the “up” position.
In these and related embodiments, the up-stop may independently define the height of the key and the pivot track may define a pivot path for the scissor mechanisms to collapse with respect to one another.
Certain embodiments may not necessarily include an up-stop track. For example, the pivot track may by itself be used to exclusively define a pivot path for the scissor members and may be used to define the upper height of the key and/or extension of the scissor members. In other words, the pivot track may rigidly limit the height of the top of the key when the key is uncompressed or otherwise in the “up” position.
Likewise, certain embodiments may not include a pivot track. For example, the up-stop track may by itself define and rigidly limit the height of the top of the key when the key is uncompressed or otherwise in the “up” position. In this manner, the up-stop track may be included within a standard fixed pivot point scissor mechanism.
The key cap 202 may be disposed above a scissor mechanism defined by the scissor members 204, 206. The scissor member 204 may be positioned to interface with a bottom surface of the key cap 202. For example, the scissor member 204 may include a partially angled top surface such that when the key 200 is in an “up” position, the angled portion is parallel to a bottom surface of the key cap 202. In this manner, the geometry selected for the scissor member 204 may aid in the structural support the key cap 202.
The scissor member 206 may interface with the retaining feature 202a. In this manner, when the keycap is depressed, the scissor member 206 may pivot at the retaining feature 202a to collapse the scissor mechanism of the key 200 downward.
The scissor mechanism may be disposed above a baseplate 208 which also may include at least one retaining feature 208a. The base plate, or feature plate, may be constructed of a number of suitable materials. In certain examples, the base plate may be composed of a single material, or in other examples, the base plate may be composed of a stack of different materials. For example, in certain embodiments, the base plate 208 may be constructed of a metal such as aluminum or steel. In these cases, the retaining feature 208a may be made of the same or a different material as the base plate 208. For example, the base plate 208 may be metal and the retaining feature 208a may be plastic. If the retaining feature 208a and the base plate 208 are made from different materials, the two may be coupled together using any suitable process. For example, certain embodiments may include a configuration in which the retaining feature 208a is adhered to the base plate 208 with an adhesive. In some embodiments, the retaining feature may be mechanically fastened to the base plate with a fastening means such as a screw or clip. In still further embodiments, the retaining feature 208a may be welded or otherwise bonded to the base plate 208.
Some embodiments include a configuration in which the base plate 208 includes at least one electrically insulating layer disposed along one or more surfaces of the base plate 208. In such examples, the base plate 208 may include one or more layers associated with electrical switch circuitry.
The base plate 208 and the retaining feature 208a may interface with one or both of the scissor members 204, 208. For example, as illustrated, the scissor member 204 may interface with and pivot at the retaining feature 208a during depression of the key cap, for example as shown within
As illustrated in
In many embodiments, and as illustrated in
The pivot track 204a may include a mouth portion and an end portion. The mouth portion may be opened within a bottom surface of the scissor member 204. The end may be separated from the mouth by n track that may be at least partially curved. In some embodiments, the track may be at least partially angled with respect to a bottom surface of the scissor member 204a. One may appreciate that the angular or curved relationship between the pivot track 204a and the bottom surface of the scissor member 204 may be selected in order to define the path of the scissor mechanism as it is compressed, for example as shown through
In many embodiments, the up-stop track 204b may include a mouth portion and end portion. The mouth may be opened within a bottom surface of the scissor member 204. The end portion may be positioned approximately halfway through the height of the scissor member 204 relative to the bottom surface. In some embodiments, the end portion may be positioned higher or lower relative to the bottom surface.
The extension portion 206b may be sized to fit within the up-stop track 204b such that when the key is in the upper position, the end portion of the up-stop track 204b and the extension portion 206b may impact one another, completely arresting further extension of the scissor mechanism. In this manner, the up-stop track may stop upward motion of the key cap 202, rigidly fixing the height of the key 200.
In many embodiments, the scissor mechanisms 204, 206 may interlock. For example, the scissor member 204 may include an aperture sized to receive the scissor member 206. In some embodiments, scissor member 204 may fit within an aperture of the scissor member 206. In still further embodiments, the scissor members 204, 206 may partially overlap one another.
One may appreciate that many conventional scissor mechanisms interlock and pivot about a fixed point. Accordingly, scissor members must be constructed of a compliant material such that, during manufacture, one scissor member can be temporarily deformed and inserted within the other scissor member. Complaint materials may also be required in order to install the scissor mechanism within the respective keyboard. One may further appreciate that compliant materials may experience deformation over time, potentially allowing the height of individual keys to undesirably drift over time.
However, for many embodiments described herein, the scissor members 204, 206 are not required to be made from complaint materials because the interlocking geometry of the scissor members 204, 206 allow the use of rigid or otherwise non-compliant materials. Specifically, rigid materials may be used because the mouth portions of the pivot track 204a and up-stop track 204b eliminate the requirement that one scissor member be deformed to be inserted within the other.
