The present disclosure relates to a screen printing apparatus for printing a paste on a board through a mask, a mask cleaner for cleaning the mask of the screen printing apparatus, and a blade for use in the mask cleaner.
In a screen printing apparatus, a mask is brought into contact with a board and a paste is printed onto the board through pattern holes formed in the mask. In such a screen printing apparatus, it is necessary to scrape off the paste from a lower surface of the mask to clean it periodically so as not to lower the print quality of the subsequent board. A mask cleaner used for cleaning a mask includes a base body mounted to a moving base moving under the mask in a horizontal paste scraping direction and moving under the mask integrally with the moving base, and a cleaning member mounted to the base body. In the mask cleaner, the base body moves with the cleaning member in abutment against the lower surface of the mask, thus scraping off the paste adhering to the lower surface of the mask. In related art, the cleaning member is a member made of paper (cleaning paper), but instead of the cleaning paper, use of a thin “spatula”-like paste scraping tool (blade) formed of a metal such as SUS is also known (for example, Japanese Patent Unexamined Publication No. 2016-196101).
In the mask cleaner using the blade in place of the cleaning paper as described above, the base body includes a frame having an opening opened upward and a blade holder having a plurality of beams mounted in the opening of the frame and arranged at intervals in a longitudinal direction of the base body. The blade holder holds a plurality of blades, and the plurality of beams support the blades at intermediate portions of the blades in the longitudinal direction. Each of the plurality of blades is inserted into each of a plurality of rows of grooves formed in the blade holder from above and positioned. The blades held by the blade holder are fixed to the base body as both end portions in the longitudinal direction are pressed by a blade pressing member. In this state, the edge protruding upward from the base body is brought into abutment against the lower surface of the mask and used as a paste scraping edge for scraping off the paste.
However, the screen printing apparatus disclosed in Japanese Patent Unexamined Publication No. 2016-196101 has a problem that, when the blade is disassembled from the base body for cleaning, if an operator excessively bends the blade by mistake, the blade is plastically deformed, and the paste scraping edge does not come into contact with the lower surface of the mask, resulting in cleaning quality deterioration.
In addition, improvement of the service life of the blade has also been desired.
Therefore, the present disclosure aims to solve the above problem.
A screen printing apparatus according to the present disclosure includes a print head that prints a paste onto a board through a mask, a moving base moving under the mask in a horizontal paste scraping direction, and a mask cleaner mounted to the moving base, moving under the mask integrally with the moving base, and scraping off the paste adhering to a lower surface of the mask. The mask cleaner includes a base body mounted to the moving base and including a longitudinal side, the longitudinal side being horizontal and intersecting the paste scraping direction, and a plurality of blades detachably mounted to the base body, extending in the longitudinal direction and arranged side by side in parallel to the paste scraping direction, and causing a paste scraping edge protruding upward from the base body to come into abutment against the lower surface of the mask, in which each of plurality of blades is formed of resin.
A mask cleaner according to the present disclosure is provided in a screen printing apparatus for printing a paste onto a board through a mask, in which the mask cleaner is mounted to a moving base that moves in a horizontal paste scraping direction under the mask, and moves under the mask integrally with the moving base to scrape off the paste adhering to the lower surface of the mask. The mask cleaner includes a base body mounted to the moving base and including a longitudinal side, the longitudinal side being horizontal and intersecting the paste scraping direction, and a plurality of blades detachably mounted to the base body, and extending in the longitudinal direction and arranged side by side in parallel to the paste scraping direction, and cause a paste scraping edge protruding upward from the base body to come into abutment against the lower surface of the mask, in which the blade is formed of resin.
A blade according to the present disclosure is provided for use with a mask cleaner provided in a screen printing apparatus for printing a paste onto a board through a mask, in which the mask cleaner is mounted to a moving base that moves in a horizontal paste scraping direction under the mask, and moves under the mask integrally with the moving base to scrape off the paste adhering to the lower surface of the mask. The blade is formed of resin, is detachably mounted to a base body that is mounted to the moving base and including a longitudinal side, the longitudinal side being horizontal and intersecting the paste scraping direction, extends in the longitudinal direction, and cause a paste scraping edge protruding upward from the base body to come into abutment against the lower surface of the mask.
