The present invention relates to apparatus and methods for removing scratches from smooth surfaces such as glass. More specifically, the present invention relates to a polishing wheel and method for use in removing the scratches.
Rotary tools are used to grind and polish glass to remove scratches and other damage from the surface of the glass. After processing the glass, such as windshields, it is desirable to leave the glass so the scratch or other damage is less visible and/or less likely to affect viewing through the glass. U.S. Pat. Nos. 4,709,513 and 4,622,780 show various tools for use in polishing glass.
Further improvements are desired for the rotary tools and methods used to polish glass.
The present invention relates to a polishing wheel including a body defining a central longitudinal axis and a central passage coaxial with the longitudinal axis. The body is mountable to a rotating polishing device. The body of the polishing wheel has a lower polishing surface including a planar portion. The lower polishing surface is defined by a lower portion of the body. The body further has an upper portion disposed on an opposite side of the lower portion from the lower polishing surface. The lower portion and upper portion are each made from a first material having a common component. The upper portion and the lower portion are provided with different colors, wherein wearing away of the lower portion during the polishing operation is more visible due to the color differential between the upper and lower portions.
The present invention also relates to a polishing wheel wherein a lower polishing surface includes a plurality of main flutes extending from the central passage to an outer edge of the lower polishing surface. Further flutes extend from the outer edge of the lower polishing surface and terminate without communicating with the central passage or the main flutes.
Referring to
Polishing wheel 10 includes a body 12 defining a central longitudinal axis 14. During use, body 12 is rotated about longitudinal axis 14. Polishing wheel 10 is designed for use with a center slurry feed tool like that described in the above noted patents.
Body 12 includes a central passage 16 which is coaxial with longitudinal axis 14. Central passage 16 is in fluid communication with the slurry source provided by the rotating tool as described in the above noted patents.
Body 12 further includes a lower portion or layer 18, and an upper portion or layer 20. Lower portion 18 defines a lower polishing surface 26. Upper portion 20 is located on an opposite side of lower portion 18 from polishing surface 26. An upper surface 28 is defined by upper portion 20 and faces in an opposite direction to polishing surface 26. Body 12 further defines a side surface extending between polishing surface 26 and upper surface 28. Polishing surface 26 extends from an inner edge 36 adjacent to central passage 16 to an outer edge 38.
Lower portion 18 includes main flutes 40 extending from central passage 16 at inner edge 36 to outer edge 38. In the preferred embodiment, main flutes 40 extend radially. In one preferred embodiment, main flutes 40 include reduced profile exit passages 42 for providing control of slurry outflow. Generally, a main portion 41 of main flutes 40 extends completely through lower portion 18. Exit passages 42 are shown in the illustrated embodiment as small v-grooves formed in lower portion 18. Main flutes 40 are arranged radially relative to longitudinal axis 14. Main flutes 40 are further arranged to be equally spaced from each other.
Secondary flutes 44 are also provided in lower portion 18. Secondary flutes 44 extend from outer edge 38 toward central passage 16. However, secondary flutes 44 terminate before communicating with central passage 16 or main flutes 40. In the illustrated embodiment, secondary flutes 44 extend all the way through lower portion 18. Secondary flutes 44 are radially arranged, and are equally spaced about polishing surface 26.
Central passage 16 includes a T-nut 46 which permits mounting of polishing wheel 10 to the rotating tool. Preferably, an inner surface of T-nut 46 is threaded. Spikes or other projections on T-nut 46 can be added to assist with holding T-nut 46 in position.
Preferably, body 12 is made from a moldable material. In the preferred embodiment, lower portion 18 and upper portion 20 are made from a common material, such as a moldable elastomeric material. Lower portion 18 is further provided with an impregnated material to facilitate polishing. Preferably, the impregnated material is a particulate. In one preferred embodiment, the particulate material is cerium oxide.
Upper portion 20 is not designed to polish. Therefore, no impregnated material for polishing is used in upper portion 20 in the preferred embodiment.
Preferably, lower and upper portions 18, 20 are molded together such that the layers are heat fused together. One preferred elastomeric material is expanded urethane. LP66 designation by Universal Photonics of Hicksville, N.Y. is one material for layer 18 that can be used. LP66 material includes impregnanted cerium oxide.
To indicate wear of lower portion 18 to the user, a colorant is added to one or both of lower portion 18 and upper portion 20. The colorant or colorants are selected so as to provide a visual contrast between lower portion 18 and upper portion 20. Such contrast provides a visual indication to the user when lower portion 18 is worn away, or is otherwise sufficiently removed to no longer be desired for continued use in further polishing operations. For example, lower portion 18 can be rust in color, and upper portion 20 can be gray.
Secondary flutes 44 reduce the lower surface area and allow for an increase in the workload on the wheel by minimizing the square area in contact with the surface being polished. Such increase in the workload will allow the polishing operation to be accomplished faster. The arrangement of flutes as shown in the Figures also helps to more evenly distribute the polishing material across the polishing surface 26, to minimize distortion. One problem with prior art devices is that inexperienced users can apply excessive pressure and cause uneven polishing, and possibly distortion, to the glass. By providing an arrangement of polishing surface 26 as described above, less distortion and less uneven polishing results.
Body 112 includes a central axis 114 and a central passage 116 including a T-nut 146 which permits mounting of polishing wheel 100 to the rotating tool. Lower portion 118 includes a different color from upper portion 120. Body 112 includes a side taper 130 which tapers down to polishing surface 126.
In the illustrated embodiment, polishing wheel 100 includes a plurality of radially extending flutes 140 extending from central passage 116 to an outside edge of lower portion 118.
A further alternative embodiment of a polishing wheel 200 is shown in
The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
Number | Name | Date | Kind |
---|---|---|---|
3386214 | Shoemaker | Jun 1968 | A |
4037367 | Kruse | Jul 1977 | A |
4622780 | Tingley | Nov 1986 | A |
4709513 | Tingley | Dec 1987 | A |
4918872 | Sato et al. | Apr 1990 | A |
5243790 | Gagne | Sep 1993 | A |
5645469 | Burke et al. | Jul 1997 | A |
6090475 | Robinson et al. | Jul 2000 | A |
6814656 | Rodriguez | Nov 2004 | B1 |
Number | Date | Country |
---|---|---|
WO 9629179 | Sep 1996 | WO |