Screen having inclined slots for use in a continuous digester

Information

  • Patent Grant
  • 6039841
  • Patent Number
    6,039,841
  • Date Filed
    Tuesday, December 2, 1997
    27 years ago
  • Date Issued
    Tuesday, March 21, 2000
    24 years ago
Abstract
A screen used in the production of cellulose pulp mounted in a digester minimizes traditional screen problems (including clogging) without introducing new problems. The screen comprises a screen plate secured to an internal surface of the digester. The screen plate has a plurality of slots formed in it with an inclination angle, and the screen plate is positioned in the digester so that the inclination angle of the slots relative to the horizontal X axis of the X-Y plane defined by the internal surface of the digester is between 30-60.degree.. The screen plate may comprise a plurality of parallel screen bars side-by-side, or an integral metal plate with slots formed in it. The slots typically have a width between 1-5 millimeters and a spacing between them of 3-9 millimeters.
Description

BACKGROUND AND SUMMARY OF THE INVENTION
The present invention relates to a screen of a continuous digester primarily intended for passing liquor through a layer of pulp. The invention is advantageously employed in removing cooking liquor when producing chemical cellulose pulp or paper pulp in a continuous digester. The invention relates also to a continuous digester having said screen mounted on its wall.
Environmental loading caused by industry is regarded as one of the most serious problems in today's society. In chemical pulp production, great importance has been attached to improving production methods so that environmentally harmful effluents and emissions will be minimized. Special progress has been made in improvements related to bleaching of chemical pulp. New environmentally friendly bleaching methods impose greater requirements than previously on the strength of every fiber being fed into the bleaching. Thus, the digester has to be constructed such that the cooking process will be as gentle for fibers as possible. One way to achieve a gentle cook is to keep the temperature and alkalinity profiles as uniform as possible throughout the whole cross-sectional area of the digester. Achieving a sufficiently uniform cross-section profile imposes great requirements on the screen arrangement, the task of which is to enable an efficient throughput of liquid through a pulp layer.
Recently, it has been noted more and more often that large flows of circulation liquid passing through the screens are needed to achieve the desired uniformity. As will be shown later, large flows like this bring about problems for existing screen types. Hence, it is extremely important to develop new and better screen arrangements.
Existing screens are usually formed by a set of bar screens, which screens are often arranged at a desired location on the wall of the digester in such a way that they form a chessboard-like figure. Such screens are dealt with in the publication WO 9419533, for example.
Each "square" comprises a set of vertically arranged bars. Between the bars there is a slot, through which liquid is inducted. The bars are secured in parallel to a cross member, the screen being provided with an angle bar framework.
A problem with this known screen construction is, for example, that it has a relatively great tendency to clog up as the the chips stick to the slots. This is to a great extent due to the liquid having velocity in the radial direction, outwards through the screen, this velocity being about five times higher than the velocity of chips heading downwards. Typically, the velocity of the liquid is approximately 10-15 mm/s, whereas the corresponding velocity of the chips is approximately 2-3 mm/s. Part of the chips follow the radial liquid flow of higher velocity and stick to the slots between the screen bars. The problem is made even worse by the fact that it is difficult to get the screen bars exactly parallel. If the bottom end of the slot happens to be to some extent narrower than the top end, chips are more likely to stick to the slot. Further, more chips may accumulate upon the portion of chips stuck to the slot, thus clogging up even a larger part of the screen. The greater the clogged-up screen surface is, the more intensely it will continue to clog up further, since the screen surface still unclogged is exposed to greater loading and hereby also to greater risk of clogging up. Due to the location of the screen and the way in which chips are clogged up, cleaning of the screen is very difficult, being thus an action to be avoided as far as possible.
In other words, prior art screens are difficult to run, and according to many, operation of bar screens is the Achilles heel of the so called Kamyr digesters.
As a solution to the problem, Kvaerner Pulping Technologies AB has in its patent SE-B-501243 suggested a slot screen characterized by horizontal screen bars. We have done experiments on the operation according to this solution and found the following two phenomena to make the solution impractical.
Firstly, the chips lie upon each other in the digester, whereby they easily thrust their way into a horizontal slot. The phenomenon is similar to that of throwing a pack of cards into the air; most of the cards, practically speaking all of them, fall on to the floor, only a few possibly remaining standing. The same applies to chips falling on to the digester; they lie upon each other and may thus thrust into a horizontal slot when moving outwards in the radial direction.
Another, even more critical factor is shives. There are always a great number of shives among the chips. They are approximately the size of a match, sometimes bigger, sometimes smaller. The diameter thereof may be 1-3 mm. Part of these shives are found at the walls and screens of the digester. It is easy to verify that the shives rotate downwards along the wall surface, round their longitudinal axis, the axis being in the horizontal plane. In other words, they act like a needle bearing. If there is a horizontal slot in the screen, these shives rotating downwards will end up in this slot having a width of 1-3 mm. In this way, the horizontal slot screen clogs up.
Therefore, the solution to the problem of clogging up cannot be what is suggested in Kvaerner's patent SE 501243, but there is a better, slightly surprising solution. When arranging the slots of the screen inclined, the angle being 30-60 degrees, preferably 45 degrees relative to the horizontal plane, an arrangement is created which eliminates the traditional screen problems without bringing about new problems as does the solution presented in Kvaerner's patent.
Another reason for arranging the slots inclined is that the chips column rotates slowly, due to the scraper at the bottom of the digester. By positioning the inclined screens in the digester and making the surface thereof profiled, a spiral movement is created which pushes the chips column downwards in the digester. The phenomenon is the same as when a screw rotates in a nut.
Characteristics of the screen according to the invention become apparent in the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates one screen plate in a digester;
FIG. 2 illustrates a cross-section along the line A--A of a screen plate showed in FIG. 1 in accordance with a preferred embodiment of the present invention; and
FIGS. 3a and 3b illustrate two cross-sections along the line A--A of a screen plate showed in FIG. 1 in accordance with two preferred embodiments of the present invention.





