Various types of designs and configurations of vibrating screen machines (“shakers”) have been used in the past. These vibrating shakers are used as screening and separation devices in various industries, such as in the drilling and mining industries to recycle drilling mud. During drilling operations, drilling mud or fluid is circulated from the surface, down through a drill string, and down to a drill bit. The drilling mud performs a variety of functions, such as removing cuttings from the well bore that are created by the drill bit during drilling. After use in the well bore, the drilling mud, along with debris and drill cuttings, is brought to the surface where it is screened to remove solids over a certain size. This process allows the drilling mud to be re-used (i.e., recirculated).
In typical shakers, a screen or screen assembly is detachably secured to the vibrating shaker machine. With the screen assembly or multiple screen assemblies secured in place, a tray is formed with the opposed, parallel sidewalls of the shaker. The drilling mud, along with drill cuttings and debris, is deposited on the top of the screen assembly at one side. The screen assembly is vibrated at a high frequency or oscillation by a motor or motors for the purpose of screening or separating materials placed on the screen. The liquid and fine particles will pass through the screen assembly by force of gravity and be recovered underneath. The solid particles above a certain size migrate and vibrate across the screen or screens where they are removed.
It is known that to obtain the proper vibration of the screen assembly, slackness in the screens must be discouraged. Any slackness in the screen produces an undesirable flapping action of the screen, which reduces the effectiveness of the shaker vibration and also results in increased wear of the screen. Accordingly, it is known that the screen should be securely and tightly held down to the vibrating machinery. At the same time, the screen assemblies are subject to stresses from the vibrating machinery and wear over time and require periodic replacement. The migration of solids across the screens also contributes to the wear on the screen assemblies.
One type of attachment mechanism includes hooks on each longitudinal end of the screen assembly to connect to the shaker. The shaker will have a channel-shaped drawbar on each side, which mates with a corresponding hook on the screen assembly. The drawbars are held in place by bolts or other fasteners. These are detachably connected so that the screens may be replaced from time to time.
The shaker may further include a bed or deck composed of a plurality of cushioned rails on which one or more screen assemblies rest. Rather than having the bed or deck for the screen assembly flat or horizontal, the bed may be modified to be arched, bowed, or curved upward so that the screen cloth or screen assembly is stretched tightly over the arched or curved surface. The height of the curvature of the deck may vary from one-half to one inch from the center to the sides. These beds or decks are referred to as crowned decks.
An early example of a screen for a crowned deck shaker is shown in U.S. Pat. No. 1,886,173, entitled “Screen.” With a crowned deck, the screen cloth must be flexible enough to conform to the arch in the deck. Additional features to maintain tautness include spring tensioning bolts to prevent loosening as the screens or screen assemblies stretch and seat onto the deck.
The crowned deck and accompanying crowned screen assembly can cause uneven fluid coverage. Because of the crowned deck, the fluid and solids deposited on the screen assembly to be separated will first gather at the sides. Depending on the fluid level, the arched center of the screen assembly may be exposed. The drilling mud to be screened may extend further out along the sides of the shaker deck than at the center where maximum deck height occurs. This will reduce the effective screening area of the vibrating shaker and reduce the efficiency. This condition can also lead to mud losses at the discharge and contribute to unacceptably wet cuttings if the drilling fluid passes across the surface of the screen assembly without being screened.
Several measures have been employed in response to these issues. Manufacturers have modified the vibrating shaker to vary and alter the pitch of the deck itself so the drilling fluid is moving uphill from its entry to discharge. For example, the bed or deck may be set at an incline angle of 1 degree to 4 degrees. The uphill movement of fluid and cuttings helps to ensure that the drilling fluid is properly screened. The inclined deck angle, however, also results in solids moving more slowly across the screen. The solids abrade the screen as they move across. The longer time on the screen results in additional wear on the screen, which lowers screen life.
An alternate measure employed is to corrugate the screen assembly to provide ridges to contact the fluid and assist in channeling the fluid. An example of this approach is provided by U.S. Pat. No. 5,417,859, entitled “Undulating Screen for Vibratory Screening Machine and Method of Fabrication Thereof.”
