The present invention relates to a screen printing device, and more particularly, to a screen printing device capable of efficiently performing a printing process on a substrate through a simpler structure and operation.
Generally, a screen printing process means a process of printing ink on a flexible film or foil or a non-flexible plane printing substrate (hereinafter, collectively referred to as a substrate in the present invention) by using a screen on which a pattern is formed.
A general screen printing device used in the screen printing process includes a screen on which a pattern for performing a printing process on a substrate is formed, a scraper configured to apply ink on the screen, and a squeegee configured to perform a printing process on the substrate by pressurizing the screen applied with the ink to allow the ink to pass through the screen and transferring the ink onto the substrate, and a plurality of drivers configured to drive the screen, the scraper, and the squeegee.
Such a screen printing device performs two cycles of applying ink and printing the ink. The two cycles may be classified into a method in which a scraper and a squeegee perform applying and printing processes while alternately moving vertically on a plane on which a screen moves and a method in which a scraper and a squeegee perform applying and printing processes while alternately moving vertically and horizontally on an upper portion of a fixed screen.
As illustrated in
The backup roller 11 may transport a substrate S while supporting one surface of the substrate S such as a film, a web, or the like. In addition, the screen 12 is spaced apart from the backup roller 11, and a pattern (not shown) for performing a printing process on the substrate S may be formed thereon.
The scraper 13 may be movably disposed in a state of being in contact with or spaced apart from the screen 12 and may apply ink on the screen 12. Furthermore, the squeegee 14 is disposed adjacent to the scraper 13 so as to be movable in a state of being in contact with or spaced apart from the screen 12 and may transfer the ink applied on the screen 12 onto the substrate S to perform a printing process.
(a) of
However, since the conventional screen printing device 10 includes the scraper 13 configured to applying ink on the screen 12, the squeegee 14 configured to print ink on the substrate S while pressurizing the screen 12, and a driver (not shown) connected to the scraper 13 and the squeegee 14, an entire mechanism structure is somewhat complicated. Since simple sequence control according to repetitive operations is performed, it is difficult to perform precise control, and it is difficult to cope with a delicate change in a process condition.
In addition, as illustrated in (b) of
Furthermore, since the conventional screen printing device 10 performs a printing process in a state in which a large amount of ink is supplied on the screen 12 in advance in order to maintain a physical property such as viscosity of ink (or paste), unnecessary waste of ink is serious, and printing quality is degraded due to a change in a physical property (for example, a change in viscosity) of the ink exposed in the air.
Therefore, there is a need for a screen printing device capable of efficiently performing a printing process on a substrate through a simpler structure and operation.
The present invention has been made in an effort to solve the above problems, and an object of the present invention is to provide a screen printing device capable of efficiently performing a printing process on a substrate through a simpler structure and operation by discharging ink in a required amount for printing at preset pressure and transferring the ink discharged to the screen onto the substrate by discharge pressure of the ink to print a pattern.
The technical objects of the present invention are not limited to the above-mentioned object, and other technical objects will be clearly understood from the following description by those skilled in the art.
In order to achieve the above objects, a screen printing device includes: a screen disposed adjacent to an upper portion of a substrate on which a printing process is performed, and having a pattern to be printed on the substrate; a printing unit disposed on an upper portion of the screen and configured to discharge ink supplied from the outside to the screen and to print the pattern on the substrate; a driver connected to at least one of the screen and the printing unit and configured to drive at least one of the screen and the printing unit; and a controller connected to the printing unit and the driver and configured to control operations of the printing unit and the driver, wherein, when at least one of the screen and the printing device moves in a state in which the printing unit contacts the screen, the controller controls the printing device to perform printing on the substrate by using discharge pressure of the ink.
