The present invention relates to the industry of moving, hauling and/or carrying land and the like; and more specifically refers to an equipment called scraper which is used for moving land and similar materials such as mud. More specifically refers to a drag scraper, which is pulled by a tractor. Generally, two methods have been used to solve the problem of land unloading, once it is inside the box of the scraper and must be unload. The first method used is a hinged box, this method basically consists in using the box of the scraper as a container or external box hinged through a couple of bolts and a hydraulic cylinder as an element which rotates the scraper box on its pivots, this allows unloading the land through the mouth of the scraper under the action of gravity.
This method has two variants, one in which that the blade is attached directly to the hinged box of the scraper and therefore travels along therewith during the movement of the scraper (in this case the forces generated during the action of loading the scraper, are transmitted to the bolts on which the scraper box will rotate). Another variant of this method consists in fixing the blade to the outer structure of the scraper, which is the same to which the hinging bolts are fixed (in this solution the blade is firmly attached and can transmit the loading action forces to the entire structure of the machine), in this case the box is fixed and pivoted on a hinge, which is located in the frontal-bottom part of the scraper box, so that only the box floor is “lifted” (tilted) with the rotating movement of the box when unloading the land.
The second method used by the manufacturers of scrapers consists basically of a wall that pushes the material from the rear toward the front of the of the box scraper (ejector). Through the use of one or two hydraulic cylinders this wall is moved to the beginning of the mouth for unloading of the scraper where the material falls the ground under the action of gravity.
Most manufacturers of scrapers currently have chosen to provide the market with scrapers consisting of both methods for unloading the material, mainly due to the best features of one or another according to the type and condition of the ground, in which the scraper will work.
Due to the great variability of soil types and conditions in which the scrapers are used for the agricultural and construction industry, both the pivoting box unloading mechanism as well as the ejector mechanism, face problems with the unloading according to the type and conditions of the soil, making even impossible to use the scraper in some soils with any of these unloading methods, forcing the contractors to have in their inventory both hinged box scrapers and ejector scrapers.
The following known patent documents refer to the technical field of the present invention: U.S. Pat. No. 3,176,863 granted to Kuhl; U.S. Pat. No. 3,533,174 granted to Carston; U.S. Pat. No. 4,366,635 granted to Joyce, Jr; U.S. Pat. No. 4,383,380 granted to Miskin; U.S. Pat. No. 4,388,769 granted to Miskin; U.S. Pat. No. 4,398,363 granted to Miskin; U.S. Pat. No. 4,553,608 granted to Miskin; U.S. Pat. No. 5,702,227 granted to Berg; U.S. Pat. No. 6,092,316 granted to Brinker; U.S. Pat. No. 6,347,670 granted to Miskin; U.S. Pat. No. 7,707,754 granted to Congdon.
Of these documents, U.S. Pat. Nos. 6,092,316 and 6,347,670 are considered to be the closest prior art. However, these inventions differ from the currently described invention at least for the following reasons. With regards to the lifting mechanism, U.S. Pat. No. 6,092,316 discloses a mechanism of four rear bars resting on the rear wheels, so that when it is actuated, the scraper tilts forward, as shown in FIG. 1 thereof, U.S. Pat. No. 6,347,670 discloses a four rear bars also resting on the rear wheels, so that when it is actuated, the scraper tilts forward, as can be appreciated in FIG. 8. The present application relates to a system that has a frontal parallelogram mechanism and a rear parallelogram mechanism, driven by hydraulic cylinders, which are supported on the front pull and the rear wheels, respectively, allowing the scraper to be raised horizontally so that the cutting blade maintains the same angle throughout the entire travel.
With regards to the ejector, U.S. Pat. No. 6,092,316 is a four-bar mechanism actuated by hydraulic cylinders, which actuates the ejector. The ejector is attached to the structure of the machine by means of links as shown in the FIG. 4. U.S. Pat. No. 6,347,670 fails to describe an ejector. In the present invention, the ejector is contained inside a hinged box, so that when the hinged box is moved to unload the material, the ejector travels with the box. The ejector moves inside the box, actuated by hydraulic cylinders. The ejector is supported by means of wheels and respective rails.
