One type of vibratory separation device that is often used to separate materials during well drilling operations, such as oil and gas well drilling operations and the like, is known as a “shale shaker”. On many drilling rigs, a shale shaker may be used to treat drilling fluid mixtures returning from the wellbore to remove undesirable solids materials, such as drill cuttings, from the fluid, i.e., drilling mud, that is used to drill the well.
In general, a shale shaker includes a box-like frame, called a basket, which receives the material to be separated, e.g., a mixture of drill cuttings and drilling mud or fluid. A deck, or other screen-holding or screen-mounting structure, is supported within the basket and includes one or more screen panel assemblies that remove solid particles from fluid as the fluid passes through the screens of the screen panel assemblies. A vibrating apparatus is coupled to the shale shaker to vibrate the screen panel assemblies to enhance the separation process. A plurality of screen panel assemblies may be arranged in a cascading sequence over which the fluid passes.
In operation, the mixture of drill cuttings and drilling fluid is fed into the shale shaker on top of the screen panel assemblies. Particles that are larger than the openings in the screen panel assemblies are caught on top of the screens, while the fluid passes through the screens and is captured in containers or drains situated below the screen sections. The shale shaker is configured to vibrate the screen panel assemblies in such a manner that the particles caught by the screens are moved along, and eventually off of, the screen panel assemblies. Therefore, the screen panel assemblies must be configured to process a high volume of fluid, separate particles of various different sizes from the fluid, and withstand the high forces that are generated by the vibration of the shale shaker and movement of the drill cuttings and drilling fluid.
In an embodiment of the present disclosure, a screen assembly for vibratory separation may include: a screen comprising a plurality of wire cloth layers, each of the wire cloth layers having a plurality of raised screen components; a perforated plate disposed beneath the screen; and a support frame coupled to the screen and the perforated plate. The plurality of wire cloth layers may be bonded together to form the screen. The plurality of wire cloth layers may be bonded together by a sintering process. The plurality of wire cloth layers may include stainless steel wire cloth. The plurality of raised screen components may each define a rear face oriented to oppose a flow direction of the screen assembly. The plurality of raised screen components may each define a top face and a rear face, the top face sloping downward in the flow direction from a rear face to a bottom surface plane of the screen and being oriented to oppose a vibratory direction of the screen to a greater extent than the bottom surface plane. The at least one of the wire cloth layers may differ in flexibility from at least another of the wire cloth layers. Each of the wire cloth layers may be selected from the group fine mesh, medium mesh, or coarse mesh.
In a further embodiment of the present disclosure, a screen for vibratory separation may include a plurality of wire cloth layers, each of the wire cloth layers having a plurality of three-dimensional (3D) raised screen components formed therein, wherein the plurality of wire cloth layers are diffusion bonded together to form the screen. Each of the raised screen components may comprise at least one rear surface substantially perpendicular to a bottom surface plane of the screen to oppose a flow direction of the screen assembly. The plurality of wire cloth layers may be bonded by a sintering process. The plurality of 3D raised screen components may each define a top face sloping downward in the flow direction from the rear face to a bottom surface plane of the screen and being oriented to oppose a vibratory direction of the screen to a greater extent than the bottom surface plane, wherein the top face is oriented substantially perpendicular to a vibratory direction of the screen. The plurality of 3D raised screen components may define a serpentine flow of fluids and solids over the screen. The plurality of raised screen components may be formed by stamping each of the plurality of wire cloth layers between stamping dies in a stamping press.
In a still further embodiment of the present disclosure, a method of assembling a screen for vibratory separation may include: forming a plurality of raised screen components in a plurality of wire cloth layers; arranging the plurality of wire cloth layers in a stack; and bonding the stack of wire cloth layers to form the screen. The bonding of the stack of wire cloth layers may include a sintering process. The forming of the plurality of raised screen components in the plurality of wire cloth layers may include stamping each of the plurality of wire cloth layers between stamping dies in a stamping press. The plurality of raised screen components may each define a face opposing a flow direction of the sheet structure. The plurality of raised screen components may each define a top face sloping downward in the flow direction from the rear race to a bottom surface plane of the screen and being oriented to oppose a vibratory direction of the screen to a greater extent than the bottom surface plane. The arranging of the plurality of wire cloth layers in the stack may further comprise aligning the plurality of raised screen components in the plurality of wire cloth layers.
