Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods

Abstract
A scleral prosthesis includes an elongated body configured to be implanted into scleral tissue of an eye. The elongated body includes (i) opposing first and second free ends and (ii) multiple first portions that form the first end of the body and part of a remainder of the body between the first and second ends. The first and second ends are wider than the remainder of the body. The first portions are separated by empty space such that the first portions meet at a point between the first and second ends and are not connected to each other between that point and the first end. The first end projects beyond one or more sides of the remainder of the body and angles back towards the second end. The second end projects beyond the one or more sides of the remainder of the body and angles back towards the first end.
Description
TECHNICAL FIELD

This disclosure is generally directed to eye implants and associated devices, and more specifically to a scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods.


BACKGROUND

In order for the human eye to have clear vision of an object at different distances (especially near objects), the effective focal length of the eye's crystalline lens is adjusted to keep an image of the object focused as sharply as possible on the retina. This change in effective focal length is known as “accommodation” and is accomplished by varying the shape of the crystalline lens in the eye. Generally, in the unaccommodated emmetropic eye, the curvature of the lens is such that distant objects are sharply imaged on the retina. In the unaccommodated eye, near objects are not focused sharply on the retina because their images lie behind the retinal surface. In order to visualize a near object clearly, the curvature of the crystalline lens is increased, thereby increasing its refractive power and causing the image of the near object to fall on the retina.


The change in the shape of the crystalline lens is accomplished by the action of certain muscles and structures within the eyeball or the “globe” of the eye. The lens is located in the forward part of the eye immediately behind the pupil. It has the shape of a classical biconvex optical lens, meaning it has a generally circular cross section with two convex refracting surfaces. The lens is located generally on the optical axis of the eye, which is typically the straight line from the center of the cornea to the macula in the retina at the posterior portion of the globe. In the unaccommodated eye, the curvature of the posterior surface of the lens (the surface adjacent to the vitreous body) is somewhat greater than the curvature of the anterior surface.


The lens is closely surrounded by a membranous capsule that serves as an intermediate structure in the support and actuation of the lens. The lens and its capsule are suspended on the optical axis behind the pupil by a circular assembly of radially directed elastic fibers called “zonules.” The zonules are attached at their inner ends to the lens capsule and at their outer ends to the ciliary body and indirectly to the ciliary muscle. The ciliary muscle is a muscular ring of tissue located just within the sclera, the outer supporting structure of the eye.


According to the classical theory of accommodation originating with Helmholtz, the ciliary muscle is relaxed in the unaccommodated eye and therefore assumes its largest diameter. The relatively large diameter of the ciliary muscle in this condition causes a tension on the zonules, which pull radially outward on the lens capsule. This causes the equatorial diameter of the lens to increase slightly and decreases the anterior-posterior dimension of the lens at the optical axis. In other words, the tension on the lens capsule causes the lens to assume a flattened state where the curvature of the anterior surface, and to some extent the posterior surface, is less than it would be in the absence of the tension. In this state, the refractive power of the lens is relatively low, and the eye is focused for clear vision on distant objects.


According to the classical theory, when the eye is intended to be focused on a near object, the ciliary muscle contracts. This contraction causes the ciliary muscle to move forward and inward, thereby relaxing the outward pull of the zonules on the equator of the lens capsule. This reduced zonular tension allows the elastic capsule of the lens to contract, causing an increase in the anterior-posterior dimension of the lens at the optical axis (meaning the lens becomes more spherical). This results in an increase in the optical power of the lens. Because of topographical differences in the thickness of the lens capsule, the central anterior radius of curvature may change more than the central posterior radius of curvature. This is the accommodated condition of the eye, where images of near objects fall sharply on the retina.


Presbyopia is the universal decrease in the amplitude of accommodation, which is typically observed in individuals over forty years of age. In a person having normal vision or “emmetropic” eyes, the ability to focus on near objects is gradually lost. As a result, the individual comes to need glasses for tasks requiring near vision, such as reading.


According to the conventional view, the amplitude of accommodation of the aging eye is decreased because of the loss of elasticity of the lens capsule and/or sclerosis of the lens with age. Consequently, even though the radial tension on the zonules is relaxed by contraction of the ciliary muscle, the lens does not assume a greater curvature. According to this conventional view, it is not possible to restore the accommodative power to the presbyopic eye by any treatment. The loss of elasticity of the lens and its capsule is seen as irreversible. One solution to the problems presented by presbyopia is to use corrective lenses for close work or possibly bifocal lenses if corrective lenses are required for distant vision. Other solutions may include surgically reshaping the cornea of the eye or implanting a presbyopic intra-ocular lens in the eye


Contrary to the conventional view, it is possible to restore the accommodative power to a presbyopic eye by implanting scleral prostheses within the sclera of the eye. For each individual scleral prosthesis, an incision is made in the sclera of the eye, such as near the plane of the equator of the crystalline lens. The incision is then extended under the surface of the sclera to form a scleral “tunnel,” and a scleral prosthesis is placed within the tunnel. A typical scleral prosthesis could be formed from a generally rectangular-shaped bar approximately five millimeters long, one and a half millimeters wide, and one millimeter tall. One or multiple scleral prostheses may be implanted in a patient's eye to partially or completely restore the accommodative power to a presbyopic eye. The same or similar technique can also be used to treat glaucoma, ocular hypertension, elevated intraocular pressure, or other eye disorders. This technique is described more fully in the U.S. patents and patent applications incorporated by reference above.


SUMMARY

This disclosure provides a scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods.


In a first embodiment, a scleral prosthesis includes an elongated body configured to be implanted into scleral tissue of an eye. The elongated body includes (i) opposing first and second free ends and (ii) multiple first portions that form the first end of the body and part of a remainder of the body between the first and second ends. The first and second ends are wider than the remainder of the body. The first portions of the body are separated by empty space such that the multiple first portions meet at a point between the first and second ends of the body and are not connected to each other between that point and the first end of the body. The first end projects beyond one or more sides of the remainder of the body and angles back towards the second end. The second end projects beyond the one or more sides of the remainder of the body and angles back towards the first end.


In a second embodiment, a system includes a scleral prosthesis and an insert. The scleral prosthesis includes an elongated body configured to be implanted into scleral tissue of an eye. The elongated body includes (i) opposing first and second free ends and (ii) multiple first portions that form the first end of the body and part of a remainder of the body between the first and second ends. The first and second ends are wider than the remainder of the body. The first portions of the body are separated by empty space such that the multiple first portions meet at a point between the first and second ends of the body and are not connected to each other between that point and the first end of the body. The first end projects beyond one or more sides of the remainder of the body and angles back towards the second end. The second end projects beyond the one or more sides of the remainder of the body and angles back towards the first end. The insert is configured to be placed between the first portions of the body.


In a third embodiment, a method includes obtaining a scleral prosthesis, which includes an elongated body configured to be implanted into scleral tissue of an eye. The elongated body includes (i) opposing first and second free ends and (ii) multiple first portions that form the first end of the body and part of a remainder of the body between the first and second ends. The first and second ends are wider than the remainder of the body. The first portions of the body are separated by empty space such that the multiple first portions meet at a point between the first and second ends of the body and are not connected to each other between that point and the first end of the body. The first end projects beyond one or more sides of the remainder of the body and angles back towards the second end. The second end projects beyond the one or more sides of the remainder of the body and angles back towards the first end. The method also includes placing an insert between the first portions of the body.


Other technical features may be readily apparent to one skilled in the art from the following figures, descriptions, and claims.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of this disclosure, reference is now made to the following description, taken in conjunction with the accompanying drawing, in which:



FIGS. 1A and 1B illustrate a first example scleral prosthesis in accordance with this disclosure;



FIGS. 2A and 2B illustrate a second example scleral prosthesis in accordance with this disclosure;



FIGS. 3A through 3F illustrate a third example scleral prosthesis in accordance with this disclosure;



FIG. 4 illustrates a fourth example scleral prosthesis in accordance with this disclosure;



FIGS. 5A through 5G illustrate a fifth example scleral prosthesis in accordance with this disclosure;



FIGS. 6A through 6G illustrate a sixth example scleral prosthesis in accordance with this disclosure;



FIGS. 7A through 7G illustrate a seventh example scleral prosthesis in accordance with this disclosure;



FIGS. 8A through 8F illustrate an example insertion of a scleral prosthesis into a patient's eye in accordance with this disclosure;



FIGS. 9A through 9C illustrate an example threader tube used to insert a scleral prosthesis into a patient's eye in accordance with this disclosure;



FIGS. 10A and 10B illustrate an example surgical blade used to create a scleral tunnel for receiving a scleral prosthesis in accordance with this disclosure;



FIGS. 11A through 11D illustrate an eighth example scleral prosthesis in accordance with this disclosure; and



FIGS. 12A and 12B illustrate a ninth example scleral prosthesis in accordance with this disclosure;



FIGS. 13A through 13D illustrate a tenth example scleral prosthesis in accordance with this disclosure;



FIGS. 14A and 14B illustrate an eleventh example scleral prosthesis in accordance with this disclosure;



FIG. 15 illustrates an example method for inserting a scleral prosthesis into a patient's eye in accordance with this disclosure.





DETAILED DESCRIPTION


FIGS. 1A and 1B illustrate a first example scleral prosthesis 100 in accordance with this disclosure. The embodiment of the scleral prosthesis 100 shown in FIGS. 1A and 1B is for illustration only. Other embodiments of the scleral prosthesis 100 could be used without departing from the scope of this disclosure.


As shown in FIGS. 1A and 1B, the scleral prosthesis 100 has two opposing ends 102-104, atop surface 106, and a bottom surface 108. One end 102 of the prosthesis 100 includes a generally cylindrical area 110 with a flat bottom forming a base on which the prosthesis 100 sits. The other end 104 of the prosthesis 100 is divided or split into multiple portions 112a-112b. Each of these portions 112a-112b includes a generally cylindrical area 114 with a flat bottom, which collectively form another base on which the prosthesis 100 sits.


In this example, the portions 112a-112b of the prosthesis 100 span a majority of the length of the prosthesis 100, meaning the prosthesis 100 is split along at least half of its length (or some other substantial portion of its length). The portions 112a-112b are generally biased so that they remain separated from one another without external interference. The portions 112a-112b may be biased such that they can be pushed towards each other or together but then separate after release. Also, the portions 112a-112b may not be excessively biased to the point where they tear through an incision in the patient's eye or pull the prosthesis 100 out of a scleral tunnel. Also, the cylindrical areas 110 and 114 project out from the sides of the prosthesis 100, meaning the cylindrical areas 110 and 114 form bases that are wider than the middle portion of the prosthesis 100. In addition, in this example, the top surface 106 of the prosthesis 100 is generally curved, and the bottom surface 108 could be generally flat or curved.


In this example embodiment, the scleral prosthesis 100 can be implanted within a scleral tunnel in a patient's eye. For example, the scleral prosthesis 100 can be implanted such that the cylindrical areas 110 and 114 remain outside of the scleral tunnel. Also, the flat bottoms of the cylindrical areas 110 and 114 can lie on the surface of the patient's eye outside of the scleral tunnel. To implant the scleral prosthesis 100 in the scleral tunnel, the portions 112a-112b of the scleral prosthesis 100 could be pushed together and pulled through the scleral tunnel. This may help to reduce the width or cross-sectional area of the end 104 of the scleral prosthesis 100 as the prosthesis 100 is pulled through the scleral tunnel during implantation. However, any other suitable technique could be used to implant the scleral prosthesis 100 in a scleral tunnel.


