Embodiments described herein generally relate to structural support systems for depressible keys of a keyboard and, more particularly, to a keyboard having keys supported by an interlocking scissor mechanism.
Many electronic devices receive user input from a keyboard. Traditionally, keyboards include several rows of depressible keys spaced some distance apart. The distance between keys may be selected for aesthetic, functional, structural, dimensional or other reasons. For example, space-constrained electronic devices such as laptop computers may include an integrated keyboard with closely spaced keys.
In some examples, close spacing of keys may heighten user awareness of subtle differences between adjacent keys. For example, color, texture, or height differences may become more apparent the closer individual keys are arranged. Such perceivable differences between keys, especially height differences, may negatively affect the typing experience.
In many cases, the height of a key may be defined by a multi-part mechanical scissor mechanism also used to translate the key downward a selected distance. Conventional scissor mechanisms may include two scissor members coupled to pivot about a midpoint, with a foot portion of one or both of the scissor members able to slide a certain distance during depression of the key. Once the key is released, the foot portion may slide back, returning the key to the upper height. In this manner, the sliding distance of the foot portion may define the height of the key. Accordingly, to ensure uniform height of closely spaced keys having mechanical scissor mechanisms, each scissor member of each key may require exceptionally low manufacturing tolerance, as slight differences in the dimension of the scissor members may translate to perceivable differences in upper height of adjacent keys. In many cases, low manufacturing tolerances may substantially increase the cost of manufacture by increasing rejection rates, material costs, and manufacture time.
Accordingly, there may be a present need for improved mechanical scissor mechanisms for keyboards requiring uniform height of adjacent keys.
Embodiments described herein may relate to or take the form of a keyboard including at least a plurality of keys with each key including at least a keycap, a scissor mechanism disposed below the keycap, an elastomeric dome disposed at least partially below the scissor mechanism, and electronic switch circuitry disposed below the elastomeric dome.
In these embodiments, the scissor mechanism may include at least a first scissor member defining a pivot track and an up-stop track and a second scissor member including at least a first and second extension portion. The first extension portion may be positioned within the pivot track and a second extension portion may be positioned within the up-stop track. In certain embodiments, each keycap may also include a retaining feature to pivotally interface with an end portion of the second scissor member.
Some embodiments may include a configuration in including a baseplate disposed below the plurality of keys that may include retaining features to pivotally interface with an end portion of a respective first scissor member.
In certain embodiments, the pivot track of may be at least partially curved or in other examples, the pivot track may be at least partially angled with respect to a bottom surface of the respective first scissor member.
In certain embodiments, the second scissor member may be sized to at least partially fit within an aperture within the first scissor member or, in the alternative, the first scissor member may be sized to at least partially fit within an aperture within the second scissor member. In still further embodiments, the first and second members may partially overlap one another.
Further embodiments described herein may relate to, include, or take the form of a keyboard including at least a plurality of keys each including a scissor mechanism. the scissor mechanism may include at least a first scissor member including a pivot track and a second scissor member including at least an extension portion. The extension portion may be positioned within the pivot track. In certain embodiments, each keycap may also include a retaining feature to pivotally interface with an end portion of the second scissor member.
Some embodiments described herein may relate to or take the form of methods of assembling a key including at least the steps of providing a base plate including at least a first and second retaining feature, positioning a membrane over the base plate, positioning over the membrane a scissor mechanism including at least a first scissor member with a pivot track and an up-stop track, and a second scissor member including at least a first extension portion positioned within the pivot track and a second extension portion positioned within the up-stop track, aligning a first end of the first scissor member with the first retaining feature, and aligning a first end of the second scissor member with the second retaining feature.
Reference will now be made to representative embodiments illustrated in the accompanying figures. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the described embodiments as defined by the appended claims.
The use of the same or similar reference numerals in different figures indicates similar, related, or identical items.
Embodiments described herein may relate to or take the form of a key having a scissor mechanism including interlocking scissor members assembled to pivot along a track. It should be appreciated that the various embodiments described herein, as well as functionality, operation, components, and capabilities thereof may be combined with other elements as necessary, and so any physical, functional, or operational discussion of any element or feature is not intended to be limited solely to a particular embodiment to the exclusion of others.
For embodiments described herein, a first scissor member may define a pivot track and an up-stop track and a second scissor member may include at least a first and second extension portion positioned within the pivot track and the up-stop track respectively. In this manner, when the key cap is depressed, the first extension portion may slide and at least partially pivot or rotate within the pivot track, and the second extension portion may slide within the up-stop track.
