Scouring method

Information

  • Patent Grant
  • 8048306
  • Patent Number
    8,048,306
  • Date Filed
    Thursday, December 22, 2005
    19 years ago
  • Date Issued
    Tuesday, November 1, 2011
    13 years ago
Abstract
A method and apparatus for removing fouling materials from the surface of a plurality of porous membranes (9) arranged in a membrane module (4) by providing, from within the module, by means (10) other than gas passing through the pores of said membranes, gas bubbles in a uniform distribution relative to the porous membrane array such that the bubbles move past the surfaces of the membranes (9) to dislodge fouling materials therefrom. The membranes (9) are arranged in close proximity to one another and mounted to prevent excessive movement therebetween. The bubbles also produce vibration and rubbing together of the membranes to further assist removal of fouling materials.
Description
FIELD OF THE INVENTION

The present invention relates to the use of a gas bubble system to remove fouling materials from the surface of membranes used in filtration systems and the like.


BACKGROUND OF THE INVENTION

A variety of membrane filtration systems are known and many of these use pressurised systems operating at high transmembrane pressures (TMP) to produce effective filtering and high filtrate flux. These systems are highly effective but are also expensive to produce, operate and maintain. Simpler systems using membrane arrays freely mounted vertically in a tank and using suction applied to the fibre lumens to produce TMP have also been developed, however, these systems have been found in the past to be less effective than the pressurised systems.


Examples of such known systems are illustrated in U.S. Pat. No. 5,192,456 to Ishida et al, U.S. Pat. No. 5,248,424 to Cote et al and WO 97/06880 to Zenon Environmental Inc.


The Ishida et al patent describes an activated sludge treating apparatus where air flow is used to clean the outer surface of the filter membrane. In this arrangement the air blower used for biological treatment of the waste water is also used as a secondary agitation source to clean the surface of the membranes. The membrane modules are of the plate type. The membranes also have a low packing density and thus do not have the problems associated with cleaning tightly packed fibre bundles. Air is bubbled from beneath the modules and is supplied externally from the membrane array.


The Cote et al patent again describes a system of cleaning arrays of fibres. In this case the fibres are mounted in a skein to form an inverted U-shaped or parabolic array and the air is introduced below the array to produce bubbles which contact the fibres with such force they keep the surfaces relatively free of attached microorganisms and deposits of inanimate particles. The fibres are freely swayable as they are only attached at either end and this assists removal of deposits on their outer surface. The bubbles of gas/air flow are provided from a source external of the fibre bundle and move generally transverse to the lengths of fibre. This limits the depth of fibre bundle which can be effectively cleaned.


The invention disclosed in the Zenon Environmental, Inc. PCT Application No. WO 97/06880 is closely related to the Cote et al patent. In this document the fibres are unconfined, vertically arranged and dimensioned to be slightly longer than the distance between the opposed faces of the headers into which the fibre ends are mounted to allow for swaying and independent movement of the individual fibres. The skein is aerated with a gas distribution means which produces a mass of bubbles which serve to scrub the outer surface of the vertically arranged fibres as they rise upwardly through the skein.


Our own International Patent Application WO96/07470 describes an earlier method of cleaning membranes using a gas backwash to dislodge material from the membrane walls by applying a gas pressure to the filtrate side of the membranes and then rapidly decompressing the shell surrounding the feed side of the membranes. Feed is supplied to the shell while this gas backwash is taking place to cause turbulence and frothing around the membrane walls resulting in further dislodgment of accumulated solids.


SUMMARY OF THE INVENTION

The present invention relates particularly to a plurality of porous membranes arranged to form a membrane module arranged in a relatively tightly packed bundle. These porous membranes may be in the form of fibres or plate type membranes as described in the above prior art.


The present invention seeks to overcome or at least ameliorate the problems of the prior art by providing a simple effective system and method for removing fouling materials from the surface of the porous membranes by use of gas bubbles.


According to one aspect, the present invention provides a method of removing fouling materials from the surface of a plurality of porous membranes arranged in a membrane module, the porous membranes forming an array, the module having a header used to mount the membranes, the header connected to a source of pressurized gas, the method comprising providing, through the header, gas bubbles in a uniform distribution relative to the porous membrane array such that said bubbles move past the surfaces of said membranes to dislodge fouling materials therefrom, said membranes being arranged in close proximity to one another and mounted to prevent excessive movement therebetween. The porous membranes may comprise hollow fibre membranes. Preferably, the fibre membranes are arranged in bundles surrounded by a perforated cage which serves to prevent said excessive movement therebetween.


According to a second aspect, the present invention provides a membrane module comprising a plurality of porous membranes, said membranes being arranged in close proximity to one another and mounted to prevent excessive movement therebetween, the membranes forming an array, the module having a header used to mount the membranes, the header connected to a source of pressurized gas so as to permit formation of gas bubbles such that, in use, said gas moves through said header, and said bubbles move past the surfaces of said membranes to dislodge fouling materials therefrom.


The gas bubbles may be provided from within the module by a variety of methods including gas distribution holes or openings in the header, a porous tube located within the module or a tube or tubes positioned to output gas within the module, the tubes may be in the form of a comb of tubes containing holes which sit within the module. Another method of providing gas bubbles includes creating gas in-situ by means of spark type ozone generators or the like. Further types of gas provision are detailed below and in the preferred embodiments of the invention.


According to one preferred form, the present invention provides a method of removing fouling materials from the surface of a plurality of porous hollow fibre membranes mounted and extending longitudinally in an array to form a membrane module, said membranes being arranged in close proximity to one another and mounted to prevent excessive movement therebetween, the method comprising the steps of providing, from within said array, via the header connected to a source of pressurized gas, uniformly distributed gas bubbles, said distribution being such that said bubbles pass substantially uniformly between each membrane in said array to scour the surface of said membranes and remove accumulated solids from within the membrane module.


For preference, said membranes are mounted vertically to form said array and said bubbles pass generally parallel to the longitudinal extent of said fibres. Preferably, said uniformly distributed gas bubbles are provided at the lower end of the array. Optionally, a backwash may be used in conjunction with the removal process to assist solids removal from the membrane pores and outer surface of the membranes.


For preference, the membranes comprise porous hollow fibres, the fibres being fixed at each end in a header, the lower header having a plurality of holes formed therein through which gas is introduced to provide the gas bubbles. The fibres are normally sealed at the lower end and open at their upper end to allow removal of filtrate. Some of the fibres may also be used to provide bubbles of scouring gas to the array by feeding gas through selected ones of the fibres in the array. The fibres are preferably arranged in cylindrical arrays or bundles.


Filtrate is normally withdrawn from the fibres by application of suction applied thereto, however, it will be appreciated that any suitable means of providing TMP may be used. A porous sheet may be used in conjunction with the holes or separately to provide a more uniform distribution of gas bubbles. The porous sheet also provides the added advantage of preventing solids ingressing into the air supply plenum chamber.


According to a further preferred aspect, the present invention provides a membrane module comprising a plurality of porous hollow membrane fibres extending longitudinally between and mounted at each end to a respective potting head, said membrane fibres being arranged in close proximity to one another and mounted to prevent excessive movement therebetween, one of said potting heads having a uniform distributed array of aeration holes formed therein and said fibres being substantially uniformly mounted in said one potting head relative to said aeration holes.


According to a preferred further aspect, the present invention provides a filtration system including a membrane module according to said second aspect wherein said filter module is positioned vertically in a tank containing feed liquid to be filtered, means to apply a transmembrane pressure to said fibres in said array to cause filtrate to pass through pores in said fibres and means to supply continually or intermittently a supply of pressurized gas to said aeration holes so as to produce gas bubbles which move upwardly and uniformly between said fibres to scour the outer surfaces thereof.