The scleral tunnel in which the scleral prosthesis 100 is implanted can be formed near the ciliary body of a patient's eye. Once implanted in a scleral tunnel, the scleral prosthesis 100 helps to, for example, increase the amplitude of accommodation of the patient's eye. The scleral prosthesis 100 could also help to treat other eye conditions, such as glaucoma, ocular hypertension, elevated intraocular pressure, or other eye disorders. In some embodiments, multiple prostheses (such as four) are implanted in a patient's eye, and the ends of the prostheses are “free” (not attached to the ends of other prostheses).


By making the ends of the scleral prosthesis 100 wider than its middle portion, various benefits could be obtained, such as stabilization of the prosthesis 100. For example, with wider ends, it is less likely that the scleral prosthesis 100 would turn or rotate within a scleral tunnel after implantation. Also, the wider ends help to lock the scleral prosthesis 100 into place and impede movement of the scleral prosthesis 100. In addition, the wider ends make it less likely that the scleral prosthesis 100 can be inadvertently ejected out of the scleral tunnel after implantation.


In particular embodiments, the prosthesis 100 in FIGS. 1A and 1B may be formed from a single integrated piece of material, such as polymethyl methacrylate (“PMMA”), polyether-ether ketone (“PEEK”), or other suitable material(s). Also, the scleral prosthesis 100 could have any suitable size and dimensions, and scleral prostheses 100 of different sizes could be provided. For example, different-sized scleral prostheses 100 could have different lengths, such as lengths of 3.6, 3.8, 4.0, and 4.2 millimeters from the inner edges of the cylindrical areas 110 and 114 of the prostheses 100.



FIGS. 2A and 2B illustrate a second example scleral prosthesis 200 in accordance with this disclosure. The embodiment of the scleral prosthesis 200 shown in FIGS. 2A and 2B is for illustration only. Other embodiments of the scleral prosthesis 200 could be used without departing from the scope of this disclosure.


The scleral prosthesis 200 in FIGS. 2A and 2B is similar to the scleral prosthesis 100 of FIGS. 1A and 1B. In this example embodiment, the scleral prosthesis 200 includes opposing ends 202-204. In this example, both ends 202-204 are split or divided into multiple portions 206a-206b and 208a-208b, respectively. Each of these end portions 206a-206b and 208a-208b includes a generally cylindrical area 210 or 212, which could have flat bottoms collectively define two bases for the scleral prosthesis 200.


In this example embodiment, the scleral prosthesis 200 can be implanted within a scleral tunnel in a patient's eye, such as by implanting the scleral prosthesis 200 so that the cylindrical areas 210 and 212 remain outside of the scleral tunnel. Also, the flat bottom portions of the cylindrical areas 210 and 212 can lie on the surface of the patient's eye outside of the scleral tunnel. Further, the cylindrical areas 210 and 212 project out from the sides of the prosthesis 200, forming bases that are wider than the middle portion of the prosthesis 200. As noted above, this may help to stabilize the scleral prosthesis 200, such as by reducing or preventing rotation, locking the prosthesis 200 into place, impeding movement of the prosthesis 200, and reducing the likelihood that the prosthesis 200 can exit the scleral tunnel. In addition, in this example, the top surface of the prosthesis 200 is generally curved, and the bottom surface could be generally flat or curved.


To implant the scleral prosthesis 200 in the scleral tunnel, the portions 206a-206b or 208a-208b of the scleral prosthesis 200 can be pushed together and pulled through the scleral tunnel. An example of this is shown in FIG. 2B. Here, a tool 290 has two hooked ends 292 that can hook around or onto the cylindrical areas 212 of the scleral prosthesis 200. The tool 290 is then used to push the split portions 208a-208b of the scleral prosthesis 200 together, and the prosthesis 200 can be pulled into the scleral tunnel. However, any other suitable technique could be used to implant the scleral prosthesis 200 in a scleral tunnel.


In particular embodiments, the prosthesis 200 in FIGS. 2A and 2B may be formed from a single integrated piece of material, such as PMMA, PEEK, or other suitable material(s). The scleral prosthesis 200 could also have any suitable size and dimensions, and scleral prostheses 200 of different sizes could be provided.



FIGS. 3A through 3F illustrate a third example scleral prosthesis 300 in accordance with this disclosure. The embodiment of the scleral prosthesis 300 shown in FIGS. 3A through 3F is for illustration only. Other embodiments of the scleral prosthesis 300 could be used without departing from the scope of this disclosure.


As shown in FIGS. 3A through 3C, the scleral prosthesis 300 has two opposing ends 302-304, a top surface 306, and a bottom surface 308. One end 302 of the prosthesis 300 is split or divided into multiple portions 310a-310b, and the other end 304 of the prosthesis 300 is split or divided into multiple portions 312a-312b.


In this example, the portions 310a-310b of the prosthesis 300 span less than a quarter of the length of the prosthesis 300 (or some other less substantial portion of its length), and the portions 312a-312b of the prosthesis 300 span more than half of the length of the prosthesis 300 (or some other more substantial portion of its length). Also, in this example, the ends 302-304 of the prosthesis 300 have areas 314-316, respectively, that are more triangular in shape. As shown in FIG. 3B, the areas 314 at the end 302 of the scleral prosthesis 300 have surfaces that generally face the opposing end 304. Also, as shown in FIG. 3B, the areas 316 at the end 304 of the scleral prosthesis 300 have surfaces that are more hook-shaped (the areas 316 hook back towards the opposing end 302 of the scleral prosthesis 300). These areas 314 and 316 may also include generally flat bottom surfaces that form bases for the prosthesis 300.


In this example embodiment, the scleral prosthesis 300 can be implanted within a scleral tunnel in a patient's eye, such as by implanting the scleral prosthesis 300 so that the areas 314 and 316 remain outside of the scleral tunnel. Also, the flat bottom portions of the areas 314 and 316 can lie on the surface of the patient's eye outside of the scleral tunnel. Further, the areas 314 and 316 project out from the sides of the prosthesis 300 to form bases wider than the middle portion of the prosthesis 300. Again, the wider ends may provide certain benefits for the scleral prosthesis 300, such as stabilization of the prosthesis 300. In addition, in this example, the top surface 306 and the bottom surface 308 of the prosthesis 300 are generally curved.


In particular embodiments, the prosthesis 300 in FIGS. 3A through 3C may be formed from a single integrated piece of material, such as PMMA, PEEK, or other suitable material(s). Also, the scleral prosthesis 300 could have any suitable size and dimensions, and scleral prostheses 300 of different sizes could be provided.


Examples of differently sized and dimensioned prostheses are shown in FIGS. 3D through 3F, which illustrate four different prostheses 300a-300d. The prostheses 300a-300d are similar to one another with slight changes in their structure. For example, the prosthesis 300a has a larger arch and flat bottom surfaces at its ends, while the prosthesis 300c has a smaller arch and flat bottom surfaces at its ends. The prosthesis 300b has a larger arch and slanted bottom surfaces at its ends, while the prosthesis 300d has a smaller arch and slanted bottom surfaces at its ends.


The prostheses 300a-300d in FIGS. 3D through 3F could have any suitable sizes and dimensions. For example, the prostheses 300a-300d could be 5,366 microns in length. A thickness (measured top-to-bottom) at the middle (measured end-to-end) of the prostheses 300a-300d could have various values, such as 831, 833, and 839 microns. The arch (measured from the tips of the prostheses to the top of the arch) of the prostheses 300a-300d could also have various values, such as 212, 311, and 386 microns.



FIG. 4 illustrates a fourth example scleral prosthesis 400 in accordance with this disclosure. The embodiment of the scleral prosthesis 400 shown in FIG. 4 is for illustration only. Other embodiments of the scleral prosthesis 400 could be used without departing from the scope of this disclosure.


In this example, the scleral prosthesis 400 in FIG. 4 is similar to the prosthesis 300 shown in FIGS. 3A through 3C. Here, the scleral prosthesis 400 includes two opposing ends 402-404, where the end 404 is split or divided into multiple portions 406a-406b.


The prosthesis 400 also includes an insert 408 placed between or around the multiple portions 406a-406b of the end 404 of the prosthesis 400. The insert 408 can be permanently or removably placed between or around the portions 406a-406b of the end 404 of the prosthesis 400. For example, the insert 408 could be placed between or around the portions 406a-406b of the end 404 after the prosthesis 400 has been implanted in a scleral tunnel in a patient's eye. The insert 408 could later be removed, such as to facilitate removal of the prosthesis 400 from the scleral tunnel.


The insert 408 may generally help to stabilize the prosthesis 400 (in addition to the stabilization already provided by the wider ends). For example, the insert 408 could help to prevent the portions 406a-406b of the prosthesis 400 from separating excessively, which could pull the opposite end 402 through the scleral tunnel and force the prosthesis 400 out of the tunnel completely. The insert 408 could also function to reduce or prevent rotation of the prosthesis 400 within the scleral tunnel. For instance, the insert 408 may help to ensure that the end 404 of the prosthesis 400 maintains a desired width and therefore remains wide enough to prevent the prosthesis 400 from rolling over once implanted in the scleral tunnel. Moreover, the insert 408 can be inserted into or around the prosthesis 400 only after the prosthesis 400 has been implanted, which enables the portions 406a-406b of the prosthesis 400 to be pushed together during implantation while preventing portions 406a-406b from coming together after implantation (reducing the likelihood that the prosthesis 400 can exit the scleral tunnel).


The insert 408 could be attached or coupled to the prosthesis 400 in any suitable manner. For example, the insert 408 could have one or more structures that engage one or more corresponding structures of the portions 406a-406b of the prosthesis 400, such as male structures on the insert 408 that engage female structures on the prosthesis body. The insert 408 could also be attached to the prosthesis 400 using sutures or looped around the prosthesis 400. The insert 408 could be attached or coupled to the prosthesis 400 in any other suitable manner.



FIGS. 5A through 5G illustrate a fifth example scleral prosthesis 500 in accordance with this disclosure. The embodiment of the scleral prosthesis 500 shown in FIGS. 5A through 5G is for illustration only. Other embodiments of the scleral prosthesis 500 could be used without departing from the scope of this disclosure.


As shown in FIG. 5A, the scleral prosthesis 500 has two opposing ends 502-504. In this example, only one end 504 of the prosthesis 500 is split or divided into multiple portions 506a-506b (although both could be). As shown in FIG. 5B, the ends of the prosthesis 500 generally have an oval cross-section. Except for the more oval cross-section and the undivided end 502, the overall shape of the prosthesis 500 is similar to the shape of the prosthesis 300.


As shown here, portions 508-510 of the ends 502-504 of the prosthesis 500 are hook-shaped, where the portions 508 of the end 502 are hooked back towards the end 504 and the portions 510 of the end 504 are hooked back towards the end 502. These portions 508-510 of the prosthesis 500 could also lie outside of a scleral tunnel and rest on the surface of a patient's eye. Again, the ends 502-504 of the prosthesis 500 are wider than the middle, helping to stabilize the prosthesis 500.


In this example, the prosthesis 500 also includes ridges 512 along the inner sides of the portions 506a-506b. The ridges 512 generally travel lengthwise along the portions 506a-506b of the prosthesis 500. The ridges 512 may or may not link up to each other along the curved intersection of the portions 506a-506b. The ridges 512 may have any suitable height, width, or shape.