DETAILED DESCRIPTION OF THE DRAWINGS
According to FIG. 1, a screen 10 according to the invention comprises a frame 12 and a screen plate 14 secured to the frame. When needed, the screen plate 14 may be supported of the backside by means of special supporting bars (not shown) secured to the frame 12 or the wall construction of the digester. The height of the screen plate 10 is 1-3 meters and the width 0.5-2 meters. The screen plate 14 may be manufactured by for example milling a so called slot plate from a metal plate or by securing bars 16 (shown in the figures) in parallel in the above-described manner. It has been discovered that the screen plate 14 according to the invention will eliminate the problems induced by prior art plates when the inclination angle .alpha. of the slots relative to the horizontal direction is 30-60 degrees. The best result has been achieved when the angle of the slot is 45 degrees. A suitable width s of the slot on a screen plate 14 is 1-5 mm, preferably 2-4 mm. The distance t between the slots is in general 3-9 mm, being usually 1.5-2 times the width of the sloth. A suitable dimensioning is as follows: the width s of the slot is approximately 3 mm, the distance t between the slots being approximately 5 mm. In other words, the width t of the surface between the slots of a milled or otherwise machined screen plate or that of the screen bar 16 is approximately 5 mm.
It is preferable to make the screen plate profiled inside the digester as illustrated in FIG. 2. The depth h of the profile is 1-4 mm, usually 1-2 mm. The width t of the screen bar 16 or that of the surface varying between 3-9 mm, the inclination angle of the leading surface 18 is tan.beta.=h/t, whereby the preferable variation range is 6-24 degrees, more preferably 12-22 degrees.
In addition, the direction of the slots is preferably in accordance with FIG. 1 in such a way that the arrow C in FIG. 1 (and also in FIG. 2) indicates the primary flowing direction in the digester, the arrow D indicating the direction of movement of the scraper in the digester relative to the screen. In other words, as the scraper causes the pulp/chips column to rotate in the direction of the arrow D, the slots, or rather the profiling in connection with them, causes the pulp to be pressed towards the bottom of the digester.
Sometimes, as illustrated in FIGS. 3a and 3b, it is advantageous to arrange the side surfaces 20 and 22 of the screen bars 16 or of the slots, correspondingly, non-parallel (FIG. 3a), or at least non-radial (FIG. 3b). When the side surfaces 20 and 22 are non-parallel, the width of the slot between the surfaces increases away from the inside of the digester (i.e. from the right to the left) as shown in FIG. 3a. The side surfaces are, in accordance with a preferred embodiment of the invention, arranged such that the lower surface 22 is radial or slightly sloping towards the inside of the digester and the upper surface 20 sloping in a more aggressive angle towards the inside of the digester. What is substantial to a preferred embodiment of the invention is that the width of the slot either remains the same or increases outwards. Accordingly, if the side surfaces 20 and 22 are parallel, it is, in accordance with another preferred embodiment, advantageous to arrange the side surfaces to slope slightly towards the inside of the digester. In all embodiments described above, the angle of slope will range from 0 to 30 degrees, preferably from 0 to 20 degrees.
In accordance with another preferred embodiment of the invention, it is advantageous that the slot is inclined downwards 5-30.degree. as shown in FIG. 3b. This makes it possible for the chips that get stuck in the slot to get pulled out by the downflowing pulp. A typical slot length is from 10 cm up to some meters, depending on mounting arrangements.
As disclosed above, a new arrangement has been developed, eliminating the disadvantages of the prior art screen arrangements of continuous digesters. It is also to be noted that only a few details of the invention have been described above, which are by no means intended to restrict the scope of the invention from what becomes apparent in the appended claims.
Claims
  • 1. A screen used in the production of cellulose pulp mounted in a digester:
  • said digester having an internal surface,
  • said screen comprising a screen plate secured to said digester internal surface, said screen plate having a plurality of slots formed therein with an inclination angle; and
  • said screen plate positioned in and secured to said digester so that said inclination angle .alpha. of said slots relative to the horizontal x axis of the x-y plane defined by the internal surface of the digester is between 30-60 degrees.