According to the present disclosure, it is possible to prevent deterioration of the cleaning quality due to bending of the blade.
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
In
In
In
In
In
Camera 15 has a function of imaging both the upper side and the lower side. Camera 15 moves in the horizontal plane (in the XY plane) under mask 13 by the movement of camera 15 itself in the X axis direction and the movement of moving beam 51 in the Y axis direction, to image board KB held by board holder 21 from above and also to image mask 13 from below.
In
In
In
In
In the present embodiment, blade holder 72 includes a plurality (here, 7 pieces) of block members 72B removably mounted to frame 71 (
In
When blade holder 72 (seven block members 72B) is mounted to frame 71, plurality of beams 73 are equally spaced in the longitudinal direction (X axis direction) of base body 61 (equal intervals when viewed from the intermediate position in the paste scraping direction of each beam 73) (
In
In
In
In
Here, groove 75T receiving therein blade 62 located at the rearmost side (indicated by reference numeral 62T in
In
As described above, mask cleaner 16 according to the present embodiment includes base body 61 which is mounted to moving base 55, including a longitudinal side, the longitudinal side being horizontal and intersecting the paste scraping direction and paste scraping edges 62E which are removably mounted to base body 61, extending in the longitudinal direction, and are arranged side by side in parallel to the scraping direction of the paste, and protruded upward from base body 61. Base body 61 includes frame 71 having opening 71S opened upward and blade holder 72 having a plurality of beams 73 mounted to opening 71S of frame 71 and arranged at intervals in the longitudinal direction, in which blade holder 72 holds a plurality (six pieces) of blades 62, and plurality of beams 73 (four blades 62 except two blades 62 located at the frontmost side and the rearmost side in the traveling direction of mask cleaner 16 among six blades 62) partially support the intermediate portion in the longitudinal direction of blade 62.
In addition, in mask cleaner 16 according to the present embodiment, among plurality of spaces 62S defined by blades 62, at least space 62ST located at the rearmost side of mask cleaner 16 in the traveling direction is not communicated with opening 71S during scraping of paste Pst.
In
In
As described above, in the present embodiment, each of plurality of blades 62 includes a pair of pressed portions 62H formed by protruding both end portions thereof in the longitudinal direction outward in the longitudinal direction, and the pair of pressed portions 62H included in each of plurality of blades 62 are adapted to be pressed by a pair of end members 63 that are detachably mounted to base body 61 from above.
Pair of end members 63 mounted to base body 61 are brought into contact with both end portions of pressed portions 62H of plurality of blades 62, so that side walls are formed between blades 62 adjacent to each other in the paste scraping direction (Y axis direction). Therefore, at the time of air suction which will be described below, inflow of air from the side of space 62S defined by blades 62 is prevented. The shape of pressed portion 62H of blade 62 is not limited to a semicircular shape that has horizontally symmetrical shape as shown in
When plurality of blades 62 are fixed to frame 71 by the pair of end members 63, the upper edges of each of plurality of blades 62 protrude upward from the upper surfaces of the respective end members 63 (
In
As shown in
In
In
When mask cleaner 16 is mounted to moving base 55, a plurality of positioning pins 61P provided on base body 61 of mask cleaner 16 are inserted into a plurality of positioning holes 55H provided in moving base 55 from above (see arrow B shown in
In
When mask cleaner 16 is mounted to moving base 55 in
When screen printing apparatus 1 performs a screen printing operation, first, transfer conveyor 31 receives board KB supplied from the outside of screen printing apparatus 1 and carries-in board KB to a predetermined position. Then, lower receiver 32 is lifted to support board KB from below, and then damper 33 is operated to clamp board KB from the Y axis direction. When damper 33 clamps board KB, camera 15 images mask 13 and board KB while being moved in the horizontal direction by the operation of Y axis direction moving mechanism 52 and X axis direction moving mechanism 53. Controller 20 calculates the relative positional relationship between board KB and mask 13 obtained from the image data of board KB and mask 13 imaged by camera 15, and board holder moving mechanism 22 is operated and board KB is brought into contact with mask 13, so that each land LD of board KB and pattern hole 13H of mask 13 are vertically overlapped with each other.
