This application relates to a coated article including a coating supported by a glass substrate. The coating includes an anti-etch layer that is resistant to fluoride-based etchant(s), and may also include other layer(s) such as a scratch-resistant layer comprising diamond-like carbon (DLC).
Unfortunately, vandals have increasingly been turning to glass etchants as a tool of choice for graffiti. For example, graffiti on glass windows of subway cars is commonplace. Vandals are forming such graffiti on windows of subway cars, buildings, trains, buses and other glass windows by using glass etchants which are capable of etching glass at locations where such etchants are applied.
Armor-etch is an example of a bifluoride salt (e.g., ammonia bifluoride or sodium bifluoride) based paste used for etching patterns on glass surfaces, and has been used in forming graffiti. The mechanism of fluoride ion attack on SiO2 of glass is summarized below for purposes of example only and understanding.
Though hydrogen fluoride (HF) does not dissociate well, active hydrogen fluoride paste reacts with silicate (which forms the matrix for glass) in the presence of water as in the following equations:
HF2−=HF+F−
6HF+SiO2=H2SiF6+2H2O
An alternative type of glass etching material, which is also a bifluoride based etchant, is sometimes referred to as B&B etching creme manufactured by B&B Etching Products. Ammonium bifluoride ((NH4)HF2) and sodium bifluoride (NaHF2) salts are very soluble in water. For example, a 2.8 g/100 g solution of ammonium fluoride would produce a 1.7 g/100 g solution of hydrofluoric acid (HF) at pH 1, with 85% of the fluorine atoms in the form of HF. At higher concentrations or higher pH, a significant amount of the HF2− ion is present. Acidified fluorides can produce substantial quantities of HF in solution.
The active ammonia bi-fluoride reacts with silicate in the presence of water as presented in the following equations:
(NH4)HF2=(NH4)++HF2−
HF2−=HF+F−
6HF+SiO2=H2SiF6+2H2O
An equilibrium is established between the reactants and products. Thus, as hydrogen fluoride is consumed in reacting with the SiO2 of the glass, more hydrogen fluoride is produced to maintain the equilibrium. The SiO2 etch rate (i.e., the etch rate of the glass) is linearly related to the HF− and HF2− concentrations, and is not related to the F− concentration at any pH.
Conventional coatings used for fluoride resistance to protect glass from such etchings are polymer-based film. Unfortunately, these coatings are susceptible to damage and are not scratch resistant thereby rendering their use in environments such as subway cars, buses and vehicles undesirable. Moreover, in some cases the film can be lifted and the etchant applied under the film.
Scratch resistant coated glass articles are known which utilize a layer(s) comprising diamond-like carbon (DLC) on the glass surface. For example, see U.S. Pat. Nos. 6,261,693, 6,303,226, 6,227,480, 6,280,834, 6,284,377, 6,447,891, 6,461,731, 6,395,333, 6,335,086, and 6,592,992, the disclosures of which are all hereby incorporated herein by reference. While carbon is resistant to fluoride ion (and HF2−) attack, these layers when formed via ion beam deposition techniques at very small thicknesses give rise to micro-particulates on the substrate. When such layers are very thin in nature, these micro-particles may give rise to pinholes which are pathways for the HF to attack the underlying glass. Thus, scratch resistant coated articles which utilize only a layer comprising DLC on the glass are sometimes susceptible to the fluoride based etchant attacks described above.
In view of the above, it can be seen that there exists a need in the art for a scratch resistant coated article which is also resistant to attacks by fluoride-based etchant(s).
A scratch resistant coated article is provided which is also resistant to attacks by at least some fluoride-based etchant(s) for at least a period of time. In certain example embodiments, an anti-etch layer(s) is provided on the glass substrate in order to protect the glass substrate from attacks by fluoride-based etchant(s). In certain example embodiments, the anti-etch layer(s) is substantially transparent to visible light.
In certain example embodiments, the anti-etch layer may be provided on the glass substrate, along with an overlying scratch resistant layer of or including diamond-like carbon (DLC).
In certain example embodiments, an underlayer(s) may be provided under the anti-etch layer(s).
In certain example embodiments, the anti-etch layer(s) may comprise or consist essentially of indium oxide and/or cerium oxide. In certain example embodiments, the optional underlayer(s) may comprise or consist essentially of silicon oxide or the like.
In certain example embodiments, there is provided a coated article comprising: a glass substrate; an anti-etch layer comprising indium oxide and/or cerium oxide supported by the glass substrate, wherein the anti-etch layer is resistant to at least some fluoride-based glass etchants; and a layer comprising diamond-like carbon (DLC) provided on the glass substrate over at least the anti-etch layer comprising indium oxide and/or cerium oxide.