The prosthesis 500 could have the dimensions shown in FIGS. 5B through 5G. These dimensions are for illustration only. In these figures, the dimensions are expressed as numbers in brackets (representing dimensions in inches) over numbers without brackets (representing dimensions in millimeters). Dimensions associated with a radius of curvature are preceded by the letter “R” (such as in “R6.168”). In addition, the diagram shown in FIG. 5E represents the cross-section of the prosthesis 500 along line A-A in FIG. 5D, and the diagram shown in FIG. 5G represents the cross-section of the prosthesis 500 along line B-B in FIG. 5F. As shown in FIG. 5G, the prosthesis 500 could (but need not) be hollow within the undivided portion of the prosthesis 500 near the end 502 and may or may not be filled with a liquid, gel, or other material.


As explained in more detail below, an insert can be placed between or around the multiple portions 506a-506b of the end 504 of the prosthesis 500. The insert can be permanently or removably placed between or around the portions 506a-506b of the end 504 of the prosthesis 500. For example, the insert could be placed between or around the portions 506a-506b of the end 504 after the prosthesis 500 has been implanted in a scleral tunnel in a patient's eye. The insert could later be removed, such as to facilitate removal of the prosthesis 500 from the scleral tunnel.


The insert may generally help to stabilize the prosthesis 500 (in addition to the stabilization already provided by the wider ends). For example, the insert could help to prevent the portions 506a-506b of the prosthesis 500 from separating excessively, which could pull the opposite end 502 through the scleral tunnel and force the prosthesis 500 out of the tunnel completely. The insert could also function to reduce or prevent rotation of the prosthesis 500 within the scleral tunnel. For instance, the insert may help to ensure that the end 504 of the prosthesis 500 maintains a desired width and therefore remains wide enough to prevent the prosthesis 500 from rolling over once implanted in the scleral tunnel. Moreover, the insert can be inserted into or around the prosthesis 500 only after the prosthesis 500 has been implanted, which enables the portions 506a-506b of the prosthesis 500 to be pushed together during implantation but prevents portions 506a-506b from coming together after implantation (reducing the likelihood that the prosthesis 500 can exit the scleral tunnel).



FIGS. 6A through 6G illustrate a sixth example scleral prosthesis 600 in accordance with this disclosure. The embodiment of the scleral prosthesis 600 shown in FIGS. 6A through 6G is for illustration only. Other embodiments of the scleral prosthesis 600 could be used without departing from the scope of this disclosure.


As shown in FIG. 6A, the scleral prosthesis 600 has two opposing ends 602-604. In this example, again only one end 604 of the prosthesis 600 is split or divided into multiple portions 606a-606b (although both ends could be divided). As shown in FIG. 6B, the prosthesis 600 generally has a more rectangular cross-section, where the bottom surfaces of the ends 602-604 are flatter than in the prosthesis 500.


As shown here, portions 608-610 of the ends 602-604 of the prosthesis 600 are hook-shaped, and the prosthesis 600 includes ridges 612 along the inner sides of the portions 606a-606b. The ridges 612 generally travel lengthwise along the portions 606a-606b of the prosthesis 600 and may or may not be linked along the curved intersection of the portions 606a-606b. Again, the ends 602-604 of the prosthesis 600 are wider than the middle, helping to stabilize the prosthesis 600.


The prosthesis 600 could have the dimensions shown in FIGS. 6B through 6G. These dimensions are for illustration only. In these figures, the dimensions are again expressed as numbers in brackets (representing inches) over numbers without brackets (representing millimeters), and dimensions associated with a radius of curvature are preceded by the letter “R.” In addition, the diagram shown in FIG. 6E represents the cross-section of the prosthesis 600 along line A-A in FIG. 6D, and the diagram shown in FIG. 6G represents the cross-section of the prosthesis 600 along line B-B in FIG. 6F. Again, the prosthesis 600 may or may not be hollow within the undivided portion of the prosthesis 600 near the end 602 and may or may not be filled with a liquid, gel, or other material.


As shown below, the prosthesis 600 can include an insert permanently or removably placed between or around the multiple portions 606a-606b of the end 604 of the prosthesis 600. The insert may generally help to stabilize the prosthesis 600 (in addition to the stabilization already provided by the wider ends).



FIGS. 7A through 7G illustrate a seventh example scleral prosthesis 700 in accordance with this disclosure. The embodiment of the scleral prosthesis 700 shown in FIGS. 7A through 7G is for illustration only. Other embodiments of the scleral prosthesis 700 could be used without departing from the scope of this disclosure.


As shown in FIG. 7A, the scleral prosthesis 700 has two opposing ends 702-704. Once again, in this example, only one end 704 of the prosthesis 700 is split or divided into multiple portions 706a-706b (although both could be). As opposed to prior prostheses, as shown in FIG. 7B, the prosthesis 700 does not have a symmetrical cross-section. Instead, the prosthesis 700 has one side 711 that is relatively flat along the entire length of the prosthesis 700. Here, the ends 702-704 have sides that are aligned with each other along the side 711 of the prosthesis 700. Also, each of the ends 702-704 includes a single portion 708-710, respectively, that is hook-shaped. As a result, both ends 702-704 are still wider than the middle portion of the prosthesis 700 and help stabilize the prosthesis 700, but the ends 702-704 may not be as wide as prior prostheses.


As with the prostheses 500 and 600, the prosthesis 700 includes ridges 712 along the inner sides of the portions 706a-706b. The ridges 712 generally travel lengthwise along the portions 706a-706b of the prosthesis 700 and may or may not be linked together.


The prosthesis 700 could have the dimensions shown in FIGS. 7B through 7G. These dimensions are for illustration only. The diagram shown in FIG. 7E represents the cross-section of the prosthesis 700 along line A-A in FIG. 7D, and the diagram shown in FIG. 7G represents the cross-section of the prosthesis 700 along line B-B in FIG. 7F. Also, the prosthesis 700 may or may not be hollow within the undivided portion of the prosthesis 700 near the end 702 and may or may not be filled with a liquid, gel, or other material. As explained below, the prosthesis 700 may include an insert permanently or removably placed between or around the multiple portions 706a-706b of the end 704 of the prosthesis 700. The insert may generally help to stabilize the prosthesis 700 (in addition to the stabilization already provided by the wider ends).


Although FIGS. 1A through 7G illustrate various examples of scleral prostheses, various changes may be made to FIGS. 1A through 7G. For example, the sizes, shapes, and dimensions of the features of the scleral prostheses are for illustration only and can be altered in any suitable manner. Also, various features shown and described with respect to one of the scleral prostheses could be used with other scleral prostheses. As a particular example, the insert 408 of the prosthesis 400 could be used with any other suitable scleral prosthesis. As another particular example, a difference between the prostheses shown in FIGS. 3A-3F and the prostheses shown in FIGS. 5A-7G is that (when looking from an end viewpoint) the top edges of the ends have been shaved in FIGS. 5A-7G so that they slope downwards from top to bottom at about a 45° angle. This same feature could be used with any other prosthesis.



FIGS. 8A through 8F illustrate an example insertion of a scleral prosthesis into a patient's eye in accordance with this disclosure. The example insertion of the scleral prosthesis shown in FIGS. 8A through 8F is for illustration only. Other techniques could be used to insert a scleral prosthesis into a patient's eye without departing from the scope of this disclosure.


As shown in FIG. 8A, a prosthesis 800 is being implanted into a scleral tunnel 802 in a patient's eye. The prosthesis 800 could represent any suitable prosthesis, such as one of the prostheses discussed above or any other suitable prosthesis. In this example, the prosthesis 800 is inserted into a threader tube 804, which is used to compress or push together the split or divided portions of the prosthesis 800 for insertion into the scleral tunnel 802. The prosthesis 800 is pulled into the scleral tunnel 802 by the threader tube 804 and, optionally, a suture 806 that has been threaded through the scleral tunnel 802. The end of the suture 806 in this example includes two loops that are placed through the threader tube 804 and connected to one end of the prosthesis 800. In this example, the loops of the suture 806 loop around the cylindrical or triangular areas at one end of the prosthesis 800.


As shown in FIGS. 8A and 8B, one end of the prosthesis 800 is connected to the suture 806 and can be inserted into the threader tube 804. As shown in FIGS. 8C and 8D, the threader tube 804 and the suture 806 can then be pulled so that the prosthesis 800 is pulled into the scleral tunnel 802. In some embodiments, the prosthesis 800 is both pulled into the scleral tunnel 802 (such as by using the threader tube 804 and/or the suture 806) and pushed into the scleral tunnel 802 (such as by using an instrument held by a surgeon). As shown in FIG. 8E, once the prosthesis 800 is implanted within the scleral tunnel 802, the threader tube 804 can be pulled off the prosthesis 800, and the suture 806 can be removed from the prosthesis 800. This leaves the prosthesis 800 in the scleral tunnel 802 as shown in FIG. 8F.


Although FIGS. 8A through 8F illustrate one example of an insertion of a scleral prosthesis into a patient's eye, various changes may be made to FIGS. 8A through 8F. For example, the threader tube 804 could have any suitable size or shape. Also, the suture 806 could be attached or coupled to the prosthesis 800 in any suitable manner. In addition, the suture 806 need not be used with the threader tube 804 to implant the prosthesis 800. In particular embodiments, the prosthesis 800 could be pulled into the scleral tunnel 802 using only the threader tube 804.



FIGS. 9A through 9C illustrate an example threader tube 900 used to insert a scleral prosthesis into a patient's eye in accordance with this disclosure. The embodiment of the threader tube 900 shown in FIGS. 9A through 9C is for illustration only. Other embodiments of the threader tube 900 could be used without departing from the scope of this disclosure.


In this example, the threader tube 900 includes a wider upper portion 902, a tapered portion 904, and a narrower lower portion 906. The lower portion 906 in this example includes an angled end 908. The threader tube 900 could be formed from any suitable material(s), such as heat-shrink tubing formed from TEFLON PTFE (polytetrafluoroethylene). Also, the threader tube 900 could have any suitable shape that allows the threader tube 900 to be pulled through a scleral tunnel. For example, the threader tube 900 could have an overall length of 3.0 cm (±0.5 cm). The upper portion 902 could have a length of 1.0 cm (±0.2 cm), an internal diameter of 1.0 mm, and a minimum wall thickness of 0.08 mm. The lower portion 906 could have an internal diameter of 0.5 mm and a recovered minimum wall thickness of 0.12 mm. In addition, the end 908 of the lower portion 906 could have an angle of 30°.


Optionally, a suture 910 can be placed through the threader tube 900, and a rod 912 can be inserted into the lower portion 906 of the threader tube 900. The illustration in FIG. 9C represents the cross-section of the threader tube 900 along the lower portion 906 of the threader tube 900. The suture 910 travels through the threader tube 900, loops around a scleral prosthesis 914, and returns through the threader tube 900. The suture 910 in this example loops around the central body of the prosthesis 914 (as opposed to looping over portions of the closer end of the prosthesis as shown in FIGS. 8A through 8F). The suture 910 represents any suitable suture made of any suitable material(s), such as 6-0 NYLON or PROLENE sutures having a 0.1 mm diameter.