The printing unit includes a body having an ink supply hole formed in one side thereof, through which the ink is injected, and having an injection path formed therein, through which the ink moves; an ink pressurizing part disposed at the one side of the body so as to communicate with the injection path and configured to pressurize the ink which moves through the injection path; an ink discharge part disposed at one side of the body, facing the screen, so as to communicate with the injection path and configured to discharge the ink in a state of being in contact with screen; and at least one pressure measurement part installed at a position adjacent to the ink discharge part of the body and configured to measure discharge pressure of the ink discharged from the ink discharge part, wherein the controller controls the ink pressurizing part to adjust an discharge amount and the discharge pressure of the ink according to a measurement result of the at least one pressure measurement part.
The body has at least one cavity formed therein, which communicates with the injection path and accommodates the ink.
The ink discharge part is detachably installed at the one side of the body.
The printing unit further includes a temperature measurement part installed at a position adjacent to the ink discharge part of the body and configured to measure temperature of the ink discharged from the ink discharge part; and a temperature adjustment part disposed between the ink pressurizing part and the ink discharge part and configured to adjust the temperature of the ink, wherein the controller controls the temperature adjustment part to adjust the temperature and viscosity of the ink discharged from the ink discharge part according to a measurement result of the temperature measurement part.
The temperature adjustment part includes at least one heating member disposed adjacent to the injection path between the ink pressurizing part and the ink discharge part; and at least one cooling member disposed outside the at least one heating member between the ink pressurizing part and the ink discharge part.
Specific matters of the embodiments are included in the detailed description and the drawings.
According to a screen printing device according to embodiments of the present invention, since a printing unit prints a pattern by discharging ink in a required amount for printing at preset pressure and transferring ink discharged to a screen onto a substrate, the screen may not be directly pressurized to minimize deformation of the screen, thereby improving durability of the whole of the screen printing device. In addition, since overall uniform printing is possible by minimizing a snap-off between the screen and the substrate, thereby efficiently performing a printing process on the substrate through a simpler structure and operation.
According to a screen printing device according to embodiments of the present invention, a printing unit may perform a printing process during one movement, thereby simplifying an entire printing process into one process and increasing printing speed.
According to a screen printing device according to embodiments of the present invention, discharge pressure of ink discharged from an ink discharge part may be measured, and the ink accommodated in a body may be pressurized according to a measurement result to control an discharge amount and discharge pressure of the ink. Thus, since unnecessary waste of the ink is reduced, the screen printing device may be easily applied to the expensive ink.
According to a screen printing device according to embodiments of the present invention, discharge pressure of ink discharged from an ink discharge part may be measured, and the ink accommodated in a body may be pressurized according to a measurement result to control an discharge amount and discharge pressure of the ink. Thus, since the ink is directly pressurized, the screen printing device may be applied ink having high viscosity, and since relatively high aspect ratio printing is possible, overall printing quality may be improved, when compared with limited pressure of an existing squeegee.
According to a screen printing device according to embodiments of the present invention, discharge pressure of ink discharged from an ink discharge part may be measured, the ink accommodated in a body may be pressurized according to a measurement result to control an discharge amount and discharge pressure of the ink, and the ink used for printing may be controlled so as to be discharged and used in a required amount in a state of being accommodated in an injection path of the body. Thus, it is possible to reduce unnecessary waste of the ink and to minimize a change in a physical property due to environmental exposure of the ink, thereby improving overall printing quality.
According to a screen printing device according to embodiments of the present invention, since a cavity configured to temporarily accommodate ink is formed in a body constituting a printing unit, the ink discharged from a long ink discharge part may be uniformly discharged in a width direction of a screen.
According to a screen printing device according to embodiments of the present invention, an ink discharge part formed at one side of a body constituting a printing unit may be detachably implemented, thereby reducing maintenance costs and simplifying maintenance operations of the screen printing device.
According to a screen printing device according to embodiments of the present invention, temperature of ink discharged from a printing unit may be measured, and temperature of the ink moving along an injection path may be controlled according to a measurement result to constantly maintain the temperature and viscosity of the ink used for printing, thereby improving overall printing quality.
According to a screen printing device according to embodiments of the present invention, a heating member may be disposed adjacent to an injection path through which ink moves, and a cooling member may be disposed adjacent to a surface of a body, thereby minimizing influence on a screen, a substrate, and the like when temperature adjustment part controls temperature of ink.