Optionally, when the module is contained in a separate vessel, periodic draindown of the vessel is carried out after the scouring step to remove solids accumulated during the scouring process. Apart from draindown, other methods can be used for accumulated solids removal. These include continual bleed off of concentrated feed during the filtration cycle or overflow at the top of the tank by pumping feed into the base of the tank at regular intervals at a rate sufficient to cause overflow and removal of accumulated solids. This would be typically done at the end of a backwash cycle.


It should be understood that the term “gas” used herein includes any gas, including air and mixtures of gases as well as ozone and the like.


It will be appreciated that the above described invention may be readily applied to our own modular microporous filter cartridges as used in our continuous microfiltration systems and described in our earlier U.S. Pat. No. 5,405,528. These cartridges may be modified by providing gas distribution holes in the lower plug and providing a manifold for supplying gas to said holes such that, in use, the gas passes through the holes and forms scouring bubbles which pass upward through the filter medium. In a preferred arrangement, the filter medium would be sealed at the lower end and filtrate withdrawn under a vacuum from the upper end while the cartridge or cartridges were positioned in a tank containing the feed.


The embodiments of the invention will be described in relation to microporous fibre membranes, however, it will be appreciated that the invention is equally applicable to any form of membrane module.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings in which:—



FIG. 1 shows a simplified cross-sectional view of one embodiment of a membrane module in accordance with the present invention;



FIG. 2 shows a simplified two part representation of the potting arrangement of the membrane module according to one preferred form of the invention;



FIG. 3 shows an enlarged view of the potting base of FIG. 2;



FIGS. 4A and 4B show the pin formations in the annular portion of the potting base and the plunger portion of the potting base, respectively;



FIG. 5 shows schematic diagram of a filtration system using the membrane module of FIG. 1;



FIG. 6 shows a simplified cross-sectional view of an alternate embodiment of the membrane module according to the present invention;



FIG. 7 shows a simplified cross-sectional view of an alternate embodiment in terms of feeding of air to the membrane module of the present invention;



FIGS. 8A and 8B shows two graphs illustrating the suction performance of the module under different conditions;



FIG. 9 shows a graph of resistance increase over time with 30 minute suction stage;



FIG. 10 shows a graph of resistance increase over time between backwashes without a porous sheet;



FIG. 11 shows a graph of resistance increase over time between backwashes with the porous sheet;



FIG. 12 shows a graph of resistance changes over time with gas bubble scouring at regular intervals but no liquid backwash of the fibre membranes;



FIG. 13 shows a similar graph to FIG. 12 illustrating the effect of no bubble scouring on backwash efficiency; and



FIG. 14 shows a similar graph to FIG. 12 illustrating the effect of applying gas bubble scouring to the outer side of the fibre bundle only.



FIGS. 15
a-c show a comb of tubes containing holes, the tube sitting within a module and providing pressurized gas bubbles.



FIG. 16 shows a module incorporating a porous sheet through which pressurized gas is supplied to provide gas bubbles.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 1, the membrane module 4, according to this embodiment, comprises a cylindrical array or bundle of hollow fibre membranes 5 extending longitudinally between upper and lower potting heads 6, 7. Optionally, a screen or cage 8 surrounds the array 5 and serves to hold the fibres 9 in close proximity to each other and prevent excessive movement. The fibres 9 are open at the upper potting head 6 to allow for filtrate removal from their lumens and sealed at the lower potting head 7. The lower potting head 7 has a number of holes 10 uniformly distributed therein to enable gas/air to be supplied therethrough. The fibres are fixed uniformly within the potting heads 6 and 7 and the holes 10 are formed uniformly relative to each fibre 9 so as to provide, in use, a uniform distribution of gas bubbles between the fibres.


The holes are formed as part of the potting process as described below. The arrangement of the holes relative to one another as well as the arrangement of fibres relative to the holes and each other has been found to effect the scouring efficiency of the gas bubbles.


The maldistribution of gas within the fibre bundle can be overcome by appropriate distribution and sizing of holes to ensure that bubble flow around the fibres is uniform across the bundle. In a cylindrical bundle of closely packed fibres it has been found that the distance traveled through the bundle by bubbles introduced towards the centre of the bundle is larger than those introduced towards the outer extremity of the bundle, resulting in a higher resistance to bubble flow at the centre of the bundle than at its border or periphery.


As outlined above, one method of addressing the maldistribution of gas bubbles is to provide a porous sheet (not shown) across the holes to provide an even pore distribution and thus a uniform gas flow. Another method is to provide a distribution of hole size relative to the distribution of resistance. Since the gas flowrate (Q) per unit area (A) is inversely proportional to the resistance (R),

Q/A˜1/R

the relationship between the hole diameter (d) and the resistance becomes

d˜(R)1/2

using the above relationship it is possible to design a hole size and position configuration which compensates for resistance differences within the bundle. For example, if the resistance at the centre of the bundle is 50% higher than that at its periphery, the hole size at the centre (dc) and on the periphery (dp)would be the following for a uniform distribution of gas:

dc/dp=1.50.5=1.22


Known methods of forming holes require the drilling of holes or other forms of post-potting formation. Such methods have the disadvantage of requiring avoidance of the fibres/membranes when drilling or the like to avoid damage. This imposes limitations on the fibre packing density and hole size as, where fibres are tightly packed, it very difficult to drill holes without interfering with or damaging the fibres. Further, it is difficult to accurately locate holes relative to the fibres/membranes.


The process used in one aspect of the present invention seeks to overcome or at least the ameliorate the problems and disadvantages outlined above.


According to this aspect, the present invention provides a method of forming openings in a membrane pot for use in gas distribution comprising the steps of: providing a mould for potting membrane ends, said mould having provided therein formations for forming said openings during the potting process; positioning said membrane ends in said mould which is filled with a curable potting material; allowing said potting material to at least partially cure and, demoulding said membranes.


Preferably, said membranes ends are uniformly distributed in relation to said formations. In another aspect, the invention includes a membrane assembly including at least one membrane pot formed according to the above method.


Referring to FIGS. 2-4, the preferred method of forming the gas distribution holes will be described. As shown in the right side part of FIG. 2, the potting apparatus (shown empty) comprises a potting mould 20 mounted on a vertically movable platform 21 which is raised and lowered by means of hydraulic cylinder 22. The centre of each mould 20 is provided with a vertically movable ejector plunger 23 operated by and hydraulic ejector cylinder 24. A fibre guide or collar 25 fits around the periphery of the mould to guide and hold the fibre ends during the potting process as well as retaining the potting mixture, typically polyurethane, within the mould. The fibres are held within a sleeve 26 when inserted into the guide 25. The base 20′ of the mould 20 has a plurality of upstanding pins 27 which serve the dual purpose of assisting even distribution of the fibre ends and forming the gas distribution holes in the pot. The pins are sized and distributed as required for correct gas bubble distribution. One form of pin distribution is shown in FIG. 4.


In use, the guide 25 is placed about the mould 20 and the mould 20 filled to the required level with potting material. The platform 21 is then raised to lower the fibre ends into the mould 20. The fibre ends are normally fanned before insertion to ensure even distribution and also trimmed to ensure a uniform length.


Once the potting material has partially cured, the pot is ejected from the mould by raising the central ejector portion 23 of the mould. The mould 20 is normally heated to assist curing. If desired, the mould 20 may be centrifuged during the potting process to assist the penetration of the potting material into the fibre walls.


This process normally results in the ends of the fibres in this pot being sealed, however, it will be appreciated that, by appropriate transverse cutting of the pot, the fibre ends may be opened for withdrawal of filtrate from the lumens.


A trial module 4 of this type was packed with 11,000 fibres (o.d./i.d. 650/380 μm). The fibre lumens at the lower end were blocked with polyurethane and 60 holes of 4.5 mm in diameter distributed within the fibre bundle. The lower end was connected to an air line sealed from the feed.