The rod 912 in this example includes a tapered and rounded end that can be inserted through a scleral tunnel ahead of the lower portion 906 of the threader tube 900. The rod 912 can be used to facilitate insertion of the threader tube 900 into a scleral tunnel of a patient's eye. For example, the rod 912 may help the scleral tunnel to open and obtain a larger size before the lower portion 906 of the threader tube 900 is inserted into the scleral tunnel. The rod 912 could be formed from any suitable material(s) and can have any suitable size or shape, such as a cigar-shaped rod having a maximum diameter of 0.3 mm. Also, both ends of the rod 912 could, but need not, have the shape shown in FIG. 9B.


Although FIGS. 9A through 9C illustrate one example of a threader tube 900 used to insert a scleral prosthesis into a patient's eye, various changes may be made to FIGS. 9A through 9C. For example, the threader tube 900 and rod 912 could have any suitable size or shape. Also, the suture 910 need not loop around the central body of the prosthesis 914 and could loop around or be attached to or associated with the prosthesis 914 in any suitable manner, such as by being looped around the closer end of the prosthesis 914. Further, the suture 910 and/or the rod 912 need not be used along with the threader tube 900 to insert a scleral prosthesis into a scleral tunnel.



FIGS. 10A and 10B illustrate an example surgical blade 1000 used to create a scleral tunnel for receiving a scleral prosthesis in accordance with this disclosure. The embodiment of the surgical blade 1000 shown in FIGS. 10A and 10B is for illustration only. Other embodiments of the surgical blade 1000 could be used without departing from the scope of this disclosure.


In this example, the surgical blade 1000 is used to automatically feed a suture through a scleral tunnel. The suture could then be used to pull a prosthesis into the scleral tunnel, such as is shown in FIGS. 8A through 8F and 9A through 9C. However, as noted above, the use of a suture to pull a prosthesis into a scleral tunnel is not required, and the surgical blade 1000 could be modified to simply form a scleral tunnel without pulling a suture through the tunnel.


As shown in FIGS. 10A and 10B, the surgical blade 1000 includes a central portion 1002, a curved cutting blade 1004, and a connecting segment 1006. The central portion 1002 is connected to a surgical tool and can be rotated in multiple directions to move the cutting blade 1004 into and out of the scleral tissue of a patient's eye. The connecting segment 1006 couples the central portion 1002 to the cutting blade 1004, helping to translate rotation of the central portion 1002 into movement of the cutting blade 1004.


In this example, the cutting blade 1004 includes a notch 1008. After the cutting blade 1004 is rotated into the scleral tissue of a patient's eye (and before it is rotated out of the scleral tissue), a suture 1010 can be placed in the notch 1008. In some embodiments, the suture 1010 could have multiple loops at its end, and the loops may be placed in the notch 1008. In other embodiments, the suture 1010 itself is placed within the notch 1008. The suture 1010 could be loaded into the notch 1008 in any suitable manner, such as automatically or manually. The cutting blade 1004 is then rotated out of the patient's scleral tissue, pulling the suture 1010 with it. This allows the suture 1010 to be pulled through the scleral tunnel in a patient's eye at the time that the scleral tunnel is formed. The suture 1010 also helps to mark the location of the scleral tunnel, allowing a surgeon or other personnel to quickly locate the scleral tunnel in the patient's eye after the surgical blade 1000 is removed.


Although FIGS. 10A and 10B illustrate one example of a surgical blade 1000 used to create a scleral tunnel for receiving a scleral prosthesis, various changes may be made to FIGS. 10A and 10B. For example, the surgical blade 1000 need not include a notch 1008, and the suture 1010 could be inserted through a scleral tunnel after the tunnel is formed. Also, as noted above, the suture 1010 could be omitted from the surgical procedure.



FIGS. 11A through 11D illustrate an eighth example scleral prosthesis 1100 in accordance with this disclosure. The embodiment of the scleral prosthesis 1100 shown in FIGS. 11A through 11D is for illustration only. Other embodiments of the scleral prosthesis 1100 could be used without departing from the scope of this disclosure.


In this example, the scleral prosthesis 1100 changes shape after being implanted into a scleral tunnel. For example, the prosthesis 1100 could be formed from a shape-memory metal or other material that changes shape when exposed to certain temperatures or temperature ranges, such as a nickel titanium alloy or Nitinol. In this example, the prosthesis 1100 before implantation may have the shape shown in FIG. 11A. Here, the prosthesis 1100 includes a generally flat central portion 1102 and two generally flat end portions 1104-1106. Each of the end portions 1104-1106 includes two separated sections 1108, which in this example are angled towards one another.


Once inserted into a scleral tunnel, the temperature of the patient's scleral tissue may cause the prosthesis 1100 to assume the shape shown in FIG. 11B. The central portion 1102 of the prosthesis 1100 is now arched or curved, and the sections 1108 of each end portion 1104-1106 angle away from one other. Also, the end portions 1104-1106 may be generally curved, while the tips of the end portions 1104-1106 are flatter to form splayed feet that provide support for the prosthesis 1100.


The prosthesis 1100 could be implanted into a patient's eye in any suitable manner. For example, the scleral prosthesis 1100 could be inserted into a scleral tunnel after a surgical blade has been used to form the scleral tunnel.


In other embodiments, as shown in FIG. 11C, the prosthesis 1100 could be placed within a sheath 1152 having an integrated blade 1154. The integrated blade 1154 can be used to form a scleral tunnel in a patient's eye while the prosthesis 1100 is being inserted into the scleral tissue. For example, as shown in FIG. 11D, a vacuum pot 1170 can be inserted onto a patient's eye, and vacuum forces could be used to pull up on the patient's scleral 1172 and conjunctiva 1174. At this point, an incision could be formed in the patient's eye, such as an incision at location 1176. This could include inserting the prosthesis 1100 into the patient's eye at the location 1176, using the blade 1154 to cut into and form an incision through the patient's eye at that location. By pulling up on the patient's sclera 1172 before the incision is formed, a straight incision rather than a curved incision could be used to form a scleral tunnel. Although the incision is shown as occurring outside of the vacuum pot 1170, the vacuum pot 1170 could include a mechanism for forming an incision inside the vacuum pot 1170. Once implanted, the sheath 1152 could be opened and pulled through the scleral tunnel while the prosthesis 1100 is maintained in place (such as by a surgeon using a gripping tool to hold the prosthesis 1100 in place). However, the prosthesis 1100 could be inserted in any other suitable manner, with or without using a sheathe, integrated blade, or vacuum pot.


In particular embodiments, the prosthesis 1100 may be malleable and caused to assume the shape shown in FIG. 11A at lower temperatures (in a “martensite” phase), such as temperatures below 60° F. At temperatures above 60° F. (in an “austenite” phase), the prosthesis 1100 may assume the arched shape shown in FIG. 11B. The flatter shape of the prosthesis 1100 shown in FIG. 11A may help to reduce the profile of the prosthesis 1100 during implantation, which may reduce the size of an incision needed in the scleral tissue of a patient's eye. As a particular example, the prosthesis 1100 in FIG. 11A could have an arched height of 250 microns, and the prosthesis 1100 in FIG. 11B could have an arched height of 900 microns. Also, because the prosthesis 1100 in FIG. 11A is generally flat, a straight incision could be used to form a scleral tunnel instead of a curved incision, reducing the complexity of forming the incision.


Although FIGS. 11A through 11D illustrate an eighth example scleral prosthesis 1100, various changes may be made to FIGS. 11A through 11D. For example, the prosthesis 1100 could have any suitable size or shape before and after implantation. As a particular example, while shown as including separated sections 1108 at its ends 1104-1106 in FIG. 11A, each end 1104-1106 of the prosthesis 1100 could be fully integrated, and each end 1104-1106 may branch into multiple sections 1108 only after implantation.



FIGS. 12A through 14B illustrate additional example prostheses having inserts placed between portions or “legs” of one end of each of these prostheses. FIGS. 12A and 12B illustrate a ninth example scleral prosthesis 1200 in accordance with this disclosure. The embodiment of the scleral prosthesis 1200 shown in FIGS. 12A and 12B is for illustration only. Other embodiments of the scleral prosthesis 1200 could be used without departing from the scope of this disclosure.


In this example, the scleral prosthesis 1200 is configured to receive an insert 1202. The prosthesis 1200 includes a textured bottom surface 1204, and the insert 1202 includes a textured bottom surface 1206 (although this feature could be omitted). Also, the interior sides of the legs of the prosthesis 1200 have “male” ridges 1208, and the insert 1202 has “female” slots 1210 that guide the insert 1202 smoothly between the legs of the prosthesis 1200 (after the prosthesis 1200 itself has been inserted in a scleral tunnel).


In addition, the insert 1202 includes a slightly wider circular “male” area 1212 at the interior end of the insert 1202, which can be inserted into a corresponding circular “female” expansion 1214 on the prosthesis 1200 itself. As the insert 1202 approaches the end of its travel into the prosthesis 1200, the area 1212 can be snapped into the expansion 1214, which helps to ensure that the insert 1202 does not fall out of the prosthesis 1200 after implantation.


The insert 1212 can be permanently or removably placed between the legs of the prosthesis 1200. For example, the insert 1212 could be placed between the legs of the prosthesis 1200 after the prosthesis 1200 has been implanted in a scleral tunnel in a patient's eye. The insert 1212 could later be removed, such as to facilitate removal of the prosthesis 1200 from the scleral tunnel.


The insert 1212 may generally help to stabilize the prosthesis 1200 (in addition to the stabilization already provided by its wider ends). For example, the insert 1212 could help to prevent the legs of the prosthesis 1200 from separating excessively, which could pull the opposite end through the scleral tunnel and force the prosthesis 1200 out of the tunnel completely. The insert 1212 could also function to reduce or prevent rotation of the prosthesis 1200 within the scleral tunnel. For instance, the insert 1212 may help to ensure that the legs of the prosthesis 1200 form an end having a desired width, so the end remains wide enough to prevent the prosthesis 1200 from rolling over once implanted in the scleral tunnel. Moreover, the insert 1212 can be inserted into or around the prosthesis 1200 only after the prosthesis 1200 has been implanted, which enables the legs of the prosthesis 1200 to be pushed together during implantation but prevents the legs from coming together after implantation.



FIGS. 13A through 13D illustrate a tenth example scleral prosthesis 1300, 1350 in accordance with this disclosure. The embodiments of the scleral prostheses 1300, 1350 shown in FIGS. 13A through 13D are for illustration only. Other embodiments of the scleral prostheses 1300, 1350 could be used without departing from the scope of this disclosure.


As shown in FIGS. 13A and 13B, an insert 1302 can be placed between the legs of the prosthesis 1300. Similarly, as shown in FIGS. 13C and 13D, an insert 1352 can be placed between the legs of the prosthesis 1350. The inserts 1302 and 1352 can function in the same or similar manner as the insert 1202 described above. Moreover, the same mechanisms (male ridges, female slots, male areas, and female expansions) could be used with the prostheses 1300, 1350 and inserts 1302, 1352.



FIGS. 14A and 14B illustrate an eleventh example scleral prosthesis in accordance with this disclosure. The embodiment of the scleral prosthesis 1400 shown in FIGS. 14A and 14B is for illustration only. Other embodiments of the scleral prosthesis 1400 could be used without departing from the scope of this disclosure.


As shown in FIGS. 14A and 14B, an insert 1402 can be placed between the legs of the prosthesis 1400. The insert 1402 can function in the same or similar manner as the insert 1202 described above. Moreover, the same mechanisms (male ridges, female slots, male areas, and female expansions) could be used with the prosthesis 1400 and insert 1402.


In particular embodiments, the prostheses 1200-1400 shown in FIGS. 12A through 14B represents the same or similar prostheses described above in FIGS. 5A through 7G. However, the inserts could be used with any other suitable prosthesis.