The hinged box in U.S. Pat. No. 6,092,316 is not existent. In U.S. Pat. No. 6,347,670, the box is driven by a tilted cylinder, as shown in the figures, at approximately 45 degrees in a loading position (cylinder fully closed, staying vertically in the unload position (cylinder fully open)). See FIG. 6 of the patent. In the case of the present application, the hinged box rotates together with the ejector since the latter is located inside of the box. The hinged box has its turning point in the hinge that is located in the floor near the cutting blade, and is rotated by two cylinders. One end of the cylinder is attached to the structure of the scraper, while the other end of the cylinder is attached to the top frontal part of the hinged box.
The gate of the patent 316 consists of a link that has a pivot point (58), wherein one end of the cylinder that actuates the link unites at its intermediate approximate distance. The gate is placed is semicircular form at the tip of the link. The other end of the cylinder is attached to the structure of the scraper. When the cylinder is closed, the gate is open and vice versa. In this case, the cylinder is located in the back of the gate. The system of patent 670, is very similar to the above, the difference lies in the fact that the actuating cylinder is located on the frontal part of the gate. The basic difference with both patents lies in that the hinged gate of the present invention comprises three sections that fold down the length of the actuating piston and are hinged.
In the prior art scrapers, the cutting blade is linked to the hinged box and this represents a problem because when the hinged box tilts, it varies the approaching angle modifying thus, the efficiency of the material cut.
When the land is difficult and the scraper gets stuck, something that is quite frequent in this field, the pushing or pulling point on the same varies depending on the position of for example the hinged box, being difficult to be pushed or pulled with for example, another tractor. This represents a further disadvantage in the scrapers of the prior art known until the present invention.
Considering the background above and the inconveniences of the prior art, it is an object of the present invention to provide a scraper comprising an unloading mechanism by means of a hinged box and another unloading mechanism by means of an ejector, with which the scraper will be able to work independently of the type and condition of the soil, making it more efficient and avoid using two different machines to carry out the work.
Another object of the invention is to obtain an invariable optimum cutting angle.
In addition, another object of the invention is to provide a scraper whose main cutting blade is not coupled to the hinged box but to the external container or box.
An additional object is to provide a pushing or bearing point in the scraper whose height remains constant regardless of the position of the box.
A further object of the present invention is to provide a pulling, articulated mechanism, with a movement in three rotations, which allows it to adapt to the changes of position that occur during the operation of the scraper itself.
These and other objects will become apparent from the following description and accompanying figures. Equal reference numerals designate equal components in the different figures shown.
Before starting the detailed description of the invention, it should be noted that the construction is symmetrical, i.e., that is if the scraper is divided about its longitudinal axis, the elements that are on one side, are also on the other side.
As can be seen from the attached figures, and particularly in
The container (100) holds in its interior, among other elements, a folding gate (200), a hinged box (300) and the ejector (400). The pull arm (500) is attached to the frontal part of the container or external box; the wheel support with push element (600) is placed on its back part.
The parallelogram system (701) joins the pulling arm (500) with the container (100), while the parallelogram system (702) joins the wheel support (600) with the same container (100). The pulling arm (500) is attached to the articulated element (800) by means of a series of bolts or screws.
The container or external box (100) comprises two parallel sidewalls (101) (see
A reticulated floor (107) is joined to the plate (104), to the walls (101) and to the support (105) of the blade (112). This floor is comprised by a mesh of solepieces and serves to support the weight of the hinged box and be part of the structure of the scraper.
The tubular profile (102), which is located in the top frontal part of the container, includes three groups of support bearings (108), (109) and (110), all of them placed generally perpendicular to the profile. The group (108) is used as support for the opening of the hinged gate (200), the group (109) serves as a point of support to raise the container horizontally, and the group (110) serves as support for the piston (PS1) (see
In general terms, the structural elements are manufactured with steel plates and, when applicable, with reinforcement bushings of a suitable material, as is well known in the art, such as bronze or the use of bearings.