FIG. 5 illustrates the setup of the trial unit. The module 4 was arranged vertically in the cylinder tank 15 and the filtrate withdrawn from the top potting head 6 through suction. Air was introduced into the bottom of the module 4, producing air bubbles between fibres to scrub solids accumulated on membrane surfaces. To remove solids clogged within membrane pores, a small quantity of permeate was pumped through fibre lumens (permeate backwash). One method of operation was to run suction for 15 minutes, then aeration for 2 minutes 15 seconds. After a first minute of aeration, a permeate backwash is introduced for 15 seconds. The cycle returns to suction. After several cycles, the solids in the cylinder tank 15 were concentrated and the water in the tank 15 was drained down to remove concentrated backwash.


In the preferred embodiment shown in FIG. 1, gas/air should be uniformly distributed and flow through the small holes 10 at the lower end of the module 4 so that air bubbles can be produced between fibres 9. Air bubbles then flow upwards producing shear force to scour solids accumulated on the membrane surfaces. If the resistance around the holes 10 is variable due to varying resistance provided by different regions of the fibre bundle, gas/air will tend to flow through those holes associated with a lower resistance, resulting in by-pass flow through these holes.


In the manufacture of membrane modules 4, it is desirable to pot the fibres 9 in a uniform distribution relative to the holes 10. Moreover, smaller and more holes will help distribution of gas/air, but holes that are too small will reduce bubble size and thus the shear force applied to the outer surface of the fibres. It is preferable that size of holes should be within the range of 0.01 to 5 mm, however, it will be appreciated that the size and position of holes 10 will vary with module size, fibre packing density, fibre diameter, fibre pore size and other factors.


Another way to reduce maldistribution of gas/air is to use a layer of porous sheet (not shown) which has much smaller pore size than the holes 10. In this case, the major pressure drop of air will be across the porous sheet. If the porous sheet has uniformly distributed pores, the air distribution across the air end of the module will tend to be evenly spread.


To further improve distribution of air bubbles, a porous tube 16 can be inserted in the centre of the cylindrical module 4. When air passes through porous tube 16, it produces uniform bubbles which pass out through the array of fibres scouring solids on the fibre membrane walls. It will be appreciated that more than one porous tube could be used and such tubes could be distributed throughout the bundle. Fibres of large pore size or made of non-woven material could also be used as porous tubes within the bundle. FIG. 6 illustrates this form of module.


Referring to FIG. 7, air may be fed into a plenum chamber 17 below the aeration holes 10 by an air supply tube running from above the feed tank to the bottom of the membrane module. This tube may run down the centre of the membrane module or down the outside. The plenum chamber 17 may also be connected to or form part of a lower manifold 18 which may be used alternately for supply of aeration gas or as a liquid manifold for removal of concentrated backwash liquid from the tank during draindown or backwashing from the bottom of the module.



FIGS. 8A and 8B shows the trial results of the same module under different conditions labeled by several zones. The water in the cylinder tank was drained down every 10 cycles in zones 1 to 4. The discharge rate of concentrated liquid waste is thus calculated as 3.2% of the feed volume. Zone 5 was run under the discharge of liquid waste every 3 cycles at a rate of 10.2% of the feed.


Zones 1 and 2 compare the effect of using a porous sheet at the air end on the suction performance for the module with a screen surrounding the fibre bundle. Initially the suction pressure decreased (i.e. TMP increased) quickly because of the module was new. Then both suction pressure and resistance tended to be stable. By comparison, the increase in suction resistance was faster after removing the porous sheet as illustrated in Zone 2. These results illustrate that the air end combined with a porous sheet helps to distribute air between fibres.


The use of the screen 8 has a dual effect on filtration. The restriction of fibre movement by screen facilitates solid accumulation during suction. On the other hand, limited free space between fibres reduces coalescence of air bubbles, producing better scouring effect. It has also been found that the restriction of fibre movement in conjunction with the movement of gas bubbles produces high frequency vibrations in the fibres and rubbing between the closely packed fibre surfaces which further improves the removal of accumulated solids. Zones 3 and 4 in FIGS. 8A and 8B represent results for the same modules with and without a screen.


During the operation in Zone 3 some by-pass of air bubbles was observed. This was due to different resistance around the aeration holes, especially on the border where comparatively less fibres were distributed around those holes. We therefore used a porous annulus sheet covering holes at the outer border of the lower potting head. Results in Zone 4 show the improvement compared to Zone 3.


Solid concentration is an important issue to filtration and fouling rate. When a tank drain was carried out every 10 cycles, solids were built up quickly, which influenced filtration performance. When the tank was drained down every 3 cycles, the increase in suction resistance was significantly reduced as reflected in Zone 5.


The frequency of air scrubbing and backwash on the filtration performance was also investigated. FIG. 9 shows the resistance increase for 30 minute suction and then backwash and air scrubbing. Compared with the resistance increase in Zone 5 in FIG. 8, resistance increase was faster when suction time was longer between backwashes.


Longer term trials were conducted to compare the effect of porous sheet on suction performance. FIGS. 10 and 11 show the resistance increase for more than 6 days operation, with and without the porous sheet. For the module not connected to a porous sheet, suction resistance increased slowly by ca. 20% during 8 days, while no obvious resistance increase during 6 days operation when a porous sheet was used to improve air distribution. These results and the result shown in Zones 1 and 2 in FIG. 8 suggest that a porous sheet helps uniform air distribution.



FIGS. 12-14 are graphs which illustrate the effect of the bubble scouring on backwash efficiency. The scouring is conducted a regular intervals as shown the buildup of resistance followed by a sharp decline at the time of the scouring stage.



FIG. 12 shows the effect of not using a liquid backwash in conjunction with the gas scouring. At the beginning of the test a normal liquid backwash where filtrate is pumped back through the fibre lumens as a liquid backwash in conjunction with the gas scouring along the outside of the fibres. The liquid backwash was then stopped and only regular gas scouring was used. It was found that even without the liquid backwash a backwash efficiency of around 90% could be achieved.



FIG. 13 shows the effect of no gas scouring during the backwash phase. Again the initial part of the test used a normal liquid backwash where filtrate is pumped back through the fibre lumens as a liquid backwash in conjunction with the gas scouring along the outside of the fibres. The gas scouring was then stopped between about 9:15 and 10:45. As shown on the graph the backwash efficiency dropped dramatically from about 96% using gas scouring to about 41% without gas scouring. The return of gas scouring showed a marked improvement in backwash efficiency.



FIG. 14 illustrates the effect of scouring fully within the bundle as against scouring only the outer fibres. Again the beginning of the test shows a normal backwash regime with liquid backwash and gas scouring up until around 9:00. The gas scouring was then limited to the outside of the fibre bundle. The backwash efficiency again degraded dramatically from about 98% during normal operation to 58% with the restricted gas scouring.


The embodiments relate to membrane filtration systems and typically to a system using suction to produce transmembrane pressure, however, it will be appreciated that the scouring system is equally applicable to any form of fibre membrane filtration process, including pressurised filtration systems.


The scouring process and method may be used in conjunction with any standard backwashing regimes including liquid backwashing, pressurised gas backwashing, combinations of both, as well as with chemical cleaning and dosing arrangements.


The scouring process would normally be used in conjunction with the backwash stage, however, it may also be used continually during the filtration and backwash stages. Cleaning chemicals such as chlorine may be added to the gas providing the bubbles to further assist the scouring process. Solids removed in the scouring process may be intermittently or continually removed. With continual removal of solid a clarifier or the like can be used. The clarifier can be used in front of the module, in parallel with module or the module can be in the clarifier itself. Chemical dosing can be used in conjunction with the clarifier when required.


The filter system using such a scouring process may be used for sewage/biological waste treatment or combined with a bioreactor, activated sludge or similar system.


It will be appreciated that further embodiments and exemplifications of the invention are possible without departing from the spirit or scope of the invention described.