Although FIGS. 12A through 14B illustrate various examples of scleral prostheses having inserts, various changes may be made to FIGS. 12A through 14B. For example, the sizes, shapes, and dimensions of the features of the scleral prostheses are for illustration only and can be altered in any suitable manner. Also, various features shown and described with respect to one of the scleral prostheses could be used with other scleral prostheses (including the prostheses shown in FIGS. 1 through 7G).


In addition, in some embodiments, any of the scleral prostheses described above could be fabricated using at least one magnetic material. For example, the entire body of a scleral prosthesis could be formed from at least one biocompatible magnetic material, or the scleral prosthesis could be formed from at least one non-biocompatible magnetic material and then encased in a biocompatible cover or shell. Also, a portion of a scleral prosthesis could be formed from at least one magnetic material. For instance, when a scleral prosthesis includes an insert (such as is shown in FIGS. 4A and 12A through 14B), the body or the insert could be formed from at least one magnetic material, or both the body and the insert could be formed from the same magnetic material(s) or from different magnetic materials. In some cases, the body and the insert could be magnetically attracted to each other in order to help secure the insert to the body. This could be accomplished using at least one magnetic material in the body and at least one metal in the insert (or vice versa). This could also be done using magnetic materials that are attracted to one another in the body and the insert.



FIG. 15 illustrates an example method 1500 for inserting a scleral prosthesis into a patient's eye in accordance with this disclosure. The method 1500 shown in FIG. 15 is for illustration only. Other techniques could be used to insert a scleral prosthesis into a patient's eye without departing from the scope of this disclosure.


A scleral tunnel is formed in a patient's eye and a suture is placed through the scleral tunnel at step 1502. This could include, for example, using a tool with a curved cutting blade to form the scleral tunnel. This may also include pulling a suture through the scleral tunnel using the curved cutting blade. This may further include pulling a suture through the scleral tunnel after the curved cutting blade has completed the formation of the tunnel.


The suture is looped around a scleral prosthesis at step 1504. This could include, for example, placing loops at the end of a suture around one end of the scleral prosthesis (such as is done in FIGS. 8A through 8F). This could also include looping a suture around the central body portion of the scleral prosthesis (such as is done in FIGS. 9A through 9C). This step may also involve placing the suture through a threader tube.


The scleral prosthesis is inserted into the threader tube at step 1506. This could include, for example, inserting one end of the scleral prosthesis into the threader tube. Any suitable portion of the scleral prosthesis can be inserted into the threader tube, such as a portion that prevents premature ejection of the scleral prosthesis within the scleral tunnel.


The threader tube is inserted into the scleral tunnel at step 1508. This could include, for example, pushing the lower portion 906 of the threader tube into the scleral tunnel. This could also include pulling the threader tube into the scleral tunnel using the suture. This could further include using the rod 915 to open the scleral tunnel before the body of the threader tube is pulled into the scleral tunnel. The scleral prosthesis is pulled into the scleral tunnel at step 1510. This could include, for example, pulling the scleral prosthesis into its proper position within the scleral tunnel using the threader tube and the suture.


The scleral prosthesis is removed from the threader tube at step 1512, and the threader tube and the suture are removed at step 1514. This could include, for example, pulling the threader tube off the scleral prosthesis. This could also include pulling on one end of the suture to remove the suture from the scleral tunnel.


If necessary or desired, an insert can be placed between or around portions of the implanted scleral prosthesis at step 1516. This could include, for example, placing the insert between or around separated or divided portions of the scleral prosthesis to prevent rotation, flexing, ejection, or other movement by the scleral prosthesis.


Although FIG. 15 illustrates one example of a method 1500 for inserting a scleral prosthesis into a patient's eye, various changes may be made to FIG. 15. For example, any other suitable technique could be used to place a suture through the scleral tunnel. Also, any other suitable technique could be used to pull or push the scleral prosthesis into the scleral tunnel, including techniques omitting the use of a suture or rod.


It may be advantageous to set forth definitions of certain words and phrases used throughout this patent document. The terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation. The term “or” is inclusive, meaning and/or. The phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like.


While this disclosure has described certain embodiments and generally associated methods, alterations and permutations of these embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure, as defined by the following claims.

Claims
  • 1. A scleral prosthesis comprising: an elongated body configured to be implanted into scleral tissue of an eye, the elongated body comprising (i) opposing first and second free ends and (ii) multiple first portions that form the first end of the body and part of a remainder of the body between the first and second ends, the first and second ends wider than the remainder of the body;wherein the first portions of the body are separated lengthwise along a substantial portion of a total length of the elongated body by empty space such that the multiple first portions meet at a point between the first and second ends of the body and are not connected to each other between that point and the first end of the body;wherein the first end projects beyond one or more sides of the remainder of the body and angles back towards the second end; andwherein the second end projects beyond the one or more sides of the remainder of the body and angles back towards the first end.
  • 2. The scleral prosthesis of claim 1, wherein interior angles formed between the first and second ends and the remainder of the body are acute angles.
  • 3. The scleral prosthesis of claim 1, wherein interior corners formed by the first and second ends and the remainder of the body are rounded.
  • 4. The scleral prosthesis of claim 1, wherein: opposite sides of the first end project beyond opposite sides of the remainder of the body and angle back towards the second end; andopposite sides of the second end project beyond the opposite sides of the remainder of the body and angle back towards the first end.
  • 5. The scleral prosthesis of claim 1, wherein the body further comprises multiple second portions that form the second end of the body and another part of the remainder of the body.
  • 6. The scleral prosthesis of claim 5, wherein: the first portions of the body are separated along at least half of the total length of the body; andthe second portions of the body are separated along less than a quarter of the total length of the body.
  • 7. The scleral prosthesis of claim 1, wherein the second end of the body is integral with the remainder of the body and not divided into multiple separated portions.
  • 8. The scleral prosthesis of claim 1, wherein: the first portions of the body include a right first portion and a left first portion;the right first portion includes a first ridge extending inwardly from the right first portion towards the left first portion;the left first portion includes a second ridge extending inwardly from the left first portion towards the right first portion; andthe ridges are configured to engage with slots of an insert.
  • 9. The scleral prosthesis of claim 1, wherein the empty space tapers from a first larger width adjacent the first end to a smaller width and then expands to a second larger width adjacent the point where the first portions of the body meet.
  • 10. The scleral prosthesis of claim 1, wherein the body comprises at least one magnetic material.
  • 11. A system comprising: a scleral prosthesis comprising: an elongated body configured to be implanted into scleral tissue of an eye, the elongated body comprising (i) opposing first and second free ends and (ii) multiple first portions that form the first end of the body and part of a remainder of the body between the first and second ends, the first and second ends wider than the remainder of the body;wherein the first portions of the body are separated lengthwise along a substantial portion of a total length of the elongated body by empty space such that the multiple first portions meet at a point between the first and second ends of the body and are not connected to each other between that point and the first end of the body;wherein the first end projects beyond one or more sides of the remainder of the body and angles back towards the second end; andwherein the second end projects beyond the one or more sides of the remainder of the body and angles back towards the first end; andan insert configured to be placed between the first portions of the body.
  • 12. The system of claim 11, wherein: opposite sides of the first end project beyond opposite sides of the remainder of the body and angle back towards the second end; andopposite sides of the second end project beyond the opposite sides of the remainder of the body and angle back towards the first end.
  • 13. The system of claim 11, wherein the body further comprises multiple second portions that form the second end of the body and another part of the remainder of the body.
  • 14. The system of claim 13, wherein: the first portions of the body are separated along at least half of the total length of the body; andthe second portions of the body are separated along less than a quarter of the total length of the body.
  • 15. The system of claim 11, wherein the second end of the body is integral with the remainder of the body and not divided into multiple separated portions.
  • 16. The system of claim 11, wherein: the first portions of the body include a right first portion and a left first portion;the right first portion includes a first ridge extending inwardly from the right first portion towards the left first portion;the left first portion includes a second ridge extending inwardly from the left first portion towards the right first portion; andthe ridges are configured to engage with slots of the insert.
  • 17. The system of claim 11, wherein the empty space tapers from a first larger width adjacent the first end to a smaller width and then expands to a second larger width adjacent the point where the first portions of the body meet.
  • 18. The system of claim 11, wherein the insert tapers from a first larger width configured to be placed adjacent the first end to a smaller width and then expands to a second larger width configured to be placed adjacent the point where the first portions of the body meet.
  • 19. The system of claim 11, wherein at least one of the body and the insert comprises at least one magnetic material.
  • 20. A method comprising: obtaining a scleral prosthesis having an elongated body configured to be implanted into scleral tissue of an eye, the elongated body comprising (i) opposing first and second free ends and (ii) multiple first portions that form the first end of the body and part of a remainder of the body between the first and second ends, the first and second ends wider than the remainder of the body; wherein the first portions of the body are separated lengthwise along a substantial portion of a total length of the elongated body by empty space such that the multiple first portions meet at a point between the first and second ends of the body and are not connected to each other between that point and the first end of the body;wherein the first end projects beyond one or more sides of the remainder of the body and angles back towards the second end; andwherein the second end projects beyond the one or more sides of the remainder of the body and angles back towards the first end; andplacing an insert between the first portions of the body.
CROSS-REFERENCE TO RELATED PATENT DOCUMENTS AND PRIORITY CLAIM