Returning to
Mechanical elements formed by pivoting bushings (111) (see
A pair of support elements (113) is found in the top and the rear edge of each of the sidewalls (101) that will serve as a point of support for a piston (PS2) (see
The plate (114) follows the slanted contours of each of the plates that make up the walls (101), and separably bears, side blades (115), which work in conjunction with the blade (101) to break the land.
The hinged gate (200) is comprised of plates of semicircular configuration, in at least two sections, preferably three, wherein the sections are joined together by means of hinges (201) (see
The hinged box (300) (see
In the lower and rear portion, attached to the floor (304) of the hinged box (300) there is a backing plate (310) at approximately half the height of the hinged box. This plate (310) supports part of the pressure exerted by the material on the ejector and also provides a structural reinforcement to the box. Through the space (311) located in the second half of the height of the scraper, the pistons (PS3) go through, supported by one of its ends in the hole (307), the other end is joined to the ejector (400). When at rest or at a retracted position (that is, there is no actuation), the ejector is supported on the support plate (310), on the floor of the box (304) and over the structural element (303). Beneath the floor of the box (304), a structural element of support (312) is positioned to strengthen the connection between the floor and walls of the box (see
A corner (313) is placed in the lower connections between the walls and the floor of the box that serve to prevent soil build-up on such connections and as an element of additional reinforcement for the sidewalls (308).
Guides (314) located on the external face of the top part of the walls (308), are structural elements on which the ejector will slide, by means of a sliding mechanism (315) (see
With regard to
As explained above, the pistons (PS3) are joined to the ejector through the plates (401) (just on the bearings 410) as shown in
As shown in
As shown in
With regard to
Turning to the detail of
As shown in
Parts of the plates (602A) include elements that point towards the support (600), such elements include boreholes with bushing (two per plate), these boreholes work in conjunction with boreholes provided in one of the ends of the parallelogram (702), this set of boreholes join pivotally there between by appropriate means. The opposite end of the parallelogram mechanism works the same way with the holes with bushing of the supports (117). The parallelogram mechanisms (701, 702) include a top part and a bottom part, wherein the top part is actuated by a piston (PS5 or PS4 in the case of the parallelogram 701) (see
The support (600) includes a pair of push elements (604), which are used when the scraper gets stuck. This “stuck” phenomenon is very common and it is also common to loosen the scrapers by pushing them with a tractor or a similar vehicle. In the interior of the push element there is an outer sleeve (612) and an inner sleeve (613). In the outer sleeve there is a bolt with ear (614), which slips into the slot (607) of the inner sleeve (see
Plates (602B) have a different configuration than the plates (602A) and are positioned equidistant between each other with respect to the center of the profile (601) and have a generally triangular shape, where its rearmost end, i.e., near to the top elements (605), ends in a hook (603) (see
The material of construction of the scraper is, in general, structural grade carbon steel plate.
The support (600) is attached to the container (100) by way of a parallelogram mechanism (702) similar to the parallelogram mechanism (701) that joins the pulling arm (500) with the container (100).
The two parallelogram mechanisms (701 and 702) are actuated at the same time when it is desired to evenly raise the container (100). It is also possible that the container is horizontally tilted, especially to give the cutting blade (112) an inclination. This inclination is achieved by activating or activating deactivating any of the mechanisms of parallelogram and with this tilting the container an angle varying from 0 to 45 degrees with the horizontal, preferably between 4 and 15 degrees.
The two parallelogram mechanisms (701 and 702) can be actuated at the same time when you it is desired to evenly raise the container (100), or at a different time if it is desired to raise the container at a certain angle with respect to the horizontal, and give the cutting blade (112) a tilt.
The parallelogram mechanism (702) is held by its first end to the holes in the plates (602A) (see
The parallelogram mechanism (701) holds onto the holes in the plates (502A, 502B) (see
At the lower end of the plates (602A) a borehole is provided where the arrow or shaft (608) will pass which will serve as a support to respective scraper wheels. Above these axis (608) and near the upper edge of the plates (602A), the supporting and swing bolts (609) are located for the piston (PS5, PS4) which passes through the tubular profile (601) and with this two perforations (610, 611) generally of elliptical configuration are provided. The body of the respective piston (PS5, PS4) passes through the drilled hole (610) and through the drilled hole (611) passes the rod thereof.