When board KB comes into contact with mask 13, squeegee lifting driver 43 is operated to move one of two squeegees 42 into abutment against the upper surface of mask 13. When squeegee 42 is abutted against the upper surface of mask 13, print head moving mechanism 44 moves head base 41 in the Y axis direction. As a result, paste Pst supplied onto mask 13 is scraped off from mask 13 by squeegee 42 (
When paste Pst is applied to each land LD of board KB, board holder moving mechanism 22 lowers board holder 21 to separate from mask 13 (release board KB). As a result, printing paste Pst onto board KB is completed. When printing paste Pst onto board KB is completed, transfer conveyors 31 are operated to carry-out board KB to the outside of screen printing apparatus 1.
When board KB is carried-out to the outside of screen printing apparatus 1 by transfer conveyors 31, the mask cleaning operation is performed by mask cleaner 16. In the mask cleaning operation, Y axis direction moving mechanism 52 moves moving beam 51 in the Y axis direction and positions mask cleaner 16 at the rear lower side of mask 13. When mask cleaner 16 is located at the rear lower side of mask 13, lifting mechanism 54K is operated to lift mask cleaner 16 (specifically, paste scraping edge 62E of six blades 62) into abutment against lower surface of mask 13 (
When mask cleaner 16 is abutted against lower surface of mask 13, Y axis direction moving mechanism 52 is operated to move moving beam 51 forward. As a result, six blades 62 of mask cleaner 16 are slid on lower surface of mask 13, and paste Pst adhering to lower surface of mask 13 is scraped off by paste scraping edge 62E of each blade 62 (
When blades 62 are slid on lower surface of mask 13, performing the mask cleaning in this way, the pair of end members 63 mounted to base body 61 are moved into abutment against lower surface of mask 13 from below as shown in
In
In addition, during scraping of paste Pst, each of blades 62 located behind blade 62 located at the frontmost position in the traveling direction of mask cleaner 16 also scrapes off paste Pst that is sucked out by suction mechanism 80 from pattern hole 13H immediately before that blade 62. When paste Pst is not scraped off by that blade 62, then it is scraped off by blade 62 located behind that blade 62.
As the mask cleaning is repeated, the amount of paste Pst adhering to blade 62 that is to be scraped gradually increases, and the performance of blades 62 to scrape off paste Pst also decreases as the amount of adhering paste Pst increases. Therefore, a plurality of blades 62 are used to maintain cleaning efficiency as long as possible. In addition, it is contemplated to maintain the cleaning performance further longer by reducing the amount of the adhering paste Pst for blade 62 that is located at the rearmost side in the traveling direction of mask cleaner 16 in this embodiment.
In the present embodiment, as described above, during scraping of paste Pst, space 62ST between blade 62 located at the rearmost side in the traveling direction of mask cleaner 16 and blade 62T located next to rearmost blade 62 in the forward direction, among six blades 62 arranged side by side in the paste scraping direction, is blocked from opening 71S, and the suction force of suction mechanism 80 is hardly applied thereto. Therefore, in space 62ST, no air flow for moving paste Pst remaining inside pattern hole 13H to lower surface of mask 13 is generated.
Therefore, paste Pst forcibly sucked out by suction mechanism 80 does not flow into the paste scraping surface of blade 62 located at the rearmost side in the traveling direction among six blades 62, and the amount of paste Pst scraped off by blade 62 located at the rearmost side is smaller than that of the other blades 62. In other words, since paste Pst remaining inside pattern hole 13H does not flow into space 62ST located at the rearmost side in the traveling direction, blade 62 located at the rearmost side is only required to scrape off only a small amount of paste Pst which is not scraped off by blade 62T that is located next to it in the forward direction. Therefore, blade 62 located at the rearmost side may be more likely to be kept from being contaminated with paste Pst than the other blades 62 located at the forward side thereof, while paste Pst which is not scraped off by front blade 62 may be reliably scraped off.