Claims
  • 1. A method of removing accumulated solids from outer surfaces of porous hollow fiber membranes arranged in close proximity to one another and mounted between potting heads with a cured potting material, wherein the membranes are situated in a vessel, the method comprising the steps of: backwashing the membranes to dislodge accumulated solids from the outer surfaces of the membranes;restricting movement of the membranes;providing, through at least one porous tube disposed among and substantially parallel to the membranes, uniform gas bubbles which pass out among the membranes scouring solids on the outer surfaces of the membranes;providing gas bubbles through a porous sheet and a plurality of gas distribution openings in a first potting head, the plurality of gas distribution openings each having a diameter from about 0.01 mm to about 5 mm, and the porous sheet having uniformly distributed pores and a smaller pore size relative to the gas distribution openings in the first potting head; andremoving dislodged accumulated solids from the vessel.
  • 2. The method according to claim 1, wherein the removing step comprises draining down liquid from the vessel.
  • 3. The method according to claim 2, wherein the draining down comprises a periodic draindown.
  • 4. The method according to claim 1, wherein the removing step comprises using a clarifier.
  • 5. The method according to claim 1, wherein the removing step comprises overflowing liquid from the vessel.
  • 6. The method according to claim 5, wherein the overflowing comprises a periodic overflow.
  • 7. The method according to claim 1, wherein the removing step comprises a continual bleed off.
  • 8. The method according to claim 1, wherein the backwashing comprises backwashing with a gas.
  • 9. The method according to claim 1, wherein the backwashing comprises backwashing with a liquid.
  • 10. The method of claim 9, wherein the liquid comprises a permeate.
  • 11. The method of claim 1, wherein the steps of backwashing and providing gas bubbles to the membrane occur simultaneously.
  • 12. The method of claim 1, wherein the porous hollow fiber membranes extend longitudinally in an array to form a membrane module contained within the vessel.
  • 13. The method of claim 1, wherein the membranes are mounted in a header in close proximity to one another so as to prevent excessive movement therebetween.
  • 14. The method of claim 1, wherein the gas bubbles move past the outer surfaces of the membranes and vibrate the membranes to dislodge the accumulated solids therefrom.
  • 15. The method of claim 1, wherein the membranes are mounted relative to one another so as to produce a rubbing effect between the membranes when vibrated.
  • 16. The method of claim 1, wherein the hollow fiber membranes are arranged in at least one bundle.
  • 17. The method of claim 1, wherein the hollow fiber membranes are surrounded by a perforated cage.
  • 18. The method of claim 1, wherein the tube comprises a plurality of holes.
  • 19. The method of claim 1, further comprising subjecting the membranes to a chemical cleaning.
  • 20. The method of claim 1, further comprising subjecting the membranes to a chemical dosing.
  • 21. The method of claim 1, wherein the gas bubbles are continuously provided.
  • 22. The method of claim 1, wherein the gas bubbles are intermittently provided.
  • 23. The method of claim 1, wherein backwashing the membranes occurs prior to providing gas bubbles to the membranes.
  • 24. A membrane module, comprising: a plurality of porous membranes, the membranes being arranged in close proximity to one another and mounted between potting heads with a cured potting material,means for restricting membrane movement;at least one porous tube located within the module;a plurality of gas distribution openings in a first potting head each having a diameter from about 0.01 mm to about 5 mm; anda porous sheet having uniformly distributed pores and a smaller pore size relative to the gas distribution openings in the first potting head;the module constructed and arranged such that, in use, gas moves through the porous sheet, the gas distribution openings and the at least one porous tube but not through the pores of said membranes producing uniform bubbles which pass out among the membranes scouring solids on the membranes,wherein the membranes comprise hollow fibre membranes and the at least one porous tube extends longitudinally between the potting heads among the membranes.
Priority Claims (2)
Number Date Country Kind
PO4312 Dec 1996 AU national
PO8918 Sep 1997 AU national
RELATED APPLICATIONS

This application is a continuation of application Ser. No. 10/805,608, filed Mar. 19, 2004 now abandoned, which is a continuation of application Ser. No. 10/674,694, filed Sep. 30, 2003 now abandoned, which is a continuation of application Ser. No. 10/369,813, filed Feb. 18, 2003 now abandoned, which is a continuation of application Ser. No. 09/336,059, filed Jun. 18, 1999 and now U.S. Pat. No. 6,555,005, which is a continuation, under 35 U.S.C. §120, of International Patent Application No. PCT/AU97/00855, filed on Dec. 18, 1997 under the Patent Cooperation Treaty (PCT), which was published by the International Bureau in English on Jul. 2, 1998, which designates the U.S. and claims the benefit of Australian Provisional Patent Application No. PO 4312, filed Dec. 20, 1996 and Australian Provisional Patent Application No. PO 8918, filed Sep. 1, 1997, all of which are hereby incorporated by reference.