In other example embodiments of this invention, there is provided a coated article comprising: a glass substrate; an anti-etch layer supported by the glass substrate, wherein the anti-etch layer is resistant to at least some fluoride-based glass etchants.
In still further example embodiments of this invention, there is provided a method of making a coated article, the method comprising: providing a glass substrate; at a temperature of at least about 200 degrees C., forming an anti-etch layer comprising indium oxide and/or cerium oxide on the glass substrate, wherein the anti-etch layer is resistant to at least some fluoride-based glass etchants; and using at least one ion beam, forming a layer comprising diamond-like carbon (DLC) on the glass substrate over at least the anti-etch layer.
Referring now more particularly to the accompanying drawings in which like reference numerals indicate like parts/layers throughout the several views.
Coated articles according to certain example embodiments of this invention may be used as subway car windows, transit bus windows, train windows, or other types of vehicle windows, or the like in different applications. Coated articles according to certain example embodiments of this invention may also be used as architectural windows, in monolithic or IG unit form.
A scratch resistant coated article is provided which is also resistant to attacks by fluoride-based etchant(s). In certain example embodiments, an anti-etch layer(s) is provided on the glass substrate in order to protect the glass substrate from attacks by fluoride-based etchant(s). In certain example embodiments, the anti-etch layer(s) is substantially transparent to visible light (i.e., the anti-etch layer if deposited alone would be transmissive to at least about 80% of visible light, more preferably at least 80% of visible light).
In certain example embodiments of this invention, single or multi-layer coatings according to example embodiments of this invention are able to resist HF attack on glass for twenty-four hours or so with no visible sign of significant adverse effect. In example embodiments of this invention, such coatings have a dense structure, are characterized by ultra-low pinhole density, and/or are characterized by substantial chemical inertness (e.g., forming insoluble fluorides).
In certain example embodiments, the thickness of the anti-etch layer (see any layer 2 or 2′ herein) need not exceed about 0.9 μm (or 9,000 Å). In certain example embodiments, the thickness of the anti-etch layer may be from about 50 to 9,000 Å, more preferably from 100-5,000 Å. In certain preferred instances, the anti-etch layer (2 or 2′) is preferably at least about 2,500 Å thick, and still more preferably from about 3,000 to 5,000 Å thick. When the anti-etch layer is thinner than this, the etch resistance suffers undesirably, whereas when the anti-etch layer thickness is greater than this optical properties suffer. However, it is possible for the anti-etch layer to be thicker (e.g., from 9,000 to 20,000 Å) in certain instances.
The layer 3 of or including DLC may be any of the DLC inclusive layers described in one or more of U.S. Pat. Nos. 6,261,693, 6,303,226, 6,227,480, 6,280,834, 6,284,377, 6,447,891, 6,461,731, 6,395,333, 6,335,086, and/or 6,592,992, the disclosures of which are all incorporated herein by reference. For example, and without limitation, DLC inclusive layer 3 may be from about 5 to 1,000 angstroms (Å) thick in certain example embodiments of this invention, more preferably from 10-300 Å thick. In certain example embodiments of this invention, layer 3 including DLC may have an average hardness of at least about 10 GPa, more preferably at least about 20 GPa, and most preferably from about 20-90 GPa. Such hardness renders layer (s) 3 resistant to scratching, certain solvents, and/or the like. Layer 3 may, in certain example embodiments, be of or include a special type of DLC known as highly tetrahedral amorphous carbon (t-aC), and may be hydrogenated (t-aC:H) in certain embodiments (e.g., from 5 to 39% hydrogen, more preferably from 5 to 25% hydrogen, and most preferably from 5 to 20% hydrogen). This type of DLC includes more sp3 carbon-carbon (C—C) bonds than sp2 carbon-carbon (C—C) bonds. In certain example embodiments, at least about 50% of the carbon-carbon bonds in the layer 3 may be sp3 carbon-carbon (C—C) bonds, more preferably at least about 60% of the carbon-carbon bonds in the layer 3 may be sp3 carbon-carbon (C—C) bonds, and most preferably at least about 70% of the carbon-carbon bonds in the layer 3 may be sp3 carbon-carbon (C—C) bonds. In certain example embodiments of this invention, the DLC inclusive layer 3 may have a density of at least about 2.4 gm/cm3, more preferably of at least about 2.7 gm/cm3. Example linear ion beam sources that may be used to deposit DLC inclusive layer 3 on substrate 1 via an ion beam include any of those in any of U.S. Pat. No. 6,261,693, 6,002,208, 6,335,086, or 6,303,225 (all incorporated herein by reference). When using an ion beam source to deposit layer(s) 3, hydrocarbon feedstock gas(es) (e.g., C2H2), HMDSO, or any other suitable gas, may be used in the ion beam source in order to cause the source to emit an ion beam toward substrate 1 for forming DLC inclusive layer(s) 3. It is noted that the hardness and/or density of layer(s) 3 may be adjusted by varying the ion energy of the depositing apparatus. The use of DLC inclusive layer 3 allows the coated article (e.g., monolithic window, or IG unit) to be more scratch resistant than if the coating were not provided.