This application is a continuation of U.S. patent application Ser. No. 14/975,152 filed on Dec. 18, 2015, which claims priority under 35 U.S.C. §120 as a continuation of U.S. patent application Ser. No. 14/570,630 filed on Dec. 15, 2014, which claims priority under 35 U.S.C. §120 as a continuation of U.S. patent application Ser. No. 13/654,249 filed on Oct. 17, 2012 (now U.S. Pat. No. 8,911,496), which claims priority under 35 U.S.C. §120 as a continuation-in-part of U.S. patent application Ser. No. 11/827,382 filed on Jul. 11, 2007 (now U.S. Pat. No. 8,409,277), which claims priority to U.S. Provisional patent application No. 60/819,995 filed on Jul. 11, 2006. All of these applications are hereby incorporated by reference. This application is related to the following U.S. patent applications and issued patents: (1) U.S. Pat. No. 6,007,578 entitled “Scleral Prosthesis for Treatment of Presbyopia and Other Eye Disorders” issued on Dec. 28, 1999;(2) U.S. Pat. No. 6,280,468 entitled “Scleral Prosthesis for Treatment of Presbyopia and Other Eye Disorders” issued on Aug. 28, 2001;(3) U.S. Pat. No. 6,299,640 entitled “Scleral Prosthesis for Treatment of Presbyopia and Other Eye Disorders” issued on Oct. 9, 2001;(4) U.S. Pat. No. 5,354,331 entitled “Treatment of Presbyopia and Other Eye Disorders” issued on Oct. 11, 1994;(5) U.S. Pat. No. 5,465,737 entitled “Treatment of Presbyopia and Other Eye Disorders” issued on Nov. 14, 1995;(6) U.S. Pat. No. 5,489,299 entitled “Treatment of Presbyopia and Other Eye Disorders” issued on Feb. 6, 1996;(7) U.S. Pat. No. 5,503,165 entitled “Treatment of Presbyopia and Other Eye Disorders” issued on Apr. 2, 1996;(8) U.S. Pat. No. 5,529,076 entitled “Treatment of Presbyopia and Other Eye Disorders” issued on Jun. 25, 1996;(9) U.S. Pat. No. 5,722,952 entitled “Treatment of Presbyopia and Other Eye Disorders” issued on Mar. 3, 1998;(10) U.S. Pat. No. 6,197,056 entitled “Segmented Scleral Band for Treatment of Presbyopia and Other Eye Disorders” issued on Mar. 6, 2001;(11) U.S. Pat. No. 6,579,316 entitled “Segmented Scleral Band for Treatment of Presbyopia and Other Eye Disorders” issued on Jun. 17, 2003;(12) U.S. Pat. No. 6,926,727 entitled “Surgical Blade for Use with a Surgical Tool for Making Incisions for Scleral Eye Implants” issued on Aug. 9, 2005;(13) U.S. Pat. No. 6,991,650 entitled “Scleral Expansion Device Having Duck Bill” issued on Jan. 31, 2006;(14) U.S. Pat. No. 7,189,248 entitled “System and Method for Making Incisions for Scleral Eye Implants” issued on Mar. 13, 2007;(15) U.S. Pat. No. 7,909,780 entitled “System and Method for Determining a Position for a Scleral Pocket for a Scleral Prosthesis” issued on Mar. 22, 2011;(16) U.S. Pat. No. 7,785,367 entitled “Scleral Prosthesis for Treatment of Presbyopia and Other Eye Disorders” issued on Aug. 31, 2010;(17) U.S. patent application Ser. No. 11/199,591 entitled “Surgical Blade for Use with a Surgical Tool for Making Incisions for Scleral Eye Implants” filed on Aug. 8, 2005 (now U.S. Pat. No. 8,361,098);(18) U.S. patent application Ser. No. 11/252,369 entitled “Scleral Expansion Device Having Duck Bill” filed on Oct. 17, 2005;(19) U.S. patent application Ser. No. 11/323,283 entitled “Surgical Blade for Use with a Surgical Tool for Making Incisions for Scleral Eye Implants” filed on Dec. 30, 2005 (now U.S. Pat. No. 8,500,767);(20) U.S. Pat. No. 7,824,423 entitled “System and Method for Making Incisions for Scleral Eye Implants” issued on Nov. 2, 2010;(21) U.S. patent application Ser. No. 11/322,728 entitled “Segmented Scleral Band for Treatment of Presbyopia and Other Eye Disorders” filed on Dec. 30, 2005 (now U.S. Pat. No. 8,663,205); and(22) U.S. patent application Ser. No. 11/323,752 entitled “Segmented Scleral Band for Treatment of Presbyopia and Other Eye Disorders” filed on Dec. 30, 2005 (now U.S. Pat. No. 8,663,206). All of these U.S. patents and patent applications are hereby incorporated by reference.