US Referenced Citations (514)
Number Name Date Kind
256008 Leak Apr 1882 A
285321 Tams Sep 1883 A
1997074 Novotny Apr 1935 A
2080783 Petersen May 1937 A
2105700 Ramage Jan 1938 A
2843038 Manspeaker Jul 1958 A
2926086 Chenicek et al. Feb 1960 A
3139401 Hach Jun 1964 A
3183191 Hach May 1965 A
3198636 Bouthilet Aug 1965 A
3228876 Mahon Jan 1966 A
3275554 Wagenaar Sep 1966 A
3442002 Geary et al. May 1969 A
3462362 Kollsman Aug 1969 A
3472765 Okey et al. Oct 1969 A
3492698 Geary et al. Feb 1970 A
3501798 Bray Mar 1970 A
3556305 Shorr Jan 1971 A
3591010 Pall Jul 1971 A
3625827 Wildi et al. Dec 1971 A
3654147 Levin et al. Apr 1972 A
3693406 Tobin Sep 1972 A
3700561 Ziffer Oct 1972 A
3700591 Higley Oct 1972 A
3708071 Crowley Jan 1973 A
3728256 Cooper Apr 1973 A
3763055 White et al. Oct 1973 A
3791631 Meyer Feb 1974 A
3795609 Hall et al. Mar 1974 A
3804258 Okuniewski et al. Apr 1974 A
3843809 Luck Oct 1974 A
3876738 Marinaccio et al. Apr 1975 A
3955998 Clampitt et al. May 1976 A
3968192 Hoffman et al. Jul 1976 A
3992301 Shippey et al. Nov 1976 A
3993816 Baudet et al. Nov 1976 A
4049765 Yamazaki Sep 1977 A
4076656 White et al. Feb 1978 A
4082683 Galesloot Apr 1978 A
4105731 Yamazaki Aug 1978 A
4107043 McKinney Aug 1978 A
4138460 Tigner Feb 1979 A
4183890 Bollinger Jan 1980 A
4188817 Steigelmann et al. Feb 1980 A
4190411 Fujimoto Feb 1980 A
4192750 Elfes et al. Mar 1980 A
4193780 Cotton et al. Mar 1980 A
4203848 Grandine, II May 1980 A
4204961 Cusato, Jr. May 1980 A
4218324 Hartmann et al. Aug 1980 A
4226921 Tsang Oct 1980 A
4227295 Bodnar et al. Oct 1980 A
4230583 Chiolle et al. Oct 1980 A
4243525 Greenberg Jan 1981 A
4247498 Castro Jan 1981 A
4248648 Kopp Feb 1981 A
4253936 Leysen et al. Mar 1981 A
4271026 Chen et al. Jun 1981 A
4302336 Kawaguchi et al. Nov 1981 A
4315819 King et al. Feb 1982 A
4340479 Pall Jul 1982 A
4350592 Kronsbein Sep 1982 A
4353802 Hara et al. Oct 1982 A
4359359 Gerlach et al. Nov 1982 A
4367139 Graham Jan 1983 A
4369605 Opersteny et al. Jan 1983 A
4384474 Kowalski May 1983 A
4385150 Miyake et al. May 1983 A
4388189 Kawaguchi et al. Jun 1983 A
4389363 Molthop Jun 1983 A
4405688 Lowery et al. Sep 1983 A
4407975 Yamaguchi Oct 1983 A
4414113 LaTerra Nov 1983 A
4414172 Leason Nov 1983 A
4415452 Heil et al. Nov 1983 A
4431545 Pall et al. Feb 1984 A
4451369 Sekino et al. May 1984 A
4462855 Yankowsky et al. Jul 1984 A
4476112 Aversano Oct 1984 A
4491522 Ishida et al. Jan 1985 A
4496470 Kapiloff et al. Jan 1985 A
4511471 Müller Apr 1985 A
4519909 Castro May 1985 A
4540490 Shibata et al. Sep 1985 A
4547289 Okano et al. Oct 1985 A
4609465 Miller Sep 1986 A
4610789 Barch Sep 1986 A
4614109 Hofmann Sep 1986 A
4623670 Mutoh et al. Nov 1986 A
4629563 Wrasidlo Dec 1986 A
4632745 Giuffrida et al. Dec 1986 A
4636296 Kunz Jan 1987 A
4642182 Drori Feb 1987 A
4647377 Miura Mar 1987 A
4650586 Ellis Mar 1987 A
4650596 Schleuter et al. Mar 1987 A
4656865 Callan Apr 1987 A
4660411 Reid Apr 1987 A
4666543 Kawano May 1987 A
4670145 Edwards Jun 1987 A
4673507 Brown Jun 1987 A
4687561 Kunz Aug 1987 A
4687578 Stookey Aug 1987 A
4688511 Gerlach et al. Aug 1987 A
4689191 Beck et al. Aug 1987 A
4702836 Mutoh et al. Oct 1987 A
4702840 Degen et al. Oct 1987 A
4707266 Degen et al. Nov 1987 A
4708799 Gerlach et al. Nov 1987 A
4718270 Storr Jan 1988 A
4744240 Reichelt May 1988 A
4749487 Lefebvre Jun 1988 A
4756875 Tajima et al. Jul 1988 A
4763612 Iwanami Aug 1988 A
4767539 Ford Aug 1988 A
4774132 Joffee et al. Sep 1988 A
4775471 Nagai et al. Oct 1988 A
4779448 Gogins Oct 1988 A
4781831 Goldsmith Nov 1988 A
4784771 Wathen et al. Nov 1988 A
4793932 Ford et al. Dec 1988 A
4797187 Davis et al. Jan 1989 A
4797211 Ehrfeld et al. Jan 1989 A
4810384 Fabre Mar 1989 A
4812235 Seleman et al. Mar 1989 A
4816160 Ford et al. Mar 1989 A
4824563 Iwahori et al. Apr 1989 A
4834998 Shrikhande May 1989 A
4839048 Reed et al. Jun 1989 A
4840227 Schmidt Jun 1989 A
4846970 Bertelsen et al. Jul 1989 A
4867883 Daigger et al. Sep 1989 A
4876006 Ohkubo et al. Oct 1989 A
4876012 Kopp et al. Oct 1989 A
4886601 Iwatsuka et al. Dec 1989 A
4888115 Marinaccio et al. Dec 1989 A
4904426 Lundgard et al. Feb 1990 A
4919815 Copa et al. Apr 1990 A
4921610 Ford et al. May 1990 A
4931186 Ford et al. Jun 1990 A
4933084 Bandel et al. Jun 1990 A
4935143 Kopp et al. Jun 1990 A
4963304 Im et al. Oct 1990 A
4968430 Hildenbrand et al. Nov 1990 A
4968733 Muller et al. Nov 1990 A
4969997 Klüver et al. Nov 1990 A
4988444 Applegate et al. Jan 1991 A
4999038 Lundberg Mar 1991 A
5005430 Kibler et al. Apr 1991 A
5015275 Beck et al. May 1991 A
5024762 Ford et al. Jun 1991 A
5034125 Karbachsch et al. Jul 1991 A
5043113 Kafchinski et al. Aug 1991 A
5059317 Marius et al. Oct 1991 A
5066375 Parsi et al. Nov 1991 A
5066401 Muller et al. Nov 1991 A
5066402 Anselme et al. Nov 1991 A
5069065 Sprunt et al. Dec 1991 A
5069353 Espenan Dec 1991 A
5075065 Effenberger et al. Dec 1991 A
5076925 Roesink et al. Dec 1991 A
5079272 Allegrezza et al. Jan 1992 A
5094750 Kopp et al. Mar 1992 A
5094867 Detering et al. Mar 1992 A
5098567 Nishiguchi Mar 1992 A
5104535 Cote et al. Apr 1992 A
5104546 Filson et al. Apr 1992 A
H1045 Wilson May 1992 H
5135663 Newberth, III et al. Aug 1992 A
5137631 Eckman et al. Aug 1992 A
5138870 Lyssy Aug 1992 A
5147553 Waite Sep 1992 A
5151191 Sunaoka et al. Sep 1992 A
5151193 Grobe et al. Sep 1992 A
5158721 Allegrezza et al. Oct 1992 A
5169528 Karbachsch et al. Dec 1992 A
5169530 Schucker et al. Dec 1992 A
5182019 Cote et al. Jan 1993 A
5186821 Murphy Feb 1993 A
5192442 Piccirillo et al. Mar 1993 A
5192456 Ishida et al. Mar 1993 A
5192478 Caskey Mar 1993 A
5194149 Selbie et al. Mar 1993 A