Anti-etch layer(s) 2 is provided to allow the coated article to be resistant to attacks by fluoride-based etchant(s) such as those discussed above. The anti-etch layer 2 may be deposited by sputtering, ion beam deposition, or ion beam assist deposition in different embodiments of this invention. Anti-etch layer 2 substantially prevents fluoride-based etchant(s) such as those discussed above from reaching the glass substrate 1 for a period of time (e.g., for at least one hour, more preferably for at least twelve hours, and most preferably for at least twenty-four hours), thereby rendering the coated article more resistant to attacks by fluoride-based etchant(s) such as those discussed above. Moreover, since certain embodiments of this invention are used in the context of window applications, the anti-etch layer(s) 2 is substantially transparent to visible light (i.e., the anti-etch layer if deposited alone would be transmissive to at least about 90% of visible light).
The anti-etch layer 2 (or 2′) may be made of or comprise one or more of the following materials in certain embodiments of this invention. Example materials, resistant to attacks by fluoride-based etchant(s), which may be used for layer 2 include: nitrides of Al, Si, Nb, Cr and/or Ni, oxides of Al, Si, Ge, Mg, Nb, Mn, V, W, Hf, Ce, and/or Sn, carbides of Si and/or W, fluorides of Mg, Ba and/or Ca, borides of Zr, Ni, Co and/or Fe, oxides of Mo, In, Ta, Ni, Nb, Cu, MoIn, MoTa, and/or NiCu, and oxynitrides of Mo, In, Ta, Ni, Nb, Cu, MoIn, MoTa, and/or NiCu. Other possible materials for any anti-etch layer 2 (or 2′) herein include zirconium oxycarbide (ZrOxCy), tin oxycarbide (SnOxCy), zirconium nitride carbide (ZrNxCy), and/or tin nitride carbide (SnxNCy).
The anti-etch layer 2 in the
It is believed that the underlayer 4 of silicon oxide removes or reduces chemical defects on the surface on which the anti-etch layer is directly provided. Such defects may lead to growth defects in the anti-etch layer 2 which can be weak points more susceptible to etchant attack. Thus, the removal or reduction of such defects via the use of silicon oxide is advantageous in that etch resistance can be surprisingly improved. The silicon oxide of the underlayer 4 may be formed in any suitable manner, such as by magnetron sputtering, flame pyrolysis (combustion-CVD). An example advantage of combustion-CVD is that it is an atmospheric pressure process and does not require expensive hardware typically associated with low pressure processes such as sputtering.
In the
In certain example embodiments of this invention, any of the aforesaid embodiments may include a coated article having a visible transmission of from about 10 to 90%, more preferably from about 30 to 85%, and most preferably from about 50 to 80%.
In certain example embodiments of this invention, any of the aforesaid underlayers (e.g., 4 or 4′ of or including SiOx or the like) may have a thickness of from 30 to 800 Å, more preferably from about 50 to 500 Å, and most preferably from about 100 to 400 Å.
It has been found that the deposition temperature for the anti-etch layer 2 (or 2′) may in certain instances play a role in etch resistance. In certain example instances, depositing anti-etch layer 2 at elevated temperatures results in unexpectedly improved etch resistance. In certain example embodiments, the anti-etch layer (2 and/or 2′) is deposited onto a glass substrate 1 (with or without an underlayer(s) 4 therebetween) at a temperature of at least 100 degrees C., more preferably of at least 200 degrees C., still more preferably at least 300 degrees C., even more preferably of at least 400 degrees C., and sometimes at least 450 degrees C. However, in other example instances, elevated temperatures are not used and the deposition may take place at room temperature or the like.
The following examples are provided for purposes of example only and are not intended to be limiting unless expressly claimed.
A comparison between Examples 1A and 1B illustrates the unexpected advantages associated with providing a underlayer of silicon dioxide under the anti-etch layer.