As a result, compared with the related art, it is possible to maintain the cleaning performance for a long period of time, and also reduce the number of cleaning times of the cleaning units and the like and reduce the subsequent operation stoppage time of the cleaning printing apparatus.
In such screen printing apparatus 1, since each blade 62 is contaminated by the scraped paste Pst, it is necessary to perform cleaning at a predetermined timing. Blade 62 is disassembled from base body 61 to be cleaned, and in this embodiment, since blade 62 is formed of resin as described above, the plastic deformation does not occur even when blade 62 is excessively bent by mistake during cleaning of blade 62, and there is no possibility that paste scraping edge 62E does not come into contact with lower surface of mask 13 after cleaning (after being assembled back to base body 61). Therefore, it is possible to prevent deterioration of the cleaning quality caused by deformed blade 62 that may be deformed while blade 62 is being cleaned or the like. Since an alcohol solvent capable of dissolving paste Pst is used for cleaning blade 62, it is preferable that blade 62 is formed of a kind of resin that has high durability against an alcohol-based solvent.
Further, in the present embodiment, blade 62 has a horizontally symmetrical shape, such that any one of the two edges (first edge 62a and second edge 62b) opposed to each other in the vertical direction may be used as paste scraping edge 62E. Therefore, when one of first edge 62a and second edge 62b reaches the durability limit of scraping off paste Pst, blade 62 is disassembled from base body 61 and is reversed upside down to be reassembled back into base body 61, so that blade 62 may be used again up to the durability limit. As described above, in mask cleaner 16 according to the present embodiment, the lifetime of blade 62 may be increased (doubled), and the cost may be reduced.
Here, as described above, since identification mark 62M is mounted to each blade 62 as an identification mark for identifying first edge 62a and second edge 62b, the operator may accurately confirm the condition of blade 62 (that is, whether it is before or after blade 62 is reversed upside down) by comparing identification mark 62M with the order of use of first edge 62a and second edge 62b which are determined in advance. In the present embodiment, identification mark 62M exemplifies a triangular figure whose apex angle is directed toward first edge 62a (
Plurality of beams 73 included in blade holder 72 of mask cleaner 16 extend obliquely in a horizontal plane with respect to the paste scraping direction (Y axis direction), respectively, and plurality of blades 62 are supported by beams 73 at portions different from each other in the longitudinal direction. Therefore, when mask 13 is cleaned, the portions supported by beams 73 of each blade 62 and the portions not supported by beams 73 are dispersed in the longitudinal direction of blade 62, and the degree of contact of blade 62 with respect to mask 13 is kept uniform across the entire mask cleaner 16. As a result, the streaks corresponding to the position of beams 73 do not remain on lower surface of mask 13, and therefore, the quality of the cleaning may be improved.
Further, in the present embodiment, since blade holder 72 includes plurality of block members 72B that have the same shape and are detachably mounted to frame 71, the cleaning of blade holder 72 becomes extremely easy during the cleaning base body 61 performed in conjunction with the cleaning of blade 62.
In many cases, blade holder 72 is cleaned by using an ultrasonic washing machine or the like, and since the cleaning tank may only have to have a certain size to accommodate at least one block member 72B, the ultrasonic cleaning machine may be small in size, thereby reducing the cost required for cleaning.
In addition, as described above, the amount of paste Pst to be scraped off by blade 62 located at the rearmost side is smaller than that by the other blades 62, while paste Pst remaining after scraping off by the other blades 62 located in the forward side of the rearmost blade may be reliably scraped off, thereby improving the cleaning quality of mask 13. Furthermore, since it is not highly likely that paste Pst would remain for scraping by blade 62 located at the rearmost side, paste Pst remaining on the bottom surface of mask 13 may be suppressed to an extremely small amount, and in view of this, the cleaning quality of mask 13 can also be improved.