5198116 Comstock et al. Mar 1993 A
5198162 Park et al. Mar 1993 A
5209852 Sunaoka et al. May 1993 A
5211823 Giuffrida et al. May 1993 A
5221478 Dhingra et al. Jun 1993 A
5227063 Langerak et al. Jul 1993 A
5248424 Cote et al. Sep 1993 A
5262054 Wheeler Nov 1993 A
5271830 Faivre et al. Dec 1993 A
5275766 Gadkaree et al. Jan 1994 A
5286324 Kawai et al. Feb 1994 A
5290451 Koster et al. Mar 1994 A
5290457 Karbachsch et al. Mar 1994 A
5297420 Gilliland et al. Mar 1994 A
5316671 Murphy May 1994 A
5320760 Freund et al. Jun 1994 A
5353630 Soda et al. Oct 1994 A
5354470 Seita et al. Oct 1994 A
5358732 Seifter et al. Oct 1994 A
5361625 Ylvisaker Nov 1994 A
5364527 Zimmermann et al. Nov 1994 A
5364529 Morin et al. Nov 1994 A
5374353 Murphy Dec 1994 A
5389260 Hemp et al. Feb 1995 A
5393433 Espenan et al. Feb 1995 A
5396019 Sartori et al. Mar 1995 A
5401401 Hickok et al. Mar 1995 A
5401405 McDougald Mar 1995 A
5403479 Smith et al. Apr 1995 A
5405528 Selbie et al. Apr 1995 A
5411663 Johnson May 1995 A
5417101 Weich May 1995 A
5419816 Sampson et al. May 1995 A
5451317 Ishida et al. Sep 1995 A
5458779 Odegaard Oct 1995 A
5468397 Barboza et al. Nov 1995 A
5470469 Eckman Nov 1995 A
5477731 Mouton Dec 1995 A
5479590 Lin Dec 1995 A
5480553 Yamamori et al. Jan 1996 A
5482625 Shimizu et al. Jan 1996 A
5484528 Yagi et al. Jan 1996 A
5490939 Gerigk et al. Feb 1996 A
5491023 Tsai et al. Feb 1996 A
5501798 Al-Samadi et al. Mar 1996 A
5525220 Yagi et al. Jun 1996 A
5531848 Brinda et al. Jul 1996 A
5531900 Raghavan et al. Jul 1996 A
5543002 Brinda et al. Aug 1996 A
5552047 Oshida et al. Sep 1996 A
5554283 Brinda et al. Sep 1996 A
5556591 Jallerat et al. Sep 1996 A
5575963 Soffer et al. Nov 1996 A
5597732 Bryan-Brown Jan 1997 A
5607593 Cote et al. Mar 1997 A
5633163 Cameron May 1997 A
5639373 Mahendran et al. Jun 1997 A
5643455 Kopp et al. Jul 1997 A
5647988 Kawanishi et al. Jul 1997 A
5670053 Collentro et al. Sep 1997 A
5677360 Yamamori et al. Oct 1997 A
5688460 Ruschke Nov 1997 A
5733456 Okey et al. Mar 1998 A
5744037 Fujimura et al. Apr 1998 A
5747605 Breant et al. May 1998 A
5766479 Collentro et al. Jun 1998 A
D396046 Scheel et al. Jul 1998 S
5783083 Henshaw et al. Jul 1998 A
D396726 Sadr et al. Aug 1998 S
D400890 Gambardella Nov 1998 S
5843069 Butler et al. Dec 1998 A
5846424 Khudenko Dec 1998 A
5871823 Anders et al. Feb 1999 A
5888401 Nguyen Mar 1999 A
5895570 Liang Apr 1999 A
5906739 Osterland et al. May 1999 A
5906742 Wang et al. May 1999 A
5910250 Mahendran et al. Jun 1999 A
5914039 Mahendran Jun 1999 A
5918264 Drummond et al. Jun 1999 A
5942113 Morimura Aug 1999 A
5944997 Pedersen et al. Aug 1999 A
5951878 Astrom Sep 1999 A
5958243 Lawrence et al. Sep 1999 A
5961830 Barnett Oct 1999 A
5968357 Doelle et al. Oct 1999 A
5988400 Karachevtcev et al. Nov 1999 A
5989428 Goronszy Nov 1999 A
5997745 Tonelli et al. Dec 1999 A
6001254 Espenan Dec 1999 A
6007712 Tanaka et al. Dec 1999 A
6017451 Kopf Jan 2000 A
6024872 Mahendran Feb 2000 A
6036030 Stone et al. Mar 2000 A
6039872 Wu et al. Mar 2000 A
6042677 Mahendran et al. Mar 2000 A
6045698 Cote et al. Apr 2000 A
6045899 Wang et al. Apr 2000 A
6048454 Jenkins Apr 2000 A
6048455 Janik Apr 2000 A
6066401 Stilburn May 2000 A
6074718 Puglia et al. Jun 2000 A
6077435 Beck et al. Jun 2000 A
6083393 Wu et al. Jul 2000 A
6096213 Radovanovic et al. Aug 2000 A
6113782 Leonard Sep 2000 A
6120688 Daly et al. Sep 2000 A
6126819 Heine et al. Oct 2000 A
6146747 Wang et al. Nov 2000 A
6149817 Peterson et al. Nov 2000 A
6156200 Zha et al. Dec 2000 A
6159373 Beck et al. Dec 2000 A
6193890 Pedersen et al. Feb 2001 B1
6202475 Selbie et al. Mar 2001 B1
6214231 Cote et al. Apr 2001 B1
6214232 Baurmeister et al. Apr 2001 B1
6221247 Nemser et al. Apr 2001 B1
6245239 Cote et al. Jun 2001 B1
6254773 Biltoft Jul 2001 B1
6264839 Mohr et al. Jul 2001 B1
6277512 Hamrock et al. Aug 2001 B1
6280626 Miyashita et al. Aug 2001 B1
6284135 Ookata Sep 2001 B1
6290756 Macheras et al. Sep 2001 B1
6294039 Mahendran et al. Sep 2001 B1
6299773 Takamura et al. Oct 2001 B1
6303026 Lindbo Oct 2001 B1
6303035 Cote et al. Oct 2001 B1
6315895 Summerton et al. Nov 2001 B1
6322703 Taniguchi et al. Nov 2001 B1
6325928 Pedersen et al. Dec 2001 B1
6325938 Miyashita et al. Dec 2001 B1
6337018 Mickols Jan 2002 B1
RE37549 Mahendran et al. Feb 2002 E
6349835 Saux et al. Feb 2002 B1
6354444 Mahendran Mar 2002 B1
6361695 Husain et al. Mar 2002 B1
6368819 Gaddy et al. Apr 2002 B1
6372138 Cho et al. Apr 2002 B1
6375848 Cote et al. Apr 2002 B1
6383369 Elston May 2002 B2
6387189 Gröschl et al. May 2002 B1
6402955 Ookata Jun 2002 B2
6406629 Husain et al. Jun 2002 B1
6423214 Lindbo Jul 2002 B1
6423784 Hamrock et al. Jul 2002 B1
6432310 Andou et al. Aug 2002 B1
6440303 Spriegel Aug 2002 B2
D462699 Johnson et al. Sep 2002 S
6444124 Onyeche et al. Sep 2002 B1
6468430 Kimura et al. Oct 2002 B1
6485645 Husain et al. Nov 2002 B1
6495041 Taniguchi et al. Dec 2002 B2
6517723 Daigger et al. Feb 2003 B1
6524481 Zha et al. Feb 2003 B2
6524733 Nonobe Feb 2003 B1
6550747 Rabie et al. Apr 2003 B2
6555005 Zha et al. Apr 2003 B1
6562237 Olaopa May 2003 B1
6576136 De Moel et al. Jun 2003 B1
6592762 Smith Jul 2003 B2
D478913 Johnson et al. Aug 2003 S
6613222 Mikkelson et al. Sep 2003 B2
6620319 Behmann et al. Sep 2003 B2
6627082 Del Vecchio Sep 2003 B2
6632358 Suga et al. Oct 2003 B1
6635179 Summerton et al. Oct 2003 B1
6641733 Zha et al. Nov 2003 B2
6645374 Cote et al. Nov 2003 B2
6656356 Gungerich et al. Dec 2003 B2
6682652 Mahendran et al. Jan 2004 B2
6685832 Mahendran et al. Feb 2004 B2
6696465 Dellaria et al. Feb 2004 B2
6702561 Stillig et al. Mar 2004 B2
6706189 Rabie et al. Mar 2004 B2