For example, the scissor member 204 may be merely placed above the scissor member 206 to align the extension portions 206a, 206b with the pivot track 204a and up-stop track 204b respectively. In this manner, the scissor member 204 may slide to interlock with the scissor member 206. Because the scissor mechanism may be assembled without deforming either scissor member, the scissor members 204, 206 may be constructed of a non-compliant material that resists deformation over time and substantially reduces the risk of height drift as experienced by traditionally designed keyboard scissor mechanisms.
In these embodiments, the scissor member 204, 206 may be constructed of metal or glass-filament doped plastic. The scissor members 204, 206 may be formed by injection molding, laser cutting, stamping, or any other suitable process.
As the downward force continues, the scissor mechanism may continue to compress. For example,
For example, if the end portion pivot track 204a is positioned more proximate to the bottom surface of the scissor member 204, the travel distance of the key 200 may be fixed.
The key cap 202 may be disposed above a scissor mechanism defined by the scissor members 204, 206. The scissor member 204 may include a partially angled top surface such that when the key 200 is in an “up” position, the angled portion is parallel to a bottom surface of the key cap 202. In this manner, the geometry selected for the scissor member 204 may aid in the structural support the key cap 202.
The scissor member 204 may be positioned to interface with a bottom surface of the key cap 202, and may be configured to pivot with respect to the scissor member 206 about a fixed pivot point 210. In this manner, as the key is depressed, the scissor member 204 and scissor member 206 may compress downwardly by pivoting about the pivot point 210. In many examples, the pivoting motion of the scissor members 204, 206 about the pivot point 210 may cause a bottom portion of one or both of the scissor members 204, 206 to slide a certain distance along a base plate 208.
Conventional scissor mechanism designs limit the sliding distance of the bottom portions of one or both scissor members to define the upper height of a key cap. For example, setting a slide stop to impact the sliding portion of one or both of the scissor members may prevent the scissor member from further pivoting, and thus may define an upper height of an associated key. Such designs may be exceptionally dependent upon tight manufacturing tolerance of both the dimensions of the individual scissor members, but also of the placement of the slide stop. In many examples, slight manufacturing variations may cause key high to vary substantially.
Accordingly, embodiments described herein may include an up-stop track 204b within the scissor member 204. In many embodiments, the up-stop track 204b may include a mouth portion and end portion. The mouth may be opened within a bottom surface of the scissor member 204. The end portion may be positioned approximately halfway through the height of the scissor member 204 relative to the bottom surface. In some embodiments, the end portion may be positioned higher or lower relative to the bottom surface.
Corresponding to the up-stop track 204b may be an extension portion 206b that extends from the scissor member 206. The extension portion 206b may be sized to fit within the up-stop track 204b such that when the key is in the upper position, the end portion of the up-stop track 204b and the extension portion 206b may impact one another, completely arresting further extension of the scissor mechanism. In this manner, the up-stop track may stop upward motion of the key cap 202, rigidly fixing the height of the key 200 without limiting the sliding distance of the bottom portion of either scissor member. In other words, when the key 200 is depressed and subsequently released, the scissor mechanism may begin to expand to restore the original height of the keycap 202. As the scissor mechanism expands the individual scissor members 204, 206 may pivot about the pivot point 210 in the opposite direction to compression. As the scissor members 204, 206 continue to expand, the extension portion 206b may engage with, enter or otherwise slide into the mouth portion of the up-stop track 204b. As the scissor members continue to expand, the extension portion 206b may impact the end portion of the up-stop track 204b, thus arresting further upward motion of the keycap 202. In this manner, the up-stop track may define the upper height of the key.
In many embodiments, the scissor mechanisms 204, 206 may interlock. For example, the scissor member 204 may include an aperture sized to receive the scissor member 206. In some embodiments, scissor member 204 may fit within an aperture of the scissor member 206. In still further embodiments, the scissor members 204, 206 may partially overlap one another.
In these and related embodiments, the internal scissor member 306 may also include a central aperture. In many cases, an elastomeric dome switch may be positioned below or within the aperture of the internal scissor member 305.
In further embodiments, additional retaining features may be included along the key cap or the base plate in order to prevent the key cap from undesirable or accidental disassembly of the key. For example,
One may appreciate that although many embodiments are disclosed above, that the operations and steps presented with respect to methods and techniques described herein are meant as exemplary and accordingly are not exhaustive. One may further appreciate that alternate step order or, fewer or additional steps may be required or desired for particular embodiments.
Although the disclosure above is described in terms of various exemplary embodiments and implementations, it should be understood that the various features, aspects and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described, but instead can be applied, alone or in various combinations, to one or more of the some embodiments of the invention, whether or not such embodiments are described and whether or not such features are presented as being a part of a described embodiment. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments but is instead defined by the claims herein presented.
This application is a nonprovisional patent application of and claims the benefit to U.S. Provisional Patent Application No. 61/969,405, filed Mar. 24, 2014 and titled “Scissor Mechanism Features for a Keyboard,” the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61969405 | Mar 2014 | US |