Another solution to the problems associated with a crowned deck is to have a screen assembly with a flat surface on the top and a curved bottom surface to match the curvature of the crowned deck. This approach is shown in U.S. Pat. No. 5,927,511, entitled “Flat Screen Panel for Crowned Deck Vibrating Shaker.” The screen assembly is rigid and essentially converts the crowned deck to a flat deck. The flat surface provides a larger effective screening area. However, variation in the curvature of the crowned deck due to varying designs and wearing of the crowned deck may prevent the screen assembly from properly attaching to the crowned deck.
In one aspect, the disclosed subject matter relates to a screen assembly for attachment to a crowned deck of a vibrating shaker. The crowned deck has a non-planar profile. The screen assembly includes a screen frame having an underside and a top side. At least one screen mesh is attached to the top side of the screen assembly. The screen assembly is configured to flex such that the underside adapts to the non-planar profile of the crowned deck when the screen assembly is attached to the crowned deck.
In one aspect, the disclosed subject matter relates to a screen assembly for attachment to a crowned deck of a vibrating shaker. The screen assembly includes a screen frame having an underside and a top side. The underside has a curvature such that the underside conforms to a curvature of the crowned deck when attached to the crowned deck. At least one screen mesh is attached to the top side of the screen assembly.
In one aspect, the disclosed subject matter relates to a screen assembly for attachment to a crowned deck of a vibrating shaker. The crowned deck has a non-planar profile. The screen assembly includes a screen frame having an underside and a top side. The screen frame is formed from a primary material and a secondary material. The screen assembly is configured to flex such that the underside adapts to the non-planar profile of the crowned deck when the screen assembly is attached to the crowned deck. At least one screen mesh is attached to the top side of the screen assembly.
In one aspect, the disclosed subject matter relates to a frame for attachment to a crowned deck of a vibrating shaker. The crowned deck has a non-planar profile. The frame has a top side and an underside. The frame is formed from a primary material and a secondary material. The frame is configured to flex such that the underside adapts to the non-planar profile of the crowned deck when the screen assembly is attached to the crowned deck.
In one aspect, the disclosed subject matter relates to a frame for attachment to a crowned deck of a vibrating shaker. The crowned deck has a curvature. The frame has a substantially flat top side and a curved underside. The underside has a curvature greater than the curvature of the crowned deck. The frame further includes two sides configured to attach to the crowned deck and a grid structure formed from a primary material. A support grid formed from a secondary material of greater tensile strength than the primary material is embedded in the primary material. The frame is configured to flex such that the underside adapts to the curvature of the crowned deck when the frame is attached to the crowned deck.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
In one aspect, the present invention relates to a composite screen assembly for use on vibrating shakers having crowned decks. More specifically, the composite screen assembly has a flexible frame with a curved underside that conforms to the crowned deck when the composite screen assembly is attached to the crowned deck.
In
The screen frame 1 includes an underside 17 that is curved with a radius that is equal to or greater than the crowned deck on which it would be installed. The top side 16 may be substantially planar. The screen frame 1 may have a grid support structure. In this embodiment, the screen frame 1 is formed from two materials. The primary material may be any material that provides a good strength to weight ratio. For handling purposes, a lighter screen frame is generally preferred. Suitable primary materials for the screen frame include various polymeric materials, such as thermoplastics. In particular, polypropylene foam provides a good light weight structure. Besides strength and weight, the chemical and corrosion resistance of the primary material should be considered to prevent deterioration of the screen frame 1 during use. Those having ordinary skill in the art will recognize that other materials may be used without departing from the scope of the invention.
A secondary material may be embedded into the primary material of the screen frame 1. In this embodiment, the secondary material may be selected to provide structural support to the screen frame 1. Suitable materials include most metals. In one embodiment, the secondary material may be in the form of a wire grid formed from steel. If the secondary material is fully embedded in the primary material, chemical resistance and corrosion is not an important characteristic. In
Returning to
Turning to
In some embodiments, an additional sealing feature on the underside may be included.