Upon release of the key, the first extension portion may slide and at least partially pivot in the opposite direction within the pivot track and the second extension portion may move in the opposite direction within the up-stop track. After a certain travel distance, the second extension portion may reach the end of the up-stop track and may be arrested from traveling further. In this manner, the position of the end of the up-stop track may define the upper height of the key. In other words, the up-stop track may rigidly limit the height of the top of the key when the key is uncompressed or otherwise in the “up” position.
In these and related embodiments, the up-stop may independently define the height of the key and the pivot track may define a pivot path for the scissor mechanisms to collapse with respect to one another.
Certain embodiments may not necessarily include an up-stop track. For example, the pivot track may by itself be used to exclusively define a pivot path for the scissor members and may be used to define the upper height of the key and/or extension of the scissor members. In other words, the pivot track may rigidly limit the height of the top of the key when the key is uncompressed or otherwise in the “up” position.
Likewise, certain embodiments may not include a pivot track. For example, the up-stop track may by itself define and rigidly limit the height of the top of the key when the key is uncompressed or otherwise in the “up” position. In this manner, the up-stop track may be included within a standard fixed pivot point scissor mechanism.
The key cap 202 may be disposed above a scissor mechanism defined by the scissor members 204, 206. The scissor member 204 may be positioned to interface with a bottom surface of the key cap 202. For example, the scissor member 204 may include a partially angled top surface such that when the key 200 is in an “up” position, the angled portion is parallel to a bottom surface of the key cap 202. In this manner, the geometry selected for the scissor member 204 may aid in the structural support the key cap 202.
The scissor member 206 may interface with the retaining feature 202a. In this manner, when the keycap is depressed, the scissor member 206 may pivot at the retaining feature 202a to collapse the scissor mechanism of the key 200 downward.
The scissor mechanism may be disposed above a baseplate 208 which also may include at least one retaining feature 208a. The base plate, or feature plate, may be constructed of a number of suitable materials. In certain examples, the base plate may be composed of a single material, or in other examples, the base plate may be composed of a stack of different materials. For example, in certain embodiments, the base plate 208 may be constructed of a metal such as aluminum or steel. In these cases, the retaining feature 208a may be made of the same or a different material as the base plate 208. For example, the base plate 208 may be metal and the retaining feature 208a may be plastic. If the retaining feature 208a and the base plate 208 are made from different materials, the two may be coupled together using any suitable process. For example, certain embodiments may include a configuration in which the retaining feature 208a is adhered to the base plate 208 with an adhesive. In some embodiments, the retaining feature may be mechanically fastened to the base plate with a fastening means such as a screw or clip. In still further embodiments, the retaining feature 208a may be welded or otherwise bonded to the base plate 208.
Some embodiments include a configuration in which the base plate 208 includes at least one electrically insulating layer disposed along one or more surfaces of the base plate 208. In such examples, the base plate 208 may include one or more layers associated with electrical switch circuitry.
The base plate 208 and the retaining feature 208a may interface with one or both of the scissor members 204, 208. For example, as illustrated, the scissor member 204 may interface with and pivot at the retaining feature 208a during depression of the key cap, for example as shown within
As illustrated in
In many embodiments, and as illustrated in
The pivot track 204a may include a mouth portion and an end portion. The mouth portion may be opened within a bottom surface of the scissor member 204. The end may be separated from the mouth by n track that may be at least partially curved. In some embodiments, the track may be at least partially angled with respect to a bottom surface of the scissor member 204a. One may appreciate that the angular or curved relationship between the pivot track 204a and the bottom surface of the scissor member 204 may be selected in order to define the path of the scissor mechanism as it is compressed, for example as shown through
In many embodiments, the up-stop track 204b may include a mouth portion and end portion. The mouth may be opened within a bottom surface of the scissor member 204. The end portion may be positioned approximately halfway through the height of the scissor member 204 relative to the bottom surface. In some embodiments, the end portion may be positioned higher or lower relative to the bottom surface.
The extension portion 206b may be sized to fit within the up-stop track 204b such that when the key is in the upper position, the end portion of the up-stop track 204b and the extension portion 206b may impact one another, completely arresting further extension of the scissor mechanism. In this manner, the up-stop track may stop upward motion of the key cap 202, rigidly fixing the height of the key 200.
In many embodiments, the scissor mechanisms 204, 206 may interlock. For example, the scissor member 204 may include an aperture sized to receive the scissor member 206. In some embodiments, scissor member 204 may fit within an aperture of the scissor member 206. In still further embodiments, the scissor members 204, 206 may partially overlap one another.
