The present application is a 371 of and claims priority of International patent application Serial No. PCT/GB2004/004813, filed Nov. 12, 2004, and published in English the content of which is hereby incorporated by reference in its entirety.
This invention is concerned with vibrating sieve separators for use in sieving materials using vibratory screens.
Such separators are well-known and generally use one or more taut screens of selected mesh size which are mounted in or on a chassis that is itself supported on a base by elastomeric mounts, springs or other resilient members. The chassis is coupled to a motor which drives offset weights to impart vibration to the chassis and thereby to the screen(s) of the sieve.
Separators are widely used in many industries and the use is determined by the materials to be sieved or separated, and these materials themselves determine the mesh size for the screen.
One industry in which such separators are widely used is the pharmaceutical industry. In this industry, it is of special importance that, when sieving a product, the probability of any sieved material escaping into the surrounding environment is restricted ideally to zero, but in reality to the lowest possible margin, so that neither workers nor other equipment nor products can become contaminated.
There are prior art arrangements to ensure that material fed to such a separator remains within its confines and one such separator is shown in
The separator also comprises a cover 18 (or lid) which is mounted on the chassis, and has an inlet 20 through which material to be separated can be loaded into the separator and has an observation port 21.
The cover 18 is fastened to the chassis in sealed engagement therewith by a plurality of toggle or over-centre clamps 22, the locking action of which secures the cover to the chassis. As good as the seals are that are established with such a structure, in practice, particles of sieved materials do escape from such separators and these particles, being of microfine dimensions can collect on surfaces of the separator and elsewhere, with the attendant possibility of contamination when the separator is used for separating other materials. With the arrangement shown in
In other prior art arrangements, the cover, screen frame, collection hopper and other elements of the sieve can be clamped together using a single band clamp, comprising a V-section hoop which is tightened around the sieve elements to clamp them together. Effective clamping using individual toggle clamps as in
It is therefore an objective of this invention to provide an improved arrangement for securing or clamping the component parts of the separator together.
Embodiments of the invention can also improve the sealing of the various components, i.e. chassis, cover, sieve frames, so that finely divided products do not escape from the product space in the sieve.
In U.S. Pat. No. 5,226,546, there is disclosed a separator construction in which circular sieve frames can be loaded through slots in a side wall of a cylindrical chassis of the separator and then held in position by inflating an annular inflatable tube with the various components of the separator held in position by one or two strap ties which extend parallel to the axis of the chassis and are located on the outside of the chassis and clamp the component parts together at a maximum of two locations. This, we believe, can lead to distortion of the components of the separator, especially of the screen frames, albeit by a very small amount, but to an extent that does allow leakage of material from the separator.
Accordingly, in one aspect, the present invention provides screen separating apparatus comprising a chassis for supporting a screen frame carrying a sieve screen, said chassis providing a first bearing surface; and one or more clamping members which can be located relative to the chassis to provide a second bearing surface or a combination of second bearing surfaces opposed to said first bearing surface such that the screen frame can be clamped between the first and second bearing surfaces; wherein the apparatus further comprises at least one expandable element mountable in the chassis to be between said first and second bearing surfaces and expandable to effect said clamping of the screen frame.
The sieve frame is typically circular though it may be of other shape, e.g. elliptical, or even rectangular, and where used herein the terms annular and circumferential or circumference should be understood to include such shapes, unless it is clear that a more specific meaning is intended. Hereinafter, for example, the described and illustrated embodiments use frames which are of circular shape.
Thus, where the chassis accommodates one or more annular frames which are circular, the chassis is typically of circular shape also. The annular clamping arrangement which is conveniently shaped to conform to the shape of the chassis is preferably formed as a cylindrical sheath which fits onto the chassis. This sheath may have an in-turned flange portion which is provided, when the separator is assembled for use, to exert a reactive force, directly or indirectly, onto the sieve frame or a stack of such frames where more than one is used, when the expandable element(s) is/are expanded.
The sheath itself is preferably formed as a one-piece cylinder, though if more desirable, it may be of multipart form, and where of multipart form, the annular construction of the sheath may be provided by a plurality of sheath segments which are, or can be, linked together with, if appropriate, some spatial separation of the sections from each other. A desirable requirement in the design of the sheath is that when the separator is assembled, and the expandable element(s) is/are expanded, the reactive force exerted by the flange portion of the sheath should be exerted not at localised positions, as in the prior art, but uniformly and continuously along as much of the frame(s) as is required to ensure that the frame(s) and the other components of the separator are subjected to an even distribution of that force.
Where the sheath includes an in-turned flange portion, the sheath itself may extend as a skirt around an upper annular portion of the chassis in overlapping relationship and may have a plurality of cut-out locking slots formed therein to co-operate with spaced studs on the exterior of the chassis in a bayonet fitting relationship so that the sheath and the chassis can be locked together, and readily released, when desired, by a single operative to effect maintenance, cleaning and/or replacement.
The separator may comprise a lid or cover, as is typical of separators generally. The cover may include a shoulder portion around its lower periphery, the shoulder portion being of external dimensions such that it sits within the confines of the chassis and can be engaged by the in-turned flange portion of the sheath. The shoulder portion may also have an inner skirt depending therefrom which itself has a continuous flange at its lower edge, which flange is arranged to rest upon a sieve frame, or an uppermost sieve frame where more than one is provided.
The or each sieve frame is supported within the confines of the chassis. The separator normally comprises a hopper through which sieved materials fall into a collecting receptacle. Such a hopper, in a typical truncated cone shape, may have an upper peripherally-braced shelf portion on which the one or more frames are supported. The shelf portion may have a continuous wall integrally formed