In Example 1A, a float glass (i.e., soda lime silica based glass) substrate 1 about 6 mm thick was provided, and a layer of indium oxide was sputtered directly onto the surface of the glass substrate with no layer therebetween (e.g., see
Example 1B was the same as Example 1A, except that in Example 1B a 200 Å thick underlayer 4 of SiO2 was provided between the glass substrate 1 and the indium oxide anti-etch layer 2 (e.g., see
In Example 2, a polished borosilicate glass substrate 1 about 1 mm thick was provided, and a layer of indium oxide was sputtered directly onto the surface of the borosilicate glass substrate with no layer therebetween (e.g., see
In Example 3, a layer of cerium oxide was sputtered directly onto the surface of a 1 mm thick borosilicate glass substrate with no layer therebetween at room temperature (e.g., see
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
This application claims priority on U.S. Provisional Patent Application Nos. 60/529,624, filed Dec. 16, 2003, and 60/529,103, filed Dec. 15, 2003, the entire disclosures of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4336119 | Gillery | Jun 1982 | A |
4353885 | Hoekje | Oct 1982 | A |
4568578 | Arfsten et al. | Feb 1986 | A |
5122252 | Latz et al. | Jun 1992 | A |
5135808 | Kimock et al. | Aug 1992 | A |
5268217 | Kimock et al. | Dec 1993 | A |
5594231 | Pellicori et al. | Jan 1997 | A |
5635245 | Kimock et al. | Jun 1997 | A |
5679413 | Petrmichl et al. | Oct 1997 | A |
5888593 | Petrmichl et al. | Mar 1999 | A |
5935735 | Okubo et al. | Aug 1999 | A |
6002208 | Maishev et al. | Dec 1999 | A |
6077569 | Knapp et al. | Jun 2000 | A |
6254796 | Rath et al. | Jul 2001 | B1 |
6261693 | Veerasamy | Jul 2001 | B1 |
6280834 | Veerasamy et al. | Aug 2001 | B1 |
6284377 | Veerasamy | Sep 2001 | B1 |
6291054 | Thomas et al. | Sep 2001 | B1 |
6303225 | Veerasamy | Oct 2001 | B1 |
6303226 | Veerasamy | Oct 2001 | B2 |
6335086 | Veerasamy | Jan 2002 | B1 |
6338901 | Veerasamy | Jan 2002 | B1 |
6359388 | Petrmichl | Mar 2002 | B1 |
6368664 | Veerasamy et al. | Apr 2002 | B1 |
6395333 | Veerasamy | May 2002 | B2 |
6447891 | Veerasamy et al. | Sep 2002 | B1 |
6461731 | Veerassamy et al. | Oct 2002 | B1 |
6475573 | Veerasamy et al. | Nov 2002 | B1 |
6592992 | Veerasamy | Jul 2003 | B2 |
6592993 | Veerasamy | Jul 2003 | B2 |
6610360 | Petrmichl et al. | Aug 2003 | B2 |
6632762 | Zaykoski et al. | Oct 2003 | B1 |
6638570 | Veerasamy | Oct 2003 | B2 |
RE38358 | Petrmichl | Dec 2003 | E |
6663753 | Veerasamy et al. | Dec 2003 | B2 |
6669871 | Kwon et al. | Dec 2003 | B2 |
6686050 | Lingle et al. | Feb 2004 | B2 |
6689475 | Lin | Feb 2004 | B1 |
6713178 | Veerasamy | Mar 2004 | B2 |
6713179 | Veerasamy | Mar 2004 | B2 |
6716532 | Neuman et al. | Apr 2004 | B2 |
6723211 | Lingle et al. | Apr 2004 | B2 |
6756119 | Clough | Jun 2004 | B1 |
6768581 | Yip et al. | Jul 2004 | B1 |
6793979 | Veerasamy | Sep 2004 | B2 |
20010044030 | Veerasamy et al. | Nov 2001 | A1 |
20030143401 | Hukari et al. | Jul 2003 | A1 |
20030194616 | Carcia et al. | Oct 2003 | A1 |
20040072016 | Okazaki et al. | Apr 2004 | A1 |
20050178652 | Murphy et al. | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
0 636 702 | Feb 1995 | EP |
1 598 924 | Sep 1981 | GB |
8-104546 | Apr 1996 | JP |
11-084624 | Mar 1999 | JP |
WO 2005115941 | Dec 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050129934 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
60529624 | Dec 2003 | US | |
60529103 | Dec 2003 | US |