One may appreciate that many conventional scissor mechanisms interlock and pivot about a fixed point. Accordingly, scissor members must be constructed of a compliant material such that, during manufacture, one scissor member can be temporarily deformed and inserted within the other scissor member. Complaint materials may also be required in order to install the scissor mechanism within the respective keyboard. One may further appreciate that compliant materials may experience deformation over time, potentially allowing the height of individual keys to undesirably drift over time.
However, for many embodiments described herein, the scissor members 204, 206 are not required to be made from complaint materials because the interlocking geometry of the scissor members 204, 206 allow the use of rigid or otherwise non-compliant materials. Specifically, rigid materials may be used because the mouth portions of the pivot track 204a and up-stop track 204b eliminate the requirement that one scissor member be deformed to be inserted within the other.
For example, the scissor member 204 may be merely placed above the scissor member 206 to align the extension portions 206a, 206b with the pivot track 204a and up-stop track 204b respectively. In this manner, the scissor member 204 may slide to interlock with the scissor member 206. Because the scissor mechanism may be assembled without deforming either scissor member, the scissor members 204, 206 may be constructed of a non-compliant material that resists deformation over time and substantially reduces the risk of height drift as experienced by traditionally designed keyboard scissor mechanisms.
In these embodiments, the scissor member 204, 206 may be constructed of metal or glass-filament doped plastic. The scissor members 204, 206 may be formed by injection molding, laser cutting, stamping, or any other suitable process.
As the downward force continues, the scissor mechanism may continue to compress. For example,
For example, if the end portion pivot track 204a is positioned more proximate to the bottom surface of the scissor member 204, the travel distance of the key 200 may be fixed.
The key cap 202 may be disposed above a scissor mechanism defined by the scissor members 204, 206. The scissor member 204 may include a partially angled top surface such that when the key 200 is in an “up” position, the angled portion is parallel to a bottom surface of the key cap 202. In this manner, the geometry selected for the scissor member 204 may aid in the structural support the key cap 202.
The scissor member 204 may be positioned to interface with a bottom surface of the key cap 202, and may be configured to pivot with respect to the scissor member 206 about a fixed pivot point 210. In this manner, as the key is depressed, the scissor member 204 and scissor member 206 may compress downwardly by pivoting about the pivot point 210. In many examples, the pivoting motion of the scissor members 204, 206 about the pivot point 210 may cause a bottom portion of one or both of the scissor members 204, 206 to slide a certain distance along a base plate 208.
Conventional scissor mechanism designs limit the sliding distance of the bottom portions of one or both scissor members to define the upper height of a key cap. For example, setting a slide stop to impact the sliding portion of one or both of the scissor members may prevent the scissor member from further pivoting, and thus may define an upper height of an associated key. Such designs may be exceptionally dependent upon tight manufacturing tolerance of both the dimensions of the individual scissor members, but also of the placement of the slide stop. In many examples, slight manufacturing variations may cause key high to vary substantially.
Accordingly, embodiments described herein may include an up-stop track 204b within the scissor member 204. In many embodiments, the up-stop track 204b may include a mouth portion and end portion. The mouth may be opened within a bottom surface of the scissor member 204. The end portion may be positioned approximately halfway through the height of the scissor member 204 relative to the bottom surface. In some embodiments, the end portion may be positioned higher or lower relative to the bottom surface.
Corresponding to the up-stop track 204b may be an extension portion 206b that extends from the scissor member 206. The extension portion 206b may be sized to fit within the up-stop track 204b such that when the key is in the upper position, the end portion of the up-stop track 204b and the extension portion 206b may impact one another, completely arresting further extension of the scissor mechanism. In this manner, the up-stop track may stop upward motion of the key cap 202, rigidly fixing the height of the key 200 without limiting the sliding distance of the bottom portion of either scissor member. In other words, when the key 200 is depressed and subsequently released, the scissor mechanism may begin to expand to restore the original height of the keycap 202. As the scissor mechanism expands the individual scissor members 204, 206 may pivot about the pivot point 210 in the opposite direction to compression. As the scissor members 204, 206 continue to expand, the extension portion 206b may engage with, enter or otherwise slide into the mouth portion of the up-stop track 204b. As the scissor members continue to expand, the extension portion 206b may impact the end portion of the up-stop track 204b, thus arresting further upward motion of the keycap 202. In this manner, the up-stop track may define the upper height of the key.
In many embodiments, the scissor mechanisms 204, 206 may interlock. For example, the scissor member 204 may include an aperture sized to receive the scissor member 206. In some embodiments, scissor member 204 may fit within an aperture of the scissor member 206. In still further embodiments, the scissor members 204, 206 may partially overlap one another.