The effects of the present invention are not limited to the effects mentioned above, and other effects can be clearly understood from the description of the claims by those skilled in the art.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that they can be readily implemented by those skilled in the art.
A description of technical content that is well known to those skilled in the art and is not directly related to the present invention is omitted when embodiments of the present invention are described. The reason for this is to omit unnecessary description, and to more definitely transmit the gist of the present invention rather than making the gist of the present invention unclear.
For the same reason, some components in the drawings are exaggeratedly shown, omitted, or schematically shown. The sizes of respective components in the drawings do not reflect actual sizes. The same or similar reference symbols are used throughout the drawings to refer to the same or like parts.
Hereinafter, the present invention will be described with reference to the drawings illustrating a screen printing device through embodiments of the present invention.
As illustrated in
The screen 100 may be disposed adjacent to an upper portion of a substrate S on which a printing process is performed, and a pattern to be printed on the substrate S may be formed thereon. In the present invention, of course, the substrate S is a concept including all types of substrates such as a film and a web, on which a printing pattern is formed.
The printing unit 200 may be disposed on an upper portion of the screen 100 and may discharge ink I (or paste, the same shall apply hereinafter) supplied from the outside to the screen 100 to form a pattern (P of
The driver 300 may be connected to at least one of the screen 100 and the printing unit 200 to drive at least one of the screen 100 and the printing unit 200. The driver 300 may include various types of actuators such as a cylinder and a driving motor. The driver 300 may be connected to at least one of the screen 100 and the printing unit 200 to move the screen 100 and the printing unit 200 in a vertical direction (±Z direction of
The controller 400 may be connected to the printing unit 200 and the driver 300 to control operations of the printing unit 200 and the driver 300. For example, the controller 400 may be connected to the printing unit 200 to control a flow rate, pressure, temperature, and the like of the ink I supplied to the printing unit 200. In addition, the controller 400 may be connected to the driver 300 to control a position, a movement direction, movement speed, and the like of the screen 100 and the printing unit 200.
Preferably, when at least one of the screen 100 and the printing unit 200 moves in a state in which the printing unit 200 contacts the screen 100, the controller 400 of the screen printing device 1 according to the embodiment of the present invention may control the printing unit 200 to perform printing on the substrate S by using the discharge pressure of the ink I.
For convenience of description,
That is, unlike a squeegee (14 of
Furthermore, the printing unit 200 constituting the screen printing device 1 according to the embodiment of the present invention performs functions of both a scraper (13 of
As described above, in the screen printing device 1 according to the embodiment of the present invention, since the printing unit 200 discharges the ink I in a preset required amount for printing at preset pressure, and transfers the ink I discharged to the screen 100 onto the substrate S by using the discharge pressure to print the pattern P, the printing unit 200 may not directly pressurize the screen to minimize deformation of the screen, thereby improving durability of the entirety of the screen printing device 1. In addition, a snap-off between the screen and the substrate may be minimized to perform overall uniform printing, thereby efficiently performing a printing process on the substrate S through a simper structure and operation.
Furthermore, in the screen printing device 1 according to the embodiment of the present invention, the printing unit 200 may perform a printing process during one movement, thereby simplifying the entire printing process into one process and increasing printing speed.
Hereinafter, a structure and operation of the printing unit 200 constituting the screen printing device 1 according to the embodiment of the present invention as configured above will be described in detail with reference to
As illustrated in
As illustrated in
Here, the injection path 212 means a space through which the ink I moves, as well as a space in which the ink I is accommodated in the body 210. In addition, a through-hole 213 configured to remove bubbles may be connected to the injection path 212, the bubbles being generated during an injection of the ink I.
The ink pressurizing part 220 may be disposed at one side of the body 210 so as to communicate with the injection path 212 and may pressurize the ink I which moves through the injection path 212. The ink pressurizing part 220 may pressurize the ink I at pressure set according to a measurement result of the pressure measurement part 240 and may adjust discharge pressure of the ink I discharged from the ink discharge part 230. The ink pressurizing part 220 may include a pump, a piston, a syringe, or the like. The present invention is not limited thereto, and a method of pressurizing the ink I may be freely changed by a person skilled in the art.