The pistons described herein are generally hydraulically actuated, although other types of activation means are possible.
As previously mentioned, the push elements (604) are means used for pushing or pulling the scraper. The pulling action is carried out by placing elements such as hooks that correspond in form with the already described hook (603). Pushing action is carried out by using the top elements (605) that are mechanically connected to the structural profile or inner sleeve (613), which is configured in a rectangular longitudinal section and an equally rectangular cross-section as well, although other configurations may be used. The sheath or outer sleeve (612) of the push element (604) has a form corresponding to the inner sleeve (613) so that it slides longitudinally within the outer sleeve. The outer sleeve has at its farthest end from the stop (605) the shock element (606) (
The previous configuration prevents the scraper from moving its pushing point. An inconvenience shown by the scrapers of the prior art is that they often get stuck at any stage of the working process. It is known that pushing points of current scrapers move together with the hinged box and therefore, when the scraper gets stuck with the hinged box in an elevated position, it is extremely difficult to push the scraper since its pushing point is equally elevated.
The scraper according to the present invention overcomes this drawback by maintaining the pushing point in a single level, regardless of the position of the container (100). This pushing point is represented by the top element (605).
The articulated element device (800) (see
It comprises three main parts: a first body (801) joined articulately to the center piece (802), which in turn articulately joins to a third hitch body (803). The connection between the first body and the center piece is made by means of a cylindrical arrow (804) having a first portion of a larger diameter (804A), a rod (804B), a keyway section (804C), a neck (804D) and finally the end (804E). The arrow (804) is introduced into the borehole (802A), supported on bushings (806). Perpendicular to this borehole (802A), the borehole (802B) is provided, which also includes two bushings (808A) used to accommodate the short bolts (808) that are secured to the body (801) by means of a threaded screw plate (808b) or any similar element, corresponding to the borehole (801E). The short bolt (808) is inserted through the borehole (801C) for coupling with bushings (808A) and is located on the plate (801A).
The threaded bolt (804) protrudes out of the central borehole of the articulated body (803), wherein this protrusion is the final end (804E) and the keyway section (804C) with its respective keyway is allocated within the body (803). This section (803) includes a notch in its central borehole that will contain the keyway (805), in order to allow the body (803) to rotate together with the arrow (804). To avoid that the articulated body becomes detached from the arrow (804), the neck section (804) is held in position by means of the crescent-shaped elements (803A), which in turn are held in position by means of fixing elements (803B) such as screws or rivets.
Finally, bolt (807) is placed between the boreholes transversal to the longitudinal axis of the scraper forward movement. This bolt is secured by means of conventional clamping elements (807a) such as screws.
A plate (801D) with perforations (801B) is positioned in the first body (801). These holes are used to modify the height of the articulated element device so that the height of the tractor and the scraper are matched. The plate (801F) joins the two plates (801A) and plate (801D), which is perpendicular to this plate (801F).
The arrangement of the device's pieces (800) allows a three-dimensional movement during its operation, with a minimum of components.
While individual components have been described, as is evident from the
Process of Removing the Material
The scrapers are used to remove material (usually soil) from a point and transport it to a different place. To accomplish this (in accordance with prior art scrapers), the scraper is placed over the material to be removed and is lowered to a given point, wherein the tilting box is inclined along with the cutting blade and the scraper is moved forward to collect the material.
The cutting blade is tilted according to the type of material to be removed.
Once the collecting box is full of the material, it is leveled horizontally and the scraper is raised, wherein the content is withdrawn by one of the two known methods: tilting the collection box or by means of a pusher.
In the case of the present invention, the method of material removal has the following variants:
In the prior art, the blades are coupled to the hinged or collecting box which means that the box and the blade will have the same inclination and thus, the operation of the scraper will vary. In the present invention, the blade is coupled to the container or external box (100) and has an angle that will not vary, regardless of the position of the collection box, which has the benefit of requiring less power consumption and increasing the amount of material removed per work day. This is accomplished since the angle provided to the blade is the optimum angle for cutting the soil, thus achieving less power consumption, in such a way that this angle is not change whether the container is raised or lowered, so that the operator controls the depth of cut and in any case, the power consumption will be always optimal. In other words, the optimum cutting angle is obtained by the parallelogram mechanisms that prevent the cutting blade from changing its angle of cutting, making the cut more efficient.