In these and related embodiments, the internal scissor member 306 may also include a central aperture. In many cases, an elastomeric dome switch may be positioned below or within the aperture of the internal scissor member 305.
In further embodiments, additional retaining features may be included along the key cap or the base plate in order to prevent the key cap from undesirable or accidental disassembly of the key. For example,
One may appreciate that although many embodiments are disclosed above, that the operations and steps presented with respect to methods and techniques described herein are meant as exemplary and accordingly are not exhaustive. One may further appreciate that alternate step order or, fewer or additional steps may be required or desired for particular embodiments.
Although the disclosure above is described in terms of various exemplary embodiments and implementations, it should be understood that the various features, aspects and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described, but instead can be applied, alone or in various combinations, to one or more of the some embodiments of the invention, whether or not such embodiments are described and whether or not such features are presented as being a part of a described embodiment. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments but is instead defined by the claims herein presented.
This application is a nonprovisional patent application of and claims the benefit to U.S. Provisional Patent Application No. 61/969,405, filed Mar. 24, 2014 and titled “Scissor Mechanism Features for a Keyboard,” the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3657492 | Arndt et al. | Apr 1972 | A |
3917917 | Murata | Nov 1975 | A |
4095066 | Harris | Jun 1978 | A |
4319099 | Asher | Mar 1982 | A |
4349712 | Michalski | Sep 1982 | A |
4484042 | Matsui | Nov 1984 | A |
4937408 | Hattori et al. | Jun 1990 | A |
5136131 | Komaki | Aug 1992 | A |
5278372 | Takagi et al. | Jan 1994 | A |
5340955 | Calvillo et al. | Aug 1994 | A |
5382762 | Mochizuki | Jan 1995 | A |
5408060 | Muurinen | Apr 1995 | A |
5421659 | Liang | Jun 1995 | A |
5422447 | Spence | Jun 1995 | A |
5457297 | Chen | Oct 1995 | A |
5481074 | English | Jan 1996 | A |
5504283 | Kako et al. | Apr 1996 | A |
5512719 | Okada et al. | Apr 1996 | A |
5625532 | Sellers | Apr 1997 | A |
5804780 | Bartha | Sep 1998 | A |
5828015 | Coulon | Oct 1998 | A |
5847337 | Chen | Dec 1998 | A |
5874700 | Hochgesang | Feb 1999 | A |
5878872 | Tsai | Mar 1999 | A |
5898147 | Domzaiski et al. | Apr 1999 | A |
5924555 | Sadamori et al. | Jul 1999 | A |
5935691 | Tsai | Aug 1999 | A |
5986227 | Hon | Nov 1999 | A |
6020565 | Pan | Feb 2000 | A |
6068416 | Kumamoto et al. | May 2000 | A |
6215420 | Harrison et al. | Apr 2001 | B1 |
6257782 | Maruyama et al. | Jul 2001 | B1 |
6388219 | Hsu et al. | May 2002 | B2 |
6423918 | King et al. | Jul 2002 | B1 |
6482032 | Szu et al. | Nov 2002 | B1 |
6538801 | Jacobson et al. | Mar 2003 | B2 |
6542355 | Huang | Apr 2003 | B1 |
6556112 | Van Zeeland et al. | Apr 2003 | B1 |
6559399 | Hsu et al. | May 2003 | B2 |
6572289 | Lo et al. | Jun 2003 | B2 |