In the embodiment shown in
While the screen frames shown have a squared grid structure, other screen frames may be devised that conform to a crowned deck when pulled in tension. The cells in the grid structure may, for example, be circular or rectangular. Furthermore, the screen frame need not have uniform cells.
In the above embodiments, the screen frame has been designed to be flexible such that the underside conforms to the curvature of the crowned deck. Alternatively, a substantially rigid screen frame with a curved underside could be used. Such a rigid screen frame may have a soft material such as a rubber gasket attached to the curved underside. During attachment, the soft material would conform to the curvature of the crowned deck.
In the context of this disclosure, the term “crowned deck” is used to mean a non-planar deck of a shaker. The non-planar deck may have a number of forms. For example, the crowned deck may be shaped as an arc having a constant radius of the curvature across the entire length. Alternatively, a crowned deck may potentially be formed with a varying curvature, such as parabolic. Those having ordinary skill in the art will recognize that a number of linear and non-linear alternatives also exist in addition to the examples given above. One of ordinary skill in the art will appreciate that a crowned deck may have any non-planar surface for the attachment of a screen without departing from the scope of the invention.
Embodiments of the present invention offer one or more of the following advantages. The curved underside of the screen assembly along with a substantially planar top side essentially converts a crowned deck into a substantially flat deck. At the same time, the screen tension advantages of a crowned deck are maintained. When the screen assembly is stretched across the crowned deck, the underside of the screen assembly conforms to the curvature of the crowned deck. The more the underside of the screen assembly has to conform, the more curved the top side of the screen assembly will be. If the top side is not planar after tensioning, the result is still a screening surface that has a reduced curvature compared to the crowned deck. In addition, the top side may include some downward curvature towards the center to “counter” the anticipated curvature when the screen assembly is attached to a crowned deck.
The ability to conform the screen assembly to the crowned deck offers several advantages. By conforming, the underside contacts the crowned deck in a manner that leaves no significant gaps. This helps to prevent fluid loss. Additionally, tensioning of the screen assembly is more effective because the screen assembly fits tightly against the crowned deck. A more secured fitting of the screen assembly reduces undesirable flapping of the screens while operating the vibrating shaker. The ability to conform the screen assembly allows compensation for varying curvature for crowned decks. Different models of vibrating shakers have different curvatures of crowned decks, while sometimes sharing the same screen sizes. A screen assembly that is able to conform to the different curvatures may be used in the different models. Additionally, the curvature of the crowned decks varies within each model from manufacturing and from wear on the crowned decks. Conforming the screen to the crowned deck corrects for those differences.
As discussed in the Background, crowned decks result in a curved screen area that causes more fluid to collect on the sides of the screens than in the middle. In some cases, the middle of the screen will be without any fluid while the sides are filled. This reduces the effective screen area. Additionally, the sides of the screens may wear out while the middle exhibits little wear. Reducing the curvature of the screens increases the effective screening area by distributing the fluid more evenly over the surface of the screens. This evens out wear of the assembly, and more efficiently screens the fluids.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
This is a divisional application and claims benefit under 35 U.S.C. § 120 of U.S. patent application Ser. No. 10/868,206, filed on Jun. 15, 2004.
Number | Name | Date | Kind |
---|---|---|---|
3980555 | Freissle | Sep 1976 | A |
4374169 | Gryskiewicz et al. | Feb 1983 | A |
4674251 | Wolff | Jun 1987 | A |
4857179 | Kimble et al. | Aug 1989 | A |
5417859 | Bakula | May 1995 | A |
5927511 | Riddle et al. | Jul 1999 | A |
6006923 | Helmy et al. | Dec 1999 | A |
6202857 | Keller et al. | Mar 2001 | B1 |
6543621 | Baltzer et al. | Apr 2003 | B2 |
6938779 | Burnett | Sep 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20080179222 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10868206 | Jun 2004 | US |
Child | 12050841 | US |