These and other embodiments of the present disclosure are more fully described herein with reference to the accompanying figures.
The present disclosure is best understood from the following detailed description when read with the accompanying figures, wherein:
It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion or illustration.
Illustrative examples of the subject matter claimed below are disclosed. In the interest of clarity, not all features of an actual implementation are described in this specification. It will be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions may be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort, even if complex and time-consuming, would be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
Further, as used herein, the article “a” is intended to have its ordinary meaning in the patent arts, namely “one or more.” Herein, the term “about” when applied to a value generally means within the tolerance range of the equipment used to produce the value, or in some examples, means plus or minus 10%, or plus or minus 5%, or plus or minus 1%, unless otherwise expressly specified. Further, herein the term “substantially” as used herein means a majority, or almost all, or all, or an amount with a range of about 51% to about 100%, for example. Moreover, examples herein are intended to be illustrative only and are presented for discussion purposes and not by way of limitation.
As used herein, the terms “diffusion bonding” and “sintering” refer to a processes that utilize, time, temperature, pressure, and/or atmosphere to realign and permanently bond the molecular elements of one or more materials, such as where they may intersect or touch each other. A sintering process may be utilized, for example, to molecularly bond two or more layers of metallic (e.g., wire) cloth into a unitary sheet.
In the example of
Examples of screen panels having three-dimensional raised screen components defined thereon are disclosed in U.S. Pat. Nos. 10,166,574 and 10,556,196 to Larson et al., each entitled “Vector Maximizing Screen” and each commonly assigned to the assignee of the present application. The Larson et al. '574 and '196 patents are each incorporated by reference herein in their respective entireties.
As disclosed in the Larson et al. '574 and '196 patents, raised screen components such as raised screen components 108 in the present examples define a first plane (such as rear face 116 of raised screen components 108) oriented at a first angle relative to the screen panel and a wedge surface (such as top face 118 of raised screen components) positioned at a back side of the raised screen components. The inclined screen surface has a front edge that is aligned with the planar surface 120 of the screen 106, this top face 118) being substantially perpendicular to the vibratory direction 107 of the screen.
In this example, the staggered arrangement of raised screen components 108 is such that the flow path of material passing over the top surface of screen 102 tends to be diverted side-to-side in a serpentine manner, as indicated by example path 110 in
It is to be noted that the pattern of raised screen components 108 on screen 102 as well as the pattern of perforations 114 in perforated plate 112 may vary in different examples. The patterns of raised screen components 108 and perforations 114 may, but are not necessarily aligned in various examples. Raised screen components 108 and perforations 114 may be larger or smaller in various examples.
Referring again to
Further, each top face 118 of raised screen components 108 may be oriented to oppose the vibratory direction 107 of screen 102 during operation. In some examples, top faces 118 may be oriented substantially perpendicular (i.e., at a 90° angle) to vibratory direction 107, as shown in
In some examples, some or all of the layers 102-1 . . . 102-N of screen 102 may have have different mesh coarseness, e.g., fine, medium, and coarse, and may consequently have different degrees of flexibility and strength. The overall strength of the resulting screen will derive from the collective strength of the individual layers 102-1 . . . 102-N after the layers are sintered together.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the disclosure. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the systems and methods described herein. The foregoing descriptions of specific examples are presented for purposes of illustration and description. They are not intended to be exhaustive of or to limit this disclosure to the precise forms described. Many modifications and variations are possible in view of the above teachings. The examples are shown and described in order to best explain the principles of this disclosure and practical applications, to thereby enable others skilled in the art to best utilize this disclosure and various examples with various modifications as are suited to the particular use contemplated. It is intended that the scope of this disclosure be defined by the claims and their equivalents below.
Number | Name | Date | Kind |
---|---|---|---|
8601 | Wheeler | Dec 1851 | A |
6629610 | Adams | Oct 2003 | B1 |
10166574 | Mitchell | Jan 2019 | B2 |
10556196 | Larson | Feb 2020 | B2 |
20090301943 | Bigelow | Dec 2009 | A1 |
20110094950 | Dahl | Apr 2011 | A1 |
Entry |
---|
PCT/US2012/027128 International Search Report and Written Opinion of the International Searching Authority, dated May 4, 2021, 8 pages. |