6708957 Guibert et al. Mar 2004 B2
6712970 Trivedi Mar 2004 B1
6721529 Chen et al. Apr 2004 B2
6723758 Stone et al. Apr 2004 B2
6727305 Pavez Aranguiz Apr 2004 B1
6743362 Porteous et al. Jun 2004 B1
6758972 Vriens et al. Jul 2004 B2
6770202 Kidd et al. Aug 2004 B1
6780466 Grangeon et al. Aug 2004 B2
6783008 Zha et al. Aug 2004 B2
6790912 Blong Sep 2004 B2
6805806 Arnaud Oct 2004 B2
6808629 Wouters-Wasiak et al. Oct 2004 B2
6811696 Wang et al. Nov 2004 B2
6814861 Husain et al. Nov 2004 B2
6821420 Zha et al. Nov 2004 B2
6830782 Kanazawa Dec 2004 B2
6841070 Zha et al. Jan 2005 B2
6861466 Dadalas et al. Mar 2005 B2
6863817 Liu et al. Mar 2005 B2
6863818 Daigger et al. Mar 2005 B2
6863823 Côté Mar 2005 B2
6869534 McDowell et al. Mar 2005 B2
6872305 Johnson et al. Mar 2005 B2
6881343 Rabie et al. Apr 2005 B2
6884350 Muller Apr 2005 B2
6884375 Wang et al. Apr 2005 B2
6890435 Ji et al. May 2005 B2
6890645 Disse et al. May 2005 B2
6893568 Janson et al. May 2005 B1
6899812 Cote et al. May 2005 B2
6946073 Daigger et al. Sep 2005 B2
6952258 Ebert et al. Oct 2005 B2
6955762 Gallagher et al. Oct 2005 B2
6962258 Zha et al. Nov 2005 B2
6964741 Mahendran et al. Nov 2005 B2
6969465 Zha et al. Nov 2005 B2
6974554 Cox et al. Dec 2005 B2
6994867 Hossainy et al. Feb 2006 B1
7005100 Lowell Feb 2006 B2
7014763 Johnson et al. Mar 2006 B2
7018530 Pollock Mar 2006 B2
7018533 Johnson et al. Mar 2006 B2
7022233 Chen Apr 2006 B2
7041728 Zipplies et al. May 2006 B2
7052610 Janson et al. May 2006 B2
7083733 Freydina et al. Aug 2006 B2
7087173 Cote et al. Aug 2006 B2
7147777 Porteous Dec 2006 B1
7147778 DiMassimo et al. Dec 2006 B1
7160455 Taniguchi et al. Jan 2007 B2
7160463 Beck et al. Jan 2007 B2
7160464 Lee et al. Jan 2007 B2
7172699 Trivedi et al. Feb 2007 B1
7172701 Gaid et al. Feb 2007 B2
7186344 Hughes Mar 2007 B2
7208091 Pind et al. Apr 2007 B2
7223340 Zha et al. May 2007 B2
7226541 Muller et al. Jun 2007 B2
7247238 Mullette et al. Jul 2007 B2
7264716 Johnson et al. Sep 2007 B2
7279100 Devine Oct 2007 B2
7300022 Muller Nov 2007 B2
7314563 Cho et al. Jan 2008 B2
7329344 Jordan et al. Feb 2008 B2
7344645 Beck et al. Mar 2008 B2
7361274 Lazaredes et al. Apr 2008 B2
7378024 Bartels et al. May 2008 B2
7387723 Jordan Jun 2008 B2
7404896 Muller et al. Jul 2008 B2
7455765 Elefritz et al. Nov 2008 B2
7481933 Barnes Jan 2009 B2
7510655 Barnes Mar 2009 B2
7563363 Kuzma Jul 2009 B2
7591950 Zha et al. Sep 2009 B2
7632439 Mullette et al. Dec 2009 B2
7713413 Barnes May 2010 B2
7718057 Jordan May 2010 B2
7718065 Jordan May 2010 B2
7722769 Jordan May 2010 B2
20010027951 Gungerich et al. Oct 2001 A1
20010047962 Zha et al. Dec 2001 A1
20010052494 Cote et al. Dec 2001 A1
20020070157 Yamada Jun 2002 A1
20020148767 Johnson et al. Oct 2002 A1
20020153299 Mahendran et al. Oct 2002 A1
20020153313 Cote Oct 2002 A1
20020185435 Husain et al. Dec 2002 A1
20020189999 Espenan et al. Dec 2002 A1
20020195390 Zha et al. Dec 2002 A1
20030038080 Vriens et al. Feb 2003 A1
20030042199 Smith Mar 2003 A1
20030057155 Husain et al. Mar 2003 A1
20030075504 Zha et al. Apr 2003 A1
20030089659 Zha et al. May 2003 A1
20030121855 Kopp Jul 2003 A1
20030127388 Ando et al. Jul 2003 A1
20030136746 Behmann et al. Jul 2003 A1
20030141248 Mahendran et al. Jul 2003 A1
20030146153 Cote et al. Aug 2003 A1
20030150807 Bartels et al. Aug 2003 A1
20030159988 Daigger et al. Aug 2003 A1
20030164332 Mahendran et al. Sep 2003 A1
20030178365 Zha et al. Sep 2003 A1
20030205519 Zha et al. Nov 2003 A1
20030226797 Phelps Dec 2003 A1
20030234221 Johnson et al. Dec 2003 A1
20040000520 Gallagher et al. Jan 2004 A1
20040007525 Rabie et al. Jan 2004 A1
20040035770 Edwards et al. Feb 2004 A1
20040035782 Muller Feb 2004 A1
20040084369 Zha et al. May 2004 A1
20040145076 Zha et al. Jul 2004 A1
20040168979 Zha et al. Sep 2004 A1
20040173525 Hunniford et al. Sep 2004 A1
20040178154 Zha et al. Sep 2004 A1
20040191894 Muller et al. Sep 2004 A1
20040217053 Zha et al. Nov 2004 A1
20040232076 Zha et al. Nov 2004 A1
20040245174 Takayama et al. Dec 2004 A1
20050029185 Muller Feb 2005 A1
20050029186 Muller Feb 2005 A1
20050032982 Muller et al. Feb 2005 A1
20050045557 Daigger et al. Mar 2005 A1
20050061725 Liu et al. Mar 2005 A1
20050087898 Cox et al. Apr 2005 A1
20050098494 Mullette et al. May 2005 A1
20050103722 Freydina et al. May 2005 A1
20050109692 Zha et al. May 2005 A1
20050115880 Pollock Jun 2005 A1
20050115899 Liu et al. Jun 2005 A1
20050139538 Lazaredes Jun 2005 A1
20050194310 Yamamoto et al. Sep 2005 A1
20050194315 Adams et al. Sep 2005 A1
20060000775 Zha et al. Jan 2006 A1
20060081533 Khudenko Apr 2006 A1
20060131234 Zha et al. Jun 2006 A1
20060201876 Jordan Sep 2006 A1
20060249448 Fujishima et al. Nov 2006 A1
20060249449 Nakhla et al. Nov 2006 A1
20060261007 Zha et al. Nov 2006 A1
20060273007 Zha et al. Dec 2006 A1
20060273038 Syed et al. Dec 2006 A1
20070007205 Johnson et al. Jan 2007 A1
20070007214 Zha et al. Jan 2007 A1
20070045183 Murphy Mar 2007 A1
20070056905 Beck et al. Mar 2007 A1
20070075017 Kuzma Apr 2007 A1
20070075021 Johnson Apr 2007 A1
20070084791 Jordan et al. Apr 2007 A1
20070084795 Jordan Apr 2007 A1
20070108125 Cho et al. May 2007 A1
20070138090 Jordan et al. Jun 2007 A1
20070170112 Elefritz et al. Jul 2007 A1
20070227973 Zha et al. Oct 2007 A1
20080053923 Beck et al. Mar 2008 A1
Foreign Referenced Citations (252)
Number Date Country
3440084 Sep 1983 AU
5584786 Mar 1985 AU
7706687 Jul 1986 AU
762091 Nov 2000 AU
1050770 Jan 1995 CN
1249698 Apr 2000 CN
1541757 Nov 2004 CN
3904544 Aug 1990 DE
4117281 Jan 1992 DE
4113420 Oct 1992 DE
4117422 Nov 1992 DE
29804927 Jun 1998 DE
29906389 Jun 1999 DE
194735 Sep 1876 EP
012557 Feb 1983 EP