Moving base 55 to which mask cleaner 16 is mounted is formed of a magnetic material, and base body 61 of mask cleaner 16 is provided with magnets 61M which are adsorbed onto the upper surface of moving base 55 by magnetic force. Therefore, mask cleaner 16 may be mounted to and detached from moving base 55 with a single operation, which may improve the workability at the time of maintenance and repair, and the like.
In addition, as described above, while the mask is being cleaned, upper surface 63F of the pair of end members 63 mounted to base body 61 is in abutment against lower surface of mask 13 from below, so that the inflow of air from the side of the spaces 62S defined by blades 62 is prevented, and paste Pst may be efficiently sucked out when the mask is being cleaned. Therefore, the cleaning quality can also be improved in view of this. In addition, end members 63 serve as a stopper for preventing blade 62 from being pressed against mask 13 with an excessive force. That is, since lower surface of mask 13 comes into contact with upper surface 63F of end members 63, the deformation of blade 62 is maintained within a certain range, and the progress of wear of blade 62 is controlled within a preset range.
As described above, in screen printing apparatus 1 according to the present embodiment, since blade 62 of mask cleaner 16 is formed of resin, when blade 62 is disassembled from base body 61 to be cleaned, even when the operator inadvertently bends blade 62 more than necessary, blade 62 is not plastically deformed. Therefore, it is possible to avoid situations where paste scraping edge 62E does not come into contact with lower surface of mask 13, and also prevent deterioration of cleaning quality due to bending of blade 62.
Further, in screen printing apparatus 1 according to the present embodiment, blade 62 has a horizontally symmetrical shape, and any one of the two edges (first edge 62a and second edge 62b) opposed to each other in the vertical direction may be used as paste scraping edge 62E. Therefore, it is possible to increase (double) the service life and reduce the cost by reversing blade 62 upside down and using it.
Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to those described above. For example, in the embodiments described above, the number of blades 62 provided in mask cleaner 16 is six, but this is merely an example, and the number of blades 62 is not particularly limited thereto. Although print head 14 for printing paste Pst onto board KB through mask 13 has a configuration in which squeegees 42 are slid on mask 13, it may be a configuration in which paste Pst enclosed in the cartridge is pressed out onto mask 13, for example.
In the embodiments described above, among the plurality (six pieces) of blades 62 supported by blade holder 72, blade 62 located at the frontmost side and blade 62 located at the rearmost side in the traveling direction of mask cleaner 16 during scraping of paste Pst are located outside opening 71S, but blade 62 located at the frontmost side may be located inside opening 71S. That is, it suffices that, among plurality of spaces 62S defined by blades 62, at least space 62S located at the rearmost side in the traveling direction of mask cleaner 16 during scraping of paste Pst is blocked from opening 71S.
In the embodiment described above, entire moving base 55 is formed of a magnetic material, but as long as it is adsorbed by the magnetic force by plurality of magnets 61M buried in base body 61, it will suffice that the portion including at least the upper surface of moving base 55 is formed of a magnetic material.
The present disclosure may be applied to a screen printing apparatus for printing a paste such as a solder paste or an adhesive onto a board by screen printing.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-043718 | Mar 2018 | JP | national |
JP2018-043719 | Mar 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4078486 | Moser | Mar 1978 | A |
5309837 | Nanzai | May 1994 | A |
20030037804 | Erdmann | Feb 2003 | A1 |
20110061549 | Nishi | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
104470723 | Mar 2015 | CN |
05318712 | Dec 1993 | JP |
H07-052359 | Feb 1995 | JP |
2000-062131 | Feb 2000 | JP |
2016-196101 | Nov 2016 | JP |
20150144495 | Dec 2015 | KR |
2014013592 | Jan 2014 | WO |
Entry |
---|
EPO English language translation of CN104470723A, which has a publication date of Mar. 25, 2015 (Year: 2015). |
English translation of JP 05-318712A, publication date Dec. 3, 1993. (Year: 1993). |
Number | Date | Country | |
---|---|---|---|
20190275787 A1 | Sep 2019 | US |