US Referenced Citations (242)
Number Name Date Kind
2952023 Rosen Sep 1960 A
3064643 Dixon Nov 1962 A
3454966 Rosen Jul 1969 A
3884236 Krasnov May 1975 A
3996935 Banko Dec 1976 A
4014335 Arnold Mar 1977 A
4174389 Cope Nov 1979 A
4349027 DiFrancesco Sep 1982 A
4391275 Fankhauser et al. Jul 1983 A
4439198 Brightman, II et al. Mar 1984 A
4452235 Reynolds Jun 1984 A
4521210 Wong Jun 1985 A
4549529 White Oct 1985 A
4603697 Kamerling Aug 1986 A
4782820 Woods Nov 1988 A
4839342 Kaswan Jun 1989 A
4846172 Berlin Jul 1989 A
4852566 Callahan et al. Aug 1989 A
4863457 Lee Sep 1989 A
4907586 Bille et al. Mar 1990 A
4923699 Kaufman May 1990 A
4946436 Smith Aug 1990 A
4961744 Kilmer et al. Oct 1990 A
4966452 Shields et al. Oct 1990 A
4976719 Siepser Dec 1990 A
5009660 Clapham Apr 1991 A
5022413 Spina, Jr. et al. Jun 1991 A
5025811 Dobrogowski et al. Jun 1991 A
5098443 Parel et al. Mar 1992 A
5109846 Thomas May 1992 A
5146933 Boyd Sep 1992 A
5152759 Parel et al. Oct 1992 A
5152760 Latina Oct 1992 A
5163419 Goldman Nov 1992 A
5174304 Latina et al. Dec 1992 A
5181922 Blumenkanz et al. Jan 1993 A
5267553 Graether Dec 1993 A
5292514 Capecchi et al. Mar 1994 A
5300114 Gwon et al. Apr 1994 A
5300144 Adams Apr 1994 A
5312394 Beckman May 1994 A
5323788 Silvestrini et al. Jun 1994 A
5354331 Schachar Oct 1994 A
5370607 Memmen Dec 1994 A
5372595 Gaasterland et al. Dec 1994 A
5439462 Bille et al. Aug 1995 A
5443505 Wong et al. Aug 1995 A
5459133 Neufeld Oct 1995 A
5465737 Schachar Nov 1995 A
5472436 Fremstad Dec 1995 A
5476511 Gwon et al. Dec 1995 A
5488050 Neufeld Jan 1996 A
5489299 Schachar Feb 1996 A
5503165 Schachar Apr 1996 A
5520631 Nordquist et al. May 1996 A
5529076 Schachar Jun 1996 A
5558630 Fisher Sep 1996 A
RE35390 Smith Dec 1996 E
5693092 Silvestrini et al. Dec 1997 A
5697923 Poler Dec 1997 A
5707643 Ogura et al. Jan 1998 A
5722952 Schachar Mar 1998 A
5731909 Schachar Mar 1998 A
5743274 Peyman Apr 1998 A
5766242 Wong et al. Jun 1998 A
5772675 Hellenkamp Jun 1998 A
5774274 Schachar Jun 1998 A
5782894 Israel Jul 1998 A
5824073 Peyman Oct 1998 A
5824086 Silvestrini Oct 1998 A
RE35974 Davenport et al. Dec 1998 E
5846256 Mathis et al. Dec 1998 A
5855604 Lee Jan 1999 A
5879319 Pynson et al. Mar 1999 A
5888243 Silverstrini Mar 1999 A
5919228 Hennig Jul 1999 A
5944752 Silvestrini Aug 1999 A
5956126 Cody Sep 1999 A
5964748 Peyman Oct 1999 A
6007578 Schachar Dec 1999 A
6042594 Hellenkamp Mar 2000 A
6053909 Shadduck Apr 2000 A
6126687 Peyman Oct 2000 A
6164282 Gwon et al. Dec 2000 A
6171337 Galin Jan 2001 B1
6197056 Schachar Mar 2001 B1
6206919 Lee Mar 2001 B1
6217571 Peyman Apr 2001 B1
6235046 Gerdt May 2001 B1
6254594 Berry Jul 2001 B1
6254597 Rizoiu et al. Jul 2001 B1
6258082 Lin Jul 2001 B1
6263879 Lin Jul 2001 B1
6280468 Schachar Aug 2001 B1
6282449 Kamerling et al. Aug 2001 B1
6291466 Gwon et al. Sep 2001 B1
6299640 Schachar Oct 2001 B1
6302877 Ruiz Oct 2001 B1
6306075 Shadduck Oct 2001 B1
6387107 Hellenkamp May 2002 B1
6410544 Gwon et al. Jun 2002 B1
6450984 Lynch et al. Sep 2002 B1
6464724 Lynch et al. Oct 2002 B1
6491688 Lin et al. Dec 2002 B1
6494910 Ganam et al. Dec 2002 B1
6510600 Yaron et al. Jan 2003 B2
6511508 Shahinpoor et al. Jan 2003 B1
6517555 Caro Feb 2003 B1
6524275 Lynch et al. Feb 2003 B1
6527780 Wallace et al. Mar 2003 B1
6547714 Dailey Apr 2003 B1
6626858 Lynch et al. Sep 2003 B2
6669685 Rizoiu et al. Dec 2003 B1
6673111 Baikoff Jan 2004 B2
6679855 Horn et al. Jan 2004 B2
6682560 Baikoff Jan 2004 B1
6692524 Baikoff Feb 2004 B2
6712847 Baikoff et al. Mar 2004 B2
6719750 Varner et al. Apr 2004 B2
6726664 Yaron et al. Apr 2004 B2
6730056 Ghaem et al. May 2004 B1
6745775 Lin Jun 2004 B2
6764511 Zadno-Azizi et al. Jul 2004 B2
6780164 Bergheim et al. Aug 2004 B2
6783544 Lynch et al. Aug 2004 B2
6824540 Lin Nov 2004 B1
6827699 Lynch et al. Dec 2004 B2
6827700 Lynch et al. Dec 2004 B2
6843787 Ruiz Jan 2005 B2
6923955 Till et al. Aug 2005 B2
7037335 Freeman et al. May 2006 B2
7044945 Sand May 2006 B2
7060094 Shahinpoor et al. Jun 2006 B2
7090696 Shahinpoor et al. Aug 2006 B2
7252662 McArdle et al. Aug 2007 B2
7275545 Lin Oct 2007 B2
7282046 Simon Oct 2007 B2
7338506 Caro Mar 2008 B2
7458380 Jones et al. Dec 2008 B2
7461658 Jones et al. Dec 2008 B2
7470286 Tyler Dec 2008 B2
7628809 Tyler Dec 2009 B2
7635388 Tyler Dec 2009 B1
7665467 Jones et al. Feb 2010 B2
7704278 Roberts et al. Apr 2010 B2
7736389 Damiano Jun 2010 B1
7753916 Weber et al. Jul 2010 B2
7862531 Yaron et al. Jan 2011 B2
8167938 Damiano May 2012 B1
8409277 Griffs, III et al. Apr 2013 B2
20010029363 Lin Oct 2001 A1
20020010509 Schachar Jan 2002 A1
20020025311 Till Feb 2002 A1
20020026239 Schachar Feb 2002 A1
20020103481 Webb et al. Aug 2002 A1
20020120285 Schachar et al. Aug 2002 A1
20020123804 Gwon et al. Sep 2002 A1
20020138139 Till Sep 2002 A1
20020161365 Martins Oct 2002 A1
20020173777 Sand Nov 2002 A1
20030028228 Sand Feb 2003 A1
20030033015 Zhou et al. Feb 2003 A1
20030038920 Lin Feb 2003 A1
20030105456 Lin Jun 2003 A1
20030139737 Lin Jul 2003 A1
20030220630 Lin et al. Nov 2003 A1
20040002756 Baikoff et al. Jan 2004 A1
20040015140 Shields Jan 2004 A1
20040024453 Castillejos Feb 2004 A1
20040030269 Horn et al. Feb 2004 A1
20040054374 Weber et al. Mar 2004 A1
20040068256 Rizoiu et al. Apr 2004 A1
20040078009 Lin Apr 2004 A1
20040078030 Lin Apr 2004 A1
20040098124 Freeman et al. May 2004 A1
20040098125 Freeman et al. May 2004 A1
20040098126 Freeman et al. May 2004 A1
20040193262 Shadduck Sep 2004 A1
20040254641 Waldock Dec 2004 A1
20040260341 Hays Dec 2004 A1
20040260395 Boxer Wachler Dec 2004 A1
20040267294 Will Dec 2004 A1
20050043722 Lin Feb 2005 A1
20050112113 Till et al. May 2005 A1
20050177229 Boxer Wachler Aug 2005 A1
20050181018 Peyman Aug 2005 A1
20050197697 Baikoff et al. Sep 2005 A1
20050205101 Lin Sep 2005 A1
20050241653 Van Heugten et al. Nov 2005 A1
20050279369 Lin Dec 2005 A1
20050283233 Schachar Dec 2005 A1
20060004386 Caro Jan 2006 A1
20060004387 Caro Jan 2006 A1
20060074487 Gilg Apr 2006 A1
20060110429 Reiff et al. May 2006 A1
20060116759 Thornton et al. Jun 2006 A1
20060116760 Thornton et al. Jun 2006 A1
20060129129 Smith Jun 2006 A1
20060129141 Lin Jun 2006 A1
20060182781 Hughes et al. Aug 2006 A1
20060224146 Lin Oct 2006 A1
20060241650 Weber et al. Oct 2006 A1
20060241750 Zdenek et al. Oct 2006 A1
20060253111 Van Valen Nov 2006 A1
20060259021 Lin Nov 2006 A1
20070005046 Lin Jan 2007 A1
20070016176 Boutoussov et al. Jan 2007 A1
20070027537 Castillejos Feb 2007 A1
20070055220 Lin et al. Mar 2007 A1
20070073324 Baikoff Mar 2007 A1
20070088352 Rosen Apr 2007 A1
20070106376 Robert et al. May 2007 A1
20070162116 Baikoff Jul 2007 A1
20070173794 Frey et al. Jul 2007 A1
20070178062 Ravi et al. Aug 2007 A1
20070185475 Frey et al. Aug 2007 A1
20070203478 Herekar Aug 2007 A1
20070219632 Castillejos Sep 2007 A1
20070235043 Baikoff Oct 2007 A1
20070260306 Waldock Nov 2007 A1
20070276481 Renner et al. Nov 2007 A1
20070299430 McArdle et al. Dec 2007 A1
20080033409 Jones et al. Feb 2008 A1
20080065053 Jones et al. Mar 2008 A1
20080065054 Van Valen Mar 2008 A1
20080097416 Jones et al. Apr 2008 A1
20080097417 Jones et al. Apr 2008 A1
20080097418 Jones et al. Apr 2008 A1
20080107712 Shiah et al. May 2008 A1
20080125676 Valen May 2008 A1
20080125677 Valen May 2008 A1
20080139990 Till et al. Jun 2008 A1
20080177383 Shahinpoor et al. Jul 2008 A1
20090018650 Boxer Wachler Jan 2009 A1
20090062780 Jones et al. Mar 2009 A1
20090099654 Griffis, III et al. Apr 2009 A1
20090105817 Bretthauer et al. Apr 2009 A1
20090118719 Jones et al. May 2009 A1
20090306687 Yen et al. Dec 2009 A1
20100049176 Tyler Feb 2010 A1
20100113535 Ravi et al. May 2010 A1
20130103143 Jacobson et al. Apr 2013 A1
Foreign Referenced Citations (57)
Number Date Country
1043257 Jun 1990 CN
42 32 021 Apr 1994 DE
0 083 494 Jul 1983 EP
0 262 893 Apr 1988 EP
0 336 065 Oct 1989 EP
1 099 432 May 2001 EP
1 525 860 Apr 2005 EP
1 545 399 Jun 2005 EP
1 604 697 Dec 2005 EP
2 784 287 Apr 2000 FR
2 791 552 Oct 2000 FR
2838955 Oct 2003 FR
1456746 Nov 1976 GB
2002-527142 Aug 2002 JP
2003-501140 Jan 2003 JP
65893 Aug 1993 SG
1538914 Jan 1990 SU
1597188 Oct 1990 SU
82609 Nov 1986 TW
128961 Apr 1995 TW
WO 8909034 Oct 1989 WO
WO 9114406 Oct 1991 WO
WO 9402084 Feb 1994 WO
WO 9403129 Feb 1994 WO
WO 9406381 Mar 1994 WO
WO 9406504 Mar 1994 WO
WO 9407424 Apr 1994 WO
WO 9418921 Sep 1994 WO
WO 9503755 Feb 1995 WO
WO 9515120 Jun 1995 WO
WO 9528984 Nov 1995 WO
WO 9640005 Dec 1996 WO
WO 9842409 Oct 1998 WO
WO 9917684 Apr 1999 WO
WO 9917691 Apr 1999 WO
WO 9930645 Jun 1999 WO
WO 9930656 Jun 1999 WO
WO 0021466 Apr 2000 WO
WO 0025703 May 2000 WO
WO 0040174 Jul 2000 WO
WO 0056255 Sep 2000 WO
WO 0059406 Oct 2000 WO
WO 0074600 Dec 2000 WO
WO 0117460 Mar 2001 WO
WO 0145607 Jun 2001 WO
WO 0182815 Nov 2001 WO
WO 03009784 Feb 2003 WO
WO 2004028409 Apr 2004 WO
WO 2005070034 Aug 2005 WO
WO 2006014484 Feb 2006 WO
WO 2006025806 Mar 2006 WO
WO 2006057859 Jun 2006 WO
WO 2007020184 Feb 2007 WO
WO 2007051345 May 2007 WO
WO 2008090225 Jul 2008 WO
984634 Feb 1999 ZA
989149 Jun 1999 ZA
Non-Patent Literature Citations (114)
Entry
Schachar, “Cause and Treatment of Presbyopia With a Method for Increasing the Amplitude of Accommodation,” Ann Ophthalmol, 24: 445-452 (1992).
Schachar, et al., “Mathematic Proof of Schachar's Hypothesis of Accommodation,” Ann Ophthalmol, 25: 5-9 (1993).
Schachar, et al., Experimental Support for Schachar's Hypothesis of Accommodation, Ann Ophthalmol 25: 404-409 (1993).
Schachar, et al., “A Physical Model Demonstrating Schachar's Hypothesis of Accommocation,” Ann Ophthalmol 26:4-9 (1994).
Schachar, “Zonular Function: A New Hypothesis with Clinical Implications,” Ann Ophthalmol 26: 36-38 (1994).
Schachar, et al., “The Effect of Gravity on the Amplitude of Accommodation,” Ann Ophthalmol 26: 65-70 (1994).
Schachar, et al., “The Mechanism of Accommodation and Presbyopia in the Primate,” Ann Ophthalmol 27:58-67 (1995).
Schachar, et al., “The Mechanism of Ciliary Muscle Function,” Ann Ophthalmol 27:126-132 (1995).
Schachar, “Histology of the Ciliary Muscle-Zonular Connections,” Ann Ophthalmol 28:70-79 (1996).
Schachar, et al., “Equatorial Diameter During Accommodation,” American Physiological Society R670-R676 (1996).
Yee, et al., “Scleral Expansion: New Surgical Technique to Correct Presbyopia,” Investigative Ophthalmology & Visual Science, vol. 30(4), 5 (1997).
Glasser, et al., “Presbyopia and the Optical Changes in the Human Crystalline Lens with Age,” Vision Res., 38:209-229 (1998).
Schachar, “Pathophysiology of Accommodation and Presbyopia,” J. Florida M.A. 81:268-271 (1994).
Schachar, et al., “A Revolutionary Variable Focus Lens,” Annals of Ophthalmology, 2811-18 (1996).
Adler-Grinberg, “Quesioning Our Classical Understanding of Accommodation and Presbyopia,” Am. J. Optometry & Physiological Optics, 63(7) 571-580 (1986).
Omi, et al., “Modified Schochet Implant for Refractory Glaucoma,” Ophthalmology 98:211-214 (1991).
Arons, “LASIK and PRK climincal results are hot topics at the RSIG and ISRS meetings,” Ocular Surgery News, http://www.slackline.com/eve/osn/19901a/lasik/asp, Jan. 1, 1999.
Atchison, “Accommodation and Presbyopia,” Ophthal Physiol. Opt. 15 (4):255-272 (1995).
Bernatchez, et al., “Biocompatibility of a new semisolid bioerodable poly(orth ester) intended to the ocular delivery of 5-fluorouracil,” J. Biomedical Materials Research, 28:1037-1046 (1994).
Billson, et al., “Resiting Molteno Implant Tubes,” Ophthalmic Surgery and Lasers, 27:801-803 (1996).
Brockhurst, “Dystrophic Calcification of Silicone Scleral Buckling Implant Materials,” Am. J. Ophthalmol, 115:524-529 (1993).
Brouillette, et al., “Long-term results of modified trabeculectomy with Supramid implant for neovascular glaucoma,” Can. J. Ophthalmol, 22(5):254-256 (1987).
Cameron, et al., “Clinico-histophatholigic Correlation of a Successful Glaucoma Pump-shunt Iplant,” Ophthalmology, 95:1189-1194 (1988).