  • 2. A screen in a digester as recited in claim 1 wherein said screen plate comprises a plurality of parallel screen bars secured side by side.
  • 3. A screen in a digester as recited in claim 1 wherein said screen plate comprises an integral metal plate with said slots formed therein.
  • 4. A screen in a digester as recited in claim 1 wherein said slots of said screen plate have a width of between 1-5 mm.
  • 5. A screen in a digester as recited in claim 1 wherein said slots of said screen plate have a width of between 2-4 mm.
  • 6. A screen in a digester as recited in claim 4 wherein said slots are spaced from each other a distance between 1.5-2 times the width of said slots.
  • 7. A screen in a digester as recited in claim 1 wherein the distance between said slots in said screen plate is between 3-9 mm.
  • 8. A screen in a digester as recited in claim 1 wherein said screen plate includes a leading surface between slots facing interiorly in said digester, and wherein said leading surface has an angle of inclination .beta. between 6-24 degrees to the vertical.
  • 9. A screen in a digester as recited in claim 1 wherein said screen plate includes a leading surface between slots facing interiorly in said digester, and wherein said leading surface has an angle of inclination .beta. between 12-22 degrees to the vertical.
  • 10. A screen in a digester as recited in claim 1 wherein said digester comprises a continuous digester which has a scraper which rotates in a first direction within said continuous digester; and wherein said screen plate is positioned so that chips in said digester are pushed downwardly along said slots as a result of rotation of said scraper.
  • 11. A screen in a digester as recited in claim 1 wherein said angle .alpha. is about 45 degrees.
  • 12. A screen in a digester as recited in claim 6 wherein the distance between said slots in screen plate is between 3-9 mm.
  • 13. A screen in a digester as recited in claim 10 wherein said screen plate includes a leading surface between slots facing interiorly in said continuous digester, and wherein said leading surface has an angle of inclination .beta. between 12-22 degrees to the vertical.
  • 14. A screen in a digester as recited in claim 1 wherein said slots extend non-radially in said digester.
  • 15. A screen in a digester as recited in claim 1 wherein said slots are formed by side surfaces, and wherein said side surfaces forming said slots are non-parallel.
  • 16. A screen in a digester as recited in claim 14 wherein said slots are inclined downwardly between 5-30 degrees.
  • 17. A screen in a digester as recited in claim 16 wherein said screen plate includes a leading surface between slots facing interiorly in said digester, and wherein said leading surface has an angle of inclination .beta. between 12-22 degrees to the vertical.
  • 18. A screen in a digester as recited in claim 15 wherein said screen plate includes a leading surface between slots facing interiorly in said digester, and wherein said leading surface has an angle of inclination .beta. between 12-22 degrees to the vertical.
  • 19. A screen used in the production of cellulose pulp in a digester having an internal surface:
  • said screen comprising a screen plate secured to said digester internal surface, said screen plate having a plurality of slots formed therein with an angle of inclination;
  • said screen plate positioned in said digester so that said inclination angle of said slots relative to the horizontal x axis of the x-y plane defined by the internal surface of the digester is between 30-60 degrees; and
  • wherein said screen plate comprises a plurality of parallel screen bars secured side by side, or an integral metal plate with said slots formed therein.
  • 20. A screen in a digester as recited in claim 19 wherein said slots of said screen plate have a width of between 1-5 mm, and are spaced from each other a distance of between 1.5-2 times the width thereof.
Priority Claims (1)
Number Date Country Kind
950826 Feb 1995 FIX
CROSS REFERENCE TO RELATED APPLICATION

This is a U.S. national phase of PCT/F196/00104.

PCT Information
Filing Document Filing Date Country Kind 102e Date 371c Date
PCT/FI96/00104 2/22/1996 12/2/1997 12/2/1997
Publishing Document Publishing Date Country Kind
WO96/26315 8/29/1996
US Referenced Citations (5)
Number Name Date Kind
2712776 Wagenknecht Jul 1955
3713541 Nelson Jan 1973
4795560 Chupka et al. Jan 1989
4909906 Bartelmuss et al. Mar 1990
5234550 Ekholm et al. Aug 1993
Foreign Referenced Citations (1)
Number Date Country
WO 9516817 Jun 1995 WOX