Another important difference is that the general configuration of the scraper of the present invention comprises three main parts:
a frontal part that includes:
a central part that includes:
a rear part that includes:
The frontal part joins mechanically to the central part only by means of a parallelogram mechanism and the central part joins mechanically to the rear part only by means of a parallelogram mechanism. Where the mechanisms of a parallelogram are equal or different but in the preferred embodiment are equal.
A third and no less important difference is the fact that the ejection of the material is accomplished by means of one or both methods known in the art and such dual configuration was not provided in a single scraper, until the present invention. Actually, the present invention provides a scraper that can eject the material by tilting the material collection box referred herein as a hinged box and/or ejecting the material through the ejector included in the container or outer box.
A fourth difference between the scrapers of the prior art is the fact that the container or external box can be raised vertically through the parallelogram mechanisms. This raise can be parallel to the horizontal or have a degree of inclination.
The following describes the method of soil movement of the scraper according to the present invention.
Wherein activation of the pistons in stages (b) and (f) is performed so that the container is raised almost parallel to the horizontal line and wherein both sets of pistons are actuated at the same time.
Wherein unloading the material on step h) can be done by one of three options:
The scraper of the present invention has been described as such a way that a person with average knowledge in the art can understand the invention and at a given moment can reproduce it at industrial level. It also submitted that this invention is novel and its development involves an inventive step that meets the worldwide criteria of patentability.
It is requested that equivalents of devices and building elements be included when considered obvious to a person with average knowledge in the art, for example, some of the profiles can be circular in the cross section, the reinforcement elements can be of different sizes, location and shape or even modifications can be made in the way of connecting other than welding. It is requested that the scope of the present invention be limited only by the appended claims and their interpretation based on this description and the appended figures that are part of this application.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/MX2011/000075 | 6/14/2011 | WO | 00 | 1/21/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/173463 | 12/20/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2280439 | McLean | Apr 1942 | A |
2399838 | Vaughn | May 1946 | A |
3154868 | Buchli | Nov 1964 | A |
3316822 | Seauan | May 1967 | A |
3418735 | Martin | Dec 1968 | A |
3475840 | Williams | Nov 1969 | A |
3574960 | Peterson | Apr 1971 | A |
3584405 | Mazzarins | Jun 1971 | A |
3633679 | Dahlberg | Jan 1972 | A |
3889404 | Eftefield | Jun 1975 | A |
4299290 | Nunes, Jr. | Nov 1981 | A |
4353175 | Gurries | Oct 1982 | A |
4632192 | Hooks | Dec 1986 | A |
5839212 | Brinker | Nov 1998 | A |
6041528 | Broach | Mar 2000 | A |
6092316 | Brinker | Jul 2000 | A |
6125561 | Shull | Oct 2000 | A |
6910289 | Moyna | Jun 2005 | B2 |
7117953 | Moyna | Oct 2006 | B2 |
7356949 | Moyna | Apr 2008 | B2 |
7367408 | Moyna | May 2008 | B2 |
7640996 | Moyna | Jan 2010 | B2 |
7647984 | Moyna | Jan 2010 | B2 |
7673700 | Moyna | Mar 2010 | B2 |
20020078606 | Grummett | Jun 2002 | A1 |
20040188115 | Moyna | Sep 2004 | A1 |
20050217044 | Moyna | Oct 2005 | A1 |
20060123674 | Moyna | Jun 2006 | A1 |
20070039212 | Moyna | Feb 2007 | A1 |
20080230244 | Moyna | Sep 2008 | A1 |
20080251266 | Moyna | Oct 2008 | A1 |
20090084002 | Moyna | Apr 2009 | A1 |
20090085328 | Moyna | Apr 2009 | A1 |
20090095496 | Moyna | Apr 2009 | A1 |
20090107014 | Moyna | Apr 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20140124226 A1 | May 2014 | US |