Meanwhile,
Meanwhile,
An ink discharge part 230 is disposed at one side of the body 210, facing the screen 100, so as to communicate with the injection path 212. The ink I may be discharged in a state in which the ink discharge part 230 contacts the screen 100.
The pressure measurement part 240 may be installed at a position adjacent to the ink discharge part 230 of the body 210 and may measure discharge pressure of the ink I discharged from the ink discharge part 230. The pressure measurement part 240 may be installed at a position adjacent to the ink discharge part 230 along the ink discharge part 212 through which the ink I moves, and at least one pressure measurement part 240 may be provided as needed.
The controller 400 may be connected to the pressure measurement part 240 and the ink pressurizing part 220 and may control the ink pressurizing part 220 to adjust an discharge amount and discharge pressure of the ink I according to a measurement result of the pressure measurement part 240. That is, in order to obtain a desired discharge amount and discharge pressure, the controller 400 may control the ink pressurizing part 220 to pressurize the ink I at appropriate pressure according to an discharge pressure measurement result measured by the pressure measurement part 240.
As described above, in the screen printing device 1 according to the embodiment of the present invention, discharge pressure of the ink I discharged from the ink discharge part 230 may be measured, and the ink I accommodated in the body 210 may be pressurized according to the measurement result to control an discharge amount and discharge pressure of the ink I. Thus, since unnecessary waste of the ink I is reduced, the screen printing device 1 may be applied to the expensive ink I.
In addition, in the screen printing device 1 according to the embodiment of the present invention, discharge pressure of the ink I discharged from the ink discharge part 230 may be measured, and the ink I accommodated in the body 210 may be pressurized according to the measurement result to control an discharge amount and discharge pressure of the ink I. Thus, since the ink I is directly pressurized, the screen printing device 1 may be applied to ink having high viscosity, and since relatively high aspect ratio printing is possible, overall printing quality may be improved, when compared with limited pressure of an existing squeegee.
In addition, in the screen printing device 1 according to the embodiment of the present invention, discharge pressure of the ink I discharged from the ink discharge part 230 may be measured, the ink I accommodated in the body 210 may be pressurized according to the measurement result to control an discharge amount and discharge pressure of the ink I, and the ink I used for printing may be controlled so as to be discharged and used in a required amount in a state of being accommodated in the injection path 212 of the body 210. Thus, it is possible to reduce unnecessary waste of the ink I and to minimize a change in a physical property due to environmental exposure of the ink I, thereby improving overall printing quality.
On the other hand,
For example, as illustrated in
In an example, as illustrated in (a) of
In another example, as illustrated in (b) of
Meanwhile, (a) and (b) of
On the other hand, the body 210 constituting the printing unit 200 may have at least one cavity 211 configured to temporarily accommodate the ink I moving along the injection path 212.
As illustrated in
As described above, in the screen printing device 1 according to the embodiment of the present invention, since the cavity 214 configured to temporarily accommodate the ink I is formed in the body 210 constituting the printing unit 200, the ink I discharged from the long ink discharge part 230 may be uniformly discharged in a width direction of the screen 100.
Meanwhile, the ink discharge part 230 constituting the printing unit 200 may be detachably attached to one side of the body 210.
As illustrated in
For example, assuming that a section size of an discharge port 231 formed in the ink discharge part 230 is determined according to a kind of the ink I and a property (for example, viscosity) of the ink I, even when the kind of the ink I and the property of the ink I are changed, only ink discharge part 230 connected to the body 210 may be replaced without replacing the whole of the body 210. In another example, even when a material of the ink discharge part 230 contacting the screen 100 needs to be changed according to printing conditions, only the ink discharge part 230 made of another material may be replaced.