Campbell, et al., “Fluctuations of Accommodation Under Steady Viewing Conditions,” J. Physiol., 145:579-594 (1959).
Coleman, et al., “Initial Clinical Experience with the Ahmed Glaucoma Implant,” Am. J. Ophth. 120:23-31 (1995).
Coleman, et al., “Clinical Experience with the Ahmed Glaucoma Valve Implant in Eyes with prior or Current Penetrating Keratoplasties,” Am. J. Ophth., 123:54-61 (1997).
Colosi, et al., “Intrusion of Scleral Implant Associated with Conjunctival Epithelial ingrowth,” Am. J. Ophthalmol, 83:504-507 (1997).
Coltair, et al., “Scleral pocket incision applied to insertion of the nut and bolt keratoprosthesis,” J. Cataract Refract. Surg., 16:649-651 (1990).
Crucea, et al., “Artificial draininge devices in glaucoma” Optalmologia, 47(2):5-10, abstract only (1999).
Daniele, et al., “Gelatin as an Absorbable Implant in Scleral Buckling Procedured,” Arch Ophthal, 80:115-119 (1968).
Elander, “Scleral Expansion Surgery does not restore accommodatino in human presbyopia,” J. Refract. Surg., 15(5):604 (1999).
Ellis, “Surgical Conquest of presbyopia; Are There Implications for Cataract and Glaucoma,” Refractive Surgery, 38-44 (1999).
El-Sayyad, “The Use of Releasable Sutures in Molteno Glaucoma Implants to Reduce Postoperative Hypotony,” Ophthalmic Surgery, 22:82-84 (1991).
Girard, et al., “Scleral fixation of a subluxated posterior chamber intraocular lens,” J. Cataract Refract. Surg., 14:326-327 (1988).
Hashizoe, et al., “Implantable biodegradable polymeric device in the treatment of experimental proliferative viteoretinopathy,” Curr. Eye Res., 14(6):473-477 (1995).
Hashizoe, et al., “Scleral plug of biodegradable polymers for controlled drug release in the vitreous,” Arch. Ophthalmol., 112(10):1380-1384 (1994).
Hashizoe, et al., “Biodetgradable polymeric devices for sustained intravitreal release of glanciclovir in rabbits,” Current Eye Research, 112(10): 633-339 (1997).
Hasty, et al., “Primate Trabeculectomies with 5-fluorouracil Collagen Implants,” Am. J. Ophthalmol, 109:721-725 (1990).
Hilton, et al., “The Removal of Scleral Buckles,” Arch Ophthalmol, 96:2061-2063 (1978).
Ho, et al., “The MAI hydrophilic implant for scleral buckling: a view,” Ophthalmic Surg., (6):611-5 (1984).
Jacklin, et al., “Gelatin as an Absorbable Implant in Scleral Buckling Procedure,” Arch. Ophthalmol, 79:286-289 (1968).
Jacob, et al., “Synthetic scleral reinforcement materials. II Collagen types in the fibrous capsure,” J. Biomedical Materials Research, 32:181-186 (1966).
Krupin, et al., “Filtering Valve Implant Surgery for Eyes with Neovascular Glaucoma,” Am. J. Ophthalmol, 89:338-343 (1980).
Krupin, et al., “Long-Term Results of Valve Implants in Filtering Surgery Eyes with Neovascular Glaucoma,” Am. J. Ophthalmol, 95:775-782 (1983).
Krupin, et al., “A Long Krupin-Denver Valve Implant Attached to a 180 Scleral Explant for Glaucoma Surgery,” Ophthalmol, 95:1174-1180 (1988).
Kimura, et al., “A new Vitreal Drug Delivery System Using an Implantable Biodegradable Polymeric Device,” Investigative Ophthalmol and Visual Science, 35:2815-2819 (1994).
King, et al., “Gelatin Implants in Scleral Buckling Procedures,” Arch. Ophthalmol., 93:807-811 (1975).
Lambert, et al., “Wedge Implant Used as an Explant,” Am. J. Ophthalmol., 101:488-489 (1986).
Lambert, et al., “A New Alloplastic Material for Opthalmic Surgery,” Ophthalmic Surgery, 9:35-42 (1978).
Law, et al., “Retinal Complications after Aqueous Shunt Surgical Procedures for Glaucoma,” Arch Ophthalmol, 114:1473-1480 (1996).
Levit, et al., “Use of Ophthalmic Gelfilm in retinal Surgery,” Ann. Ophthalmol, 1613-1616 (Dec. 1975).
Lipner, “A Closer Look at Scleral Surgery,” Eyeworld (Sep. 13, 1999) http://www.eyeworld.org/sep99/999p34.asp.
Lincoff, et al., “The Changing Character of the Infected Scleral Implant,” Arch. Ophthalmol, 84:421 et seq (1970).
Liu, et al., “Scleral Buckling with a Soft Xerogel Implant: II Experiments in Vivo,” Ophthalmic Surgery, 10:52-56 (1979).
Lloyd, et al., “Initial Clinical Experience with Baeveldt Implant in Complicated Glaucomas,” Ophthalmology, 101:650-640 (1994).
Luttrull, et al., “Pars Plana Implant and Vitrectomy for Treatment of Neovascular Glaucoma,” Retina, 15:379-387 (1995).
Luttrull, et al., “Initial Experience with Pneumatically Stented baerveldt implant modifiedfor Pars Plana Insertion in Complicated Glaucoma,” Ophthalmology, 107:143-149 (2000).
Marin, et al., “Long-term Complications of the MAI Hydrogel Intrascleral Buckling Implant,” Arch. Ophthalmol, 110:86-88 (1992).
Matthews, et al., Scleral Expansion Surgery Does Not Restore Accommodation in Human Presbyopia, Ophthalmology, 106:873-877 (1999).
Melamed, et al., “Molteno Implant Surgery in Refractory Glaucoma,” Survey of Ophthalmology, 34:441-448 (1990).
Minckler, et al., Clinical Experience with the Single-plate Molteno Implant in Complicated Glaucomas, Ophthalmology 95:1181-1188 (1988).
Miyamoto, et al., “Biodegradable Scleral Implant for Controlled Release of Flocanazole,” Current Eye Research, 16:930-935 (1997).
Ocular Surgery News, “Presbyopia Reversible in Pilot Studies,” Jul. 1, 1999; http://www.slackinc.com/eve/osn/199907a/presby.asp.
Peiffer, et al., “Long-term Comparative Study of the Schochet and Joseph Glaucoma Tube Shunts in Monkeys,” Ophthalmic Surgery, 21:55-59 (1990).
Pruett, “The Fishmouth Phenomenon,” Ach. Ophthalmol, 95:1777-181 (1977).
Rabowsky, et al., “The Use of Bioerodeable Polymers and Daunarubicin in Glaucoma Filtration Surgery,” Ophthalmology, 103:800-807 (1996).
Ray, et al., “Gelatin Implants in Scleral Buckling Procedures,” Arch Ophthalmol, 93:799-802 (1975).
Refojo, “Polymers in Ophthalmic Surgery,” J. Biomed. Mater. Res., 5:113-119 (1971).
Refojo, et al., “Experimental Scleral Buckling with a Soft Xerogel Implant,” Ophthalmic Surgery, 9:43-50 (1978).
Riggs, et al., “Intraocular Silicone Prostheses in a Dog and a Horse with Corneal Lacerations,” J. Am. Vet. Med. Assoc., 196:617-619 (1990).
Rohr, et al., “Surgical Correction of Presbyopia,” J. Osteopathic College of Ophthalomology and Otohinolaryngology, 12:34-36 (2000).
Rubsamen, et al., “Prevention of Experimental Poliferative Vitreoretinopathy with a Biodegradable Intravitreal Implant for the Sustained Release of Fluoroacil,” Arch. Ophthalmol, 112:407-413 (1994).
Sakamoto, et al., “Silicone Sponge Implant in Combination with Episcleral Implant for Retinal Surgery,” Ophthalmic Surgery, 11:712-718 (1980).
Sarkies, et al., “Silicone Tube and Gutter in Advanced Glaucoma,” Trans. Ophthalmol, Soc. U.K., 144:133-136 (1985).
Schepens, et al., “Scleral Implants: An Historic Perspective,” Survey of Ophthalmology, 35:447-453 (1991).
Sherwood, et al., “Surgery for Refractory Glaucoma,” Arch. Ophthalmol, 105:562-569 (1987).
Sidoti, et al., “Epithelial Ingrowth and Glaucoma Drainage Implants,” Ophthalmol, 101:872-875 (1994).
Sidoti, et al., “Aqueous Tube Shunt to a Pre-existing Episcleral Encircling Element in the Treatment of Complicated Glaucomas,” Ophthalmol, 101:1036-1043 (1994).
Smith, et al., “One-year results of the intrascleral glaucoma implant,” J Cataract Refract. Surg., 21:453-456 (1995).
Banuelos et al., “Expandable Silicone Implants for Scleral Buckling,” Arch Ophthalmol, 89:500-502 (1973).
Smith, et al., “Comparison of the Double-Plate Molteno Drainage Implant with the Schochet Procedure,” Arch. Ophthalmol, 110:1246-1250 (1992).
Speigel, et al., “Anterior Chamber Tube Shunt to an Encircling Band (Schochet procedure) in the Treatment of Refractory Glaucoma,” Ophthalmic Surgery, 12:804-807 (1992).
Strubble, et al., “In vitro low characteristics of the Amhed and self-constructed anterior chamber shunts,” Am. J. Vet. Res., 58:1332-1337 (1997).
Sveinsson, et al., “Trabeulectomy and gelatin implants,” Acta Ophthalmologica, 70:645-650 (1992).
Susanna, “Modifications of the Molteno Implants and implant Procedure,” Ophthalmic Surgery, 22:611-613 (1991).
Szymanski, “Scleral free auto-implant plug with mitomycin as limitation of trepanosclerectomy flow in glaucoma filtering surgery,” International Ophthalmology, 20:89-94 (1997).
Tanji, et al., “Fascia Lata patch Graft in Glaucoma Tube Surgery,” Ophthalmology, 103:1309-1312 (1996).
Tawakol, et al., “Gore-Tex Soft Tissue Bands as Scleral Explants in Rabbits: A Preliminary Histologic Study,” Ophthalmic Surgery, 20:199-201 (1989).
Watzke, “Scleral Patch Graft for Exposed Episcleral Implants,” Arch Ophthalmol, 102:114-115 (1984).
Wilson, et al., “New hope for presbyopia: PMMA scleral bands show primise,” Eyeworld, (1999); http://www.eyeworld.org/apr98/963.html.
Wilson, et al., “Aqueous Shunts—Molteni versus Schocket,” Ophthalmology, 99:672-678 (1992).
Wilson-Holt, et al., “Hypertrophy flowing insertion of inferiorly sited double-plate Molteno tubes,” Eye, (Pt. 5): 515-20 (1992).
Yoshizumi, “Exposure of Intrascleral Implants,” Ophthalmology, 87:1150-1154 (1980).
Yoshizumi, “Erosion of Implants in Retinal Detachment Surgery,” Annals of Ophthalmology, 87:430-434 (1983).
Office Action dated Apr. 13, 2012 in connection with Japanese Patent Application No. 2009-519506, 10 pages.
European Search Report dated May 7, 2012 in connection with European Patent Application No. EP 12 15 8541, 6 pages.
Office Action dated Apr. 15, 2008 in connection with Canadian Patent Application No. 2,274,260, 3 pages.
Annex to Form PCT/ISA/206 Communication Relating to the Results of the Partial International Search dated Apr. 10, 2008 in PCT Application No. PCT/US2007/015774.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Nov. 7, 2008 in connection with PCT Application No. PCT/US2007/015774.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Mar. 18, 2009 in connection with PCT Application No. PCT/US2007/015816.
Spencer P. Thornton, “Anterior Ciliary Sclerotomy (ACS), a Procedure to Reverse Presbyopia”, Surgery for Hyperopia and Presbyopia, 1997, pp. 33-36.
European Search Report dated Jul. 18, 2008 in connection with European Patent Application No. 06 00 7630, 7 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jan. 29, 2014 in connection with PCT Application No. PCT/US2013/065370.
“Drug and Gene Delivery to the Back of the Eye: From Bench to Bedside”, ARVO Eye Research Conference 2012, Jun. 15-16, 2012, 43 pages.
Non-Final Office Action dated Apr. 11, 2014 in connection with U.S. Appl. No. 13/654,249; 17 pages.
Non-Final Office Action dated Aug. 16, 2010 in connection with U.S. Appl. No. 11/827,382; 11 pages.
Final Office Action dated Feb. 22, 2011 in connection with U.S. Appl. No. 11/827,382; 14 pages.
Non-Final Office Action dated Apr. 24, 2012 in connection with U.S. Appl. No. 11/827,382; 14 pages.
Final Office Action dated Aug. 13, 2012 in connection with U.S. Appl. No. 11/827,382; 12 pages.
Non-Final Office Action dated Dec. 2, 2014 in connection with U.S. Appl. No. 14/133,453; 19 pages.
Final Office Action dated May 7, 2015 in connection with U.S. Appl. No. 14/133,453; 18 pages.
Office Action dated Nov. 10, 2015 in connection with Canadian Patent Application No. 2,908,298.
Harry R.A. Jacobson, et al., “Scleral Prosthesis for Treating Presbyopia and Other Eye Disorders and Related Devices and Methods”, U.S. Appl. No. 14/975,205, filed Dec. 18, 2015.
Harry R.A. Jacobson, et al., “Scleral Prosthesis for Treating Presbyopia and Other Eye Disorders and Related Devices and Methods”, U.S. Appl. No. 14/974,777, filed Dec. 18, 2015.
Related Publications (1)
Number Date Country
20170035559 A1 Feb 2017 US
Provisional Applications (1)
Number Date Country
60819995 Jul 2006 US
Continuations (3)
Number Date Country
Parent 14975152 Dec 2015 US
Child 15331793 US
Parent 14570630 Dec 2014 US
Child 14975152 US
Parent 13654249 Oct 2012 US
Child 14570630 US
Continuation in Parts (1)
Number Date Country
Parent 11827382 Jul 2007 US
Child 13654249 US