126714 Nov 1984 EP
050447 Oct 1985 EP
250337 Dec 1987 EP
327025 Aug 1989 EP
090383 May 1990 EP
407900 Jan 1991 EP
492942 Jul 1992 EP
518250 Dec 1992 EP
547575 Jun 1993 EP
395133 Feb 1995 EP
463627 May 1995 EP
662341 Jul 1995 EP
492446 Nov 1995 EP
430082 Jun 1996 EP
734758 Oct 1996 EP
763758 Oct 1996 EP
824956 Feb 1998 EP
855214 Jul 1998 EP
0 627 255 Jan 1999 EP
911073 Apr 1999 EP
920904 Jun 1999 EP
1 034 835 Sep 2000 EP
1052012 Nov 2000 EP
1349644 Oct 2003 EP
1350555 Oct 2003 EP
1236503 Aug 2004 EP
1659171 May 2006 EP
2620712 Mar 1989 FR
2674448 Feb 1992 FR
2699424 Jun 1994 FR
2762834 Nov 1998 FR
702911 Jan 1954 GB
2253572 Sep 1992 GB
54-162684 Dec 1979 JP
55-129155 Jun 1980 JP
55-099703 Jul 1980 JP
55-129107 Oct 1980 JP
56-021604 Feb 1981 JP
56-118701 Sep 1981 JP
56-121685 Sep 1981 JP
57-190697 Nov 1982 JP
58-088007 May 1983 JP
60-019002 Jan 1985 JP
60-206412 Oct 1985 JP
60-260628 Dec 1985 JP
61-097005 May 1986 JP
61-097006 May 1986 JP
61-107905 May 1986 JP
61-167406 Jul 1986 JP
61-167407 Jul 1986 JP
S6338884 Jul 1986 JP
61-171504 Aug 1986 JP
61-192309 Aug 1986 JP
61-222510 Oct 1986 JP
61-242607 Oct 1986 JP
61-249505 Nov 1986 JP
61-257203 Nov 1986 JP
61-263605 Nov 1986 JP
61-291007 Dec 1986 JP
61-293504 Dec 1986 JP
62-004408 Jan 1987 JP
62-068828 Mar 1987 JP
62-114609 May 1987 JP
62-140607 Jun 1987 JP
62-144708 Jun 1987 JP
62-163708 Jul 1987 JP
62-179540 Aug 1987 JP
62-237908 Oct 1987 JP
62-250908 Oct 1987 JP
62-262710 Nov 1987 JP
63-097634 Apr 1988 JP
63-099246 Apr 1988 JP
63-143905 Jun 1988 JP
63-171607 Jul 1988 JP
63-180254 Jul 1988 JP
01-075542 Mar 1989 JP
06-027215 Mar 1989 JP
01-151906 Jun 1989 JP
01 307409 Dec 1989 JP
02-026625 Jan 1990 JP
02-031200 Feb 1990 JP
02-040296 Feb 1990 JP
02-107318 Apr 1990 JP
02-126922 May 1990 JP
02-144132 Jun 1990 JP
02-164423 Jun 1990 JP
02-241523 Sep 1990 JP
02-277528 Nov 1990 JP
02-284035 Nov 1990 JP
03-018373 Jan 1991 JP
03-028797 Feb 1991 JP
03-110445 May 1991 JP
04-108518 Apr 1992 JP
04-110023 Apr 1992 JP
04-187224 Jul 1992 JP
04-250898 Sep 1992 JP
04-256424 Sep 1992 JP
04-265128 Sep 1992 JP
04-293527 Oct 1992 JP
04-310223 Nov 1992 JP
04-334530 Nov 1992 JP
04-348252 Dec 1992 JP
05-023557 Feb 1993 JP
05-096136 Apr 1993 JP
05-137977 Jun 1993 JP
05-157654 Jun 1993 JP
05-161831 Jun 1993 JP
05-285348 Nov 1993 JP
06-071120 Mar 1994 JP
06-114240 Apr 1994 JP
06-218237 Aug 1994 JP
06-277469 Oct 1994 JP
06-285496 Oct 1994 JP
06-343837 Dec 1994 JP
07-000770 Jan 1995 JP
07-024272 Jan 1995 JP
07-047247 Feb 1995 JP
07-068139 Mar 1995 JP
07-136470 May 1995 JP
07-136471 May 1995 JP
07-155564 Jun 1995 JP
07-155758 Jun 1995 JP
07-178323 Jul 1995 JP
07-185268 Jul 1995 JP
07-185270 Jul 1995 JP
07-185271 Jul 1995 JP
07-185272 Jul 1995 JP
07-236819 Sep 1995 JP
07-251043 Oct 1995 JP
07-275665 Oct 1995 JP
07-289860 Nov 1995 JP
07-303895 Nov 1995 JP
08-010585 Jan 1996 JP
09-072993 Mar 1997 JP
09-099227 Apr 1997 JP
09-141063 Jun 1997 JP
09-155345 Jun 1997 JP
09-187628 Jul 1997 JP
09-220569 Aug 1997 JP
09-271641 Oct 1997 JP
09-324067 Dec 1997 JP
10-024222 Jan 1998 JP
10-033955 Feb 1998 JP
10-048466 Feb 1998 JP
10-076264 Mar 1998 JP
10-085565 Apr 1998 JP
10-156149 Jun 1998 JP
10-180048 Jul 1998 JP
11-005023 Jan 1999 JP
11-028467 Feb 1999 JP
11-076769 Mar 1999 JP
11-156166 Jun 1999 JP
11-165200 Jun 1999 JP
11-333265 Jul 1999 JP
11-033365 Sep 1999 JP
11-033367 Sep 1999 JP
11-302438 Nov 1999 JP
11-319507 Nov 1999 JP
2000-000439 Jan 2000 JP
2000-070684 Mar 2000 JP
2000-185220 Apr 2000 JP
2000-157850 Jun 2000 JP
2000-233020 Aug 2000 JP
2000-237548 Sep 2000 JP
2000-300968 Oct 2000 JP
2000-317276 Nov 2000 JP
2001-009246 Jan 2001 JP
2001-070967 Mar 2001 JP
2001-079366 Mar 2001 JP
2001-079367 Mar 2001 JP
2001-104760 Apr 2001 JP
2001-179059 Jul 2001 JP
2001-190937 Jul 2001 JP
2001-190938 Jul 2001 JP
2001-205055 Jul 2001 JP
2000-342932 Dec 2002 JP
2003-047830 Feb 2003 JP
2003-053160 Feb 2003 JP
2003-062436 Mar 2003 JP
2003-135935 May 2003 JP
2004-230280 Aug 2004 JP
05-279447 Oct 2005 JP
2005-279447 Oct 2005 JP
09-192458 Jul 2007 JP
07-313973 May 2010 JP
2002-0090967 Dec 2002 KR
2003-033812 May 2003 KR
2003-060625 Jul 2003 KR
2005-063478 Jun 2005 KR
1020491 Oct 2003 NL
1021197 Oct 2003 NL
347343 Dec 1998 TW
WO 88-00494 Jan 1988 WO
WO 88-06200 Aug 1988 WO
WO 8900880 Feb 1989 WO
WO 9000434 Jan 1990 WO
WO 91-04783 Apr 1991 WO
WO 91-16124 Oct 1991 WO
WO 9302779 Feb 1993 WO
WO 9315827 Aug 1993 WO
WO 93-23152 Nov 1993 WO
WO 94-11094 May 1994 WO
WO 95-34424 Dec 1995 WO
WO 9607470 Mar 1996 WO
WO 9607470 Mar 1996 WO
WO 96-28236 Sep 1996 WO
WO 9641676 Dec 1996 WO
WO 9706880 Feb 1997 WO
WO 9706880 Feb 1997 WO
WO 9822204 May 1998 WO
WO 98-25694 Jun 1998 WO
WO 9828066 Jul 1998 WO
WO 98-53902 Dec 1998 WO
WO 99-01207 Jan 1999 WO
WO 9959707 Nov 1999 WO
WO 00-18498 Apr 2000 WO
WO 00-30742 Jun 2000 WO
WO 01-00307 Jan 2001 WO
WO 01-19414 Mar 2001 WO
WO 01-32299 May 2001 WO
WO 0136075 May 2001 WO
WO 01-45829 Jun 2001 WO
WO 02-40140 May 2002 WO
WO 03-000389 Jan 2003 WO
WO 03-013706 Feb 2003 WO
WO 03-057632 Jul 2003 WO
WO 03-059495 Jul 2003 WO
WO 03-068374 Aug 2003 WO
WO 2004-101120 Nov 2004 WO
WO 2005-005028 Jan 2005 WO
WO 2005-021140 Mar 2005 WO
WO 2005-028086 Mar 2005 WO
WO 2005037414 Apr 2005 WO
WO 2005-077499 Aug 2005 WO
WO 2005-107929 Nov 2005 WO
WO 2006-029456 Mar 2006 WO
WO 2006-047814 May 2006 WO
Related Publications (1)
Number Date Country
20060131234 A1 Jun 2006 US
Continuations (5)
Number Date Country
Parent 10805608 Mar 2004 US
Child 11316593 US
Parent 10674694 Sep 2003 US
Child 10805608 US
Parent 10369813 Feb 2003 US
Child 10674694 US
Parent 09336059 Jun 1999 US
Child 10369813 US
Parent PCT/AU97/00855 Dec 1997 US
Child 09336059 US