As described above, in the screen printing device 1 according to the embodiment of the present invention, the ink discharge part 230 disposed at one side of the body 210 constituting the printing unit 200 may be detachably implemented, thereby reducing maintenance costs and simplifying maintenance operations of the screen printing device 1.
Meanwhile, the printing unit 200 constituting the screen printing device 1 according to the embodiment of the present invention may further include a temperature measurement part and temperature adjustment part, which are configured to control temperature of the ink I discharged from the ink discharge part 230.
As illustrated in
The temperature adjustment part 260 may be disposed between the ink pressurizing part 220 and the ink discharge part 230 and may adjust pressure of the ink I moving through the injection path 212. The temperature adjustment part 260 may heat or cool the ink I according to a measurement result of the temperature measurement part 250 and may adjust temperature of the ink I discharged from the ink discharge part 230.
The controller 400 may be connected to the temperature measurement part 250 and the temperature adjustment part 260 and may control the temperature measurement part 250 according to the measurement result of the temperature measurement part 250 to adjust temperature and viscosity of the ink I discharged from the ink discharge part 230. That is, in order to obtain desired temperature and viscosity, the controller 400 may control the temperature adjustment part 260 to heat or cool the ink I to appropriate temperature according to the temperature measurement result of the ink I measured by the temperature measurement part 250.
As described above, in the screen printing device 1 according to the embodiment of the present invention, temperature of the ink I discharged from the printing unit 200 may be measured, and temperature of the ink I moving along the injection path 212 may be controlled according to the measurement result to constantly maintain the temperature and viscosity of the ink I used for printing, thereby improving overall printing quality.
On the other hand, the temperature adjustment part 260 may include at least one heating member configured to increase temperature of the ink I moving along the injection path 212, and at least one cooling member configured to reduce temperature of the ink I.
As illustrated in
For example, as a measurement result of the temperature measurement part 250, when it is necessary to increase temperature of the ink I (for example, when viscosity of the ink I is low), the controller 400 may drive both the heating member 261 and the cooling member 262 of the temperature adjustment part 260. In this case, the heating member 261 may increase temperature of the ink I moving along the injection path 212, and the cooling member 262 may block heat transferred from the heating member 261, thereby preventing hot heat from being transferred to the outside to affect the screen 100, the substrate S, and the like.
On the contrary, as a measurement result of the temperature measurement part 250, when it is necessary to decrease temperature of the ink I (for example, when viscosity of the ink I is high), the controller 400 may drive only the cooling member 262 of the temperature adjustment part 260.
As described above, in the screen printing device 1 according to the embodiment of the present invention, the heating member 261 may be disposed adjacent to the injection path 212 through which the ink I moves, and the cooling member 262 may be disposed adjacent to a surface of the body 210, thereby minimizing influence on the screen 100, the substrate S, and the like when the temperature adjustment part 260 controls the temperature of the ink I.
Although the invention has been shown and described with respect to the preferred embodiments, and specific terms have been used, the preferred embodiments and specific terms are used in their general meaning only, in order to easily describe the technical content of the present invention and to facilitate the understanding of the present invention, and are not intended to limit the scope of the present invention. It will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.
The present invention relates to a screen printing device. Specifically, the present invention may be applied to technical fields related to a screen printing device capable of efficiently performing a printing process on a substrate through a simpler structure and operation.
Number | Date | Country | Kind |
---|---|---|---|
10-2017-0066596 | May 2017 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2018/003206 | 3/20/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/221845 | 12/6/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5133120 | Kawakami | Jul 1992 | A |
5540779 | Andris | Jul 1996 | A |
6571701 | Pham-Van-Diep | Jun 2003 | B1 |
20040244612 | Willshere | Dec 2004 | A1 |
20130047877 | Yoo | Feb 2013 | A1 |
20160159073 | Liu | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
06-015801 | Jan 1994 | JP |
3755906 | Mar 2006 | JP |
2007-160643 | Jun 2007 | JP |
10-2010-0054411 | May 2010 | KR |
10-1664992 | Oct 2016 | KR |
Number | Date | Country | |
---|---|---|---|
20200406603 A1 | Dec 2020 | US |