6624369 | Ito et al. | Sep 2003 | B2 |
6759614 | Yoneyama | Jul 2004 | B2 |
6762381 | Kunthady et al. | Jul 2004 | B2 |
6765503 | Chan et al. | Jul 2004 | B1 |
6788450 | Kawai et al. | Sep 2004 | B2 |
6797906 | Ohashi | Sep 2004 | B2 |
6850227 | Takahashi et al. | Feb 2005 | B2 |
6940030 | Takeda et al. | Sep 2005 | B2 |
6977352 | Oosawa | Dec 2005 | B2 |
6979792 | Lai | Dec 2005 | B1 |
6987466 | Welch et al. | Jan 2006 | B1 |
6987503 | Inoue | Jan 2006 | B2 |
7012206 | Oikawa | Mar 2006 | B2 |
7038832 | Kanbe | May 2006 | B2 |
7129930 | Cathey et al. | Oct 2006 | B1 |
7134205 | Bruennel | Nov 2006 | B2 |
7151236 | Ducruet et al. | Dec 2006 | B2 |
7154059 | Chou | Dec 2006 | B2 |
7172303 | Shipman et al. | Feb 2007 | B2 |
7256766 | Albert et al. | Aug 2007 | B2 |
7283119 | Kishi | Oct 2007 | B2 |
7301113 | Nishimura et al. | Nov 2007 | B2 |
7378607 | Koyano et al. | May 2008 | B2 |
7414213 | Hwang | Aug 2008 | B2 |
7429707 | Yanai et al. | Sep 2008 | B2 |
7432460 | Clegg | Oct 2008 | B2 |
7510342 | Lane et al. | Mar 2009 | B2 |
7531764 | Lev et al. | May 2009 | B1 |
7541554 | Hou | Jun 2009 | B2 |
7639187 | Caballero et al. | Dec 2009 | B2 |
7781690 | Ishii | Aug 2010 | B2 |
7813774 | Perez-Noguera | Oct 2010 | B2 |
7842895 | Lee | Nov 2010 | B2 |
7847204 | Tsai | Dec 2010 | B2 |
7851819 | Shi | Dec 2010 | B2 |
7866866 | Wahlstrom | Jan 2011 | B2 |
7947915 | Lee et al. | May 2011 | B2 |
7999748 | Ligtenberg et al. | Aug 2011 | B2 |
8063325 | Sung et al. | Nov 2011 | B2 |
8080744 | Yeh et al. | Dec 2011 | B2 |
8109650 | Chang et al. | Feb 2012 | B2 |
8119945 | Lin | Feb 2012 | B2 |
8124903 | Tatehata et al. | Feb 2012 | B2 |
8134094 | Tsao et al. | Mar 2012 | B2 |
8143982 | Lauder et al. | Mar 2012 | B1 |
8156172 | Muehl et al. | Apr 2012 | B2 |
8178808 | Strittmatter et al. | May 2012 | B2 |
8212160 | Tsao | Jul 2012 | B2 |
8212162 | Zhou | Jul 2012 | B2 |
8218301 | Lee | Jul 2012 | B2 |
8232958 | Tolbert | Jul 2012 | B2 |
8253048 | Ozias et al. | Aug 2012 | B2 |
8253052 | Chen | Aug 2012 | B2 |
8263887 | Chen et al. | Sep 2012 | B2 |
8289280 | Travis | Oct 2012 | B2 |
8299382 | Takemae et al. | Oct 2012 | B2 |
8319298 | Hsu | Nov 2012 | B2 |
8330725 | Mahowald et al. | Dec 2012 | B2 |
8354629 | Lin | Jan 2013 | B2 |
8378857 | Pance | Feb 2013 | B2 |
8384566 | Bocirnea | Feb 2013 | B2 |
8436265 | Koike et al. | May 2013 | B2 |
8451146 | Mahowald et al. | May 2013 | B2 |
8462514 | Myers et al. | Jun 2013 | B2 |
8500348 | Dumont et al. | Aug 2013 | B2 |
8502094 | Chen | Aug 2013 | B2 |
8542194 | Akens et al. | Sep 2013 | B2 |
8569639 | Strittmatter | Oct 2013 | B2 |
8581127 | Jhuang et al. | Nov 2013 | B2 |
8592699 | Kessler et al. | Nov 2013 | B2 |
8592702 | Tsai | Nov 2013 | B2 |
8592703 | Johnson et al. | Nov 2013 | B2 |
8604370 | Chao | Dec 2013 | B2 |
8629362 | Knighton et al. | Jan 2014 | B1 |
8642904 | Chiba et al. | Feb 2014 | B2 |
8651720 | Sherman et al. | Feb 2014 | B2 |
8659882 | Liang et al. | Feb 2014 | B2 |
8731618 | Jarvis et al. | May 2014 | B2 |
8748767 | Ozias et al. | Jun 2014 | B2 |
8759705 | Funakoshi et al. | Jun 2014 | B2 |
8760405 | Nam | Jun 2014 | B2 |
8786548 | Oh et al. | Jul 2014 | B2 |
8791378 | Lan | Jul 2014 | B2 |
8835784 | Hirota | Sep 2014 | B2 |
8847711 | Yang et al. | Sep 2014 | B2 |
8853580 | Chen | Oct 2014 | B2 |
8854312 | Meierling | Oct 2014 | B2 |
8870477 | Merminod et al. | Oct 2014 | B2 |
8884174 | Chou et al. | Nov 2014 | B2 |
8921473 | Hyman | Dec 2014 | B1 |
8922476 | Stewart et al. | Dec 2014 | B2 |
8976117 | Krahenbuhl et al. | Mar 2015 | B2 |
8994641 | Stewart et al. | Mar 2015 | B2 |
9007297 | Stewart et al. | Apr 2015 | B2 |
9012795 | Niu et al. | Apr 2015 | B2 |
9029723 | Pegg | May 2015 | B2 |
9063627 | Yairi et al. | Jun 2015 | B2 |
9064642 | Welch et al. | Jun 2015 | B2 |
9086733 | Pance | Jul 2015 | B2 |
9087663 | Los | Jul 2015 | B2 |
9093229 | Leong et al. | Jul 2015 | B2 |
9213416 | Chen | Dec 2015 | B2 |
9223352 | Smith et al. | Dec 2015 | B2 |
9234486 | Das et al. | Jan 2016 | B2 |
9235236 | Nam | Jan 2016 | B2 |
9275810 | Pance et al. | Mar 2016 | B2 |
9300033 | Han et al. | Mar 2016 | B2 |
9305496 | Kimura | Apr 2016 | B2 |
9443672 | Martisauskas | Sep 2016 | B2 |
9477382 | Hicks et al. | Oct 2016 | B2 |
20020079211 | Katayama et al. | Jun 2002 | A1 |
20020093436 | Lien | Jul 2002 | A1 |
20020149835 | Kanbe | Oct 2002 | A1 |
20030169232 | Ito | Sep 2003 | A1 |
20030213685 | Hsu | Nov 2003 | A1 |
20040257247 | Lin et al. | Dec 2004 | A1 |
20060011458 | Purcocks | Jan 2006 | A1 |
20060020469 | Rast | Jan 2006 | A1 |
20060120790 | Chang | Jun 2006 | A1 |
20060181511 | Woolley | Aug 2006 | A1 |
20060243987 | Lai | Nov 2006 | A1 |
20070200823 | Bytheway et al. | Aug 2007 | A1 |
20070285393 | Ishakov | Dec 2007 | A1 |
20080136782 | Mundt et al. | Jun 2008 | A1 |
20080251370 | Aoki | Oct 2008 | A1 |
20090046053 | Shigehiro et al. | Feb 2009 | A1 |
20090103964 | Takagi et al. | Apr 2009 | A1 |
20090128496 | Huang | May 2009 | A1 |
20090262085 | Wassingbo et al. | Oct 2009 | A1 |
20100066568 | Lee | Mar 2010 | A1 |
20100109921 | Annerfors | May 2010 | A1 |
20100156796 | Kim et al. | Jun 2010 | A1 |
20100253630 | Homma et al. | Oct 2010 | A1 |
20100307902 | Chen | Dec 2010 | A1 |
20110032127 | Roush | Feb 2011 | A1 |
20110056817 | Wu | Mar 2011 | A1 |
20110056836 | Tatebe et al. | Mar 2011 | A1 |
20110205179 | Braun | Aug 2011 | A1 |
20110267272 | Meyer et al. | Nov 2011 | A1 |
20110303521 | Niu et al. | Dec 2011 | A1 |
20120012446 | Hwa | Jan 2012 | A1 |
20120090973 | Liu | Apr 2012 | A1 |
20120098751 | Liu | Apr 2012 | A1 |
20120286701 | Yang et al. | Nov 2012 | A1 |
20120298496 | Zhang | Nov 2012 | A1 |
20120313856 | Hsieh | Dec 2012 | A1 |
20130100030 | Los et al. | Apr 2013 | A1 |
20130161170 | Fan et al. | Jun 2013 | A1 |
20130270090 | Lee | Oct 2013 | A1 |
20140027259 | Kawana et al. | Jan 2014 | A1 |
20140071654 | Chien | Mar 2014 | A1 |
20140090967 | Inagaki | Apr 2014 | A1 |
20140098042 | Kuo et al. | Apr 2014 | A1 |
20140116865 | Leong et al. | May 2014 | A1 |
20140118264 | Leong et al. | May 2014 | A1 |
20140151211 | Zhang | Jun 2014 | A1 |
20140184496 | Gribetz et al. | Jul 2014 | A1 |
20140218851 | Klein et al. | Aug 2014 | A1 |
20140252881 | Dinh et al. | Sep 2014 | A1 |
20140291133 | Fu et al. | Oct 2014 | A1 |
20140320436 | Modarres et al. | Oct 2014 | A1 |
20140346025 | Hendren et al. | Nov 2014 | A1 |
20140375141 | Nakajima | Dec 2014 | A1 |
20150016038 | Niu et al. | Jan 2015 | A1 |
20150083561 | Han et al. | Mar 2015 | A1 |
20150090570 | Kwan et al. | Apr 2015 | A1 |
20150090571 | Leong et al. | Apr 2015 | A1 |
20150227207 | Winter et al. | Aug 2015 | A1 |
20150243457 | Niu et al. | Aug 2015 | A1 |
20150277559 | Vescovi et al. | Oct 2015 | A1 |
20150287553 | Welch et al. | Oct 2015 | A1 |
20150332874 | Brock et al. | Nov 2015 | A1 |
20150348726 | Hendren | Dec 2015 | A1 |
20150378391 | Huitema et al. | Dec 2015 | A1 |
20160049266 | Stringer et al. | Feb 2016 | A1 |
20160093452 | Zercoe et al. | Mar 2016 | A1 |
20160172129 | Zercoe et al. | Jun 2016 | A1 |
20160189890 | Leong et al. | Jun 2016 | A1 |
20160189891 | Zercoe et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
2155620 | Feb 1994 | CN |
2394309 | Aug 2000 | CN |
1533128 | Sep 2004 | CN |
1542497 | Nov 2004 | CN |
2672832 | Jan 2005 | CN |
1624842 | Jun 2005 | CN |
1812030 | Aug 2006 | CN |
1855332 | Nov 2006 | CN |
101051569 | Oct 2007 | CN |
200986871 | Dec 2007 | CN |
101146137 | Mar 2008 | CN |
201054315 | Apr 2008 | CN |
201084602 | Jul 2008 | CN |
201123174 | Sep 2008 | CN |
201149829 | Nov 2008 | CN |
101315841 | Dec 2008 | CN |
201210457 | Mar 2009 | CN |
101465226 | Jun 2009 | CN |
101494130 | Jul 2009 | CN |
101502082 | Aug 2009 | CN |
201298481 | Aug 2009 | CN |
101546667 | Sep 2009 | CN |
101572195 | Nov 2009 | CN |
101800281 | Aug 2010 | CN |
101807482 | Aug 2010 | CN |
201655616 | Nov 2010 | CN |
102110542 | Jun 2011 | CN |
102119430 | Jul 2011 | CN |
201904256 | Jul 2011 | CN |
102163084 | Aug 2011 | CN |
201927524 | Aug 2011 | CN |
201945951 | Aug 2011 | CN |
201945952 | Aug 2011 | CN |
201956238 | Aug 2011 | CN |
102197452 | Sep 2011 | CN |
202008941 | Oct 2011 | CN |
202040690 | Nov 2011 | CN |
102280292 | Dec 2011 | CN |
102375550 | Mar 2012 | CN |
102496509 | Jun 2012 | CN |
10269527 | Aug 2012 | CN |
202372927 | Aug 2012 | CN |
102683072 | Sep 2012 | CN |
202434387 | Sep 2012 | CN |
102955573 | Mar 2013 | CN |
102956386 | Mar 2013 | CN |
103000417 | Mar 2013 | CN |
103165327 | Jun 2013 | CN |
103180979 | Jun 2013 | CN |
103377841 | Oct 2013 | CN |
103489986 | Jan 2014 | CN |
103681056 | Mar 2014 | CN |
203520312 | Apr 2014 | CN |
203588895 | May 2014 | CN |
103839715 | Jun 2014 | CN |
103839722 | Jun 2014 | CN |
103903891 | Jul 2014 | CN |
103956290 | Jul 2014 | CN |
204102769 | Jan 2015 | CN |
2530176 | Jan 1977 | DE |
3002772 | Jul 1981 | DE |
29704100 | Apr 1997 | DE |
0441993 | Aug 1991 | EP |
1835272 | Sep 2007 | EP |
1928008 | Jun 2008 | EP |
2022606 | Jun 2010 | EP |
2426688 | Mar 2012 | EP |
2664979 | Nov 2013 | EP |
2147420 | Mar 1973 | FR |
2911000 | Jul 2008 | FR |
2950193 | Mar 2011 | FR |
1361459 | Jul 1974 | GB |
S50115562 | Sep 1975 | JP |
S60055477 | Mar 1985 | JP |
61172422 | Oct 1986 | JP |
S62072429 | Apr 1987 | JP |
63182024 | Nov 1988 | JP |
H0422024 | Apr 1992 | JP |
H0520963 | Jan 1993 | JP |
0524512 | Aug 1993 | JP |
H09204148 | Aug 1997 | JP |
10312726 | Nov 1998 | JP |
H11194882 | Jul 1999 | JP |
2000057871 | Feb 2000 | JP |
2000339097 | Dec 2000 | JP |
2001100889 | Apr 2001 | JP |
2002260478 | Sep 2002 | JP |
2002298689 | Oct 2002 | JP |
2003522998 | Jul 2003 | JP |
2005108041 | Apr 2005 | JP |
2006164929 | Jun 2006 | JP |
2006185906 | Jul 2006 | JP |
2006521664 | Sep 2006 | JP |
2006269439 | Oct 2006 | JP |
2006277013 | Oct 2006 | JP |
2006344609 | Dec 2006 | JP |
2007115633 | May 2007 | JP |
2007514247 | May 2007 | JP |
2007156983 | Jun 2007 | JP |
2008021428 | Jan 2008 | JP |
2008100129 | May 2008 | JP |
2008191850 | Aug 2008 | JP |
2008533559 | Aug 2008 | JP |
2009181894 | Aug 2009 | JP |
2010061956 | Mar 2010 | JP |
2010244088 | Oct 2010 | JP |
2010244302 | Oct 2010 | JP |
2011065126 | Mar 2011 | JP |
2011150804 | Aug 2011 | JP |
2011165630 | Aug 2011 | JP |
2011524066 | Aug 2011 | JP |
2012043705 | Mar 2012 | JP |
2012063630 | Mar 2012 | JP |
201298873 | May 2012 | JP |
2012134064 | Jul 2012 | JP |
2012186067 | Sep 2012 | JP |
2012230256 | Nov 2012 | JP |
2014017179 | Jan 2014 | JP |
2014216190 | Nov 2014 | JP |
2014220039 | Nov 2014 | JP |
20150024201 | Mar 2015 | KR |
200703396 | Jan 2007 | TW |
M334397 | Jun 2008 | TW |
201108284 | Mar 2011 | TW |
201108286 | Mar 2011 | TW |
M407429 | Jul 2011 | TW |
201246251 | Nov 2012 | TW |
201403646 | Jan 2014 | TW |
WO9744946 | Nov 1997 | WO |
WO2005057320 | Jun 2005 | WO |
WO2006022313 | Mar 2006 | WO |
WO2008045833 | Apr 2008 | WO |
WO2009005026 | Jan 2009 | WO |
WO2012011282 | Jan 2012 | WO |
WO2012027978 | Mar 2012 | WO |
WO2014175446 | Oct 2014 | WO |
Entry |
---|
U.S. Appl. No. 14/472,260, filed Aug. 28, 2014, pending. |
U.S. Appl. No. 14/501,680, filed Sep. 30, 2014, pending. |
U.S. Appl. No. 14/736,151, filed Jun. 10, 2015, pending. |
U.S. Appl. No. 14/765,145, filed Jul. 31, 2015, pending. |
U.S. Appl. No. 14/826,590, filed Aug. 14, 2015, pending. |
U.S. Appl. No. 14/867,598, filed Sep. 28, 2015, pending. |
U.S. Appl. No. 14/867,672, filed Sep. 28, 2015, pending. |
U.S. Appl. No. 14/867,712, filed Sep. 28, 2015, pending; and. |
U.S. Appl. No. 14/867,746, filed Sep. 28, 2015, pending. |
Elekson, “Reliable and Tested Wearable Electronics Embedment Solutions,” http://www.wearable.technology/our—technologies, 3 pages, at least as early as Jan. 6, 2016. |
U.S. Appl. No. 15/014,596, filed Feb. 3, 2016, pending. |
U.S. Appl. No. 15/154,682, filed May 13, 2016, pending. |
U.S. Appl. No. 15/154,706, filed May 13, 2016, pending. |
U.S. Appl. No. 15/154,723, filed May 13, 2016, pending. |
U.S. Appl. No. 15/154,768, filed May 13, 2016, pending. |
U.S. Appl. No. 15/230,740, filed Aug. 8, 2016, pending. |
U.S. Appl. No. 15/230,724, filed Aug. 8, 2016, pending. |
U.S. Appl. No. 15/261,954, filed Sep. 11, 2016, pending. |
U.S. Appl. No. 15/261,972, filed Sep. 11, 2016, pending. |
U.S. Appl. No. 15/262,249, filed Sep. 12, 2016, pending. |
U.S. Appl. No. 15/264,827, filed Sep. 14, 2016, pending. |
U.S. Appl. No. 15/268,518, filed Sep. 16, 2016, pending. |
U.S. Appl. No. 15/269,790, filed Sep. 19, 2016, pending. |
Number | Date | Country | |
---|---|---|---|
20150270073 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
61969405 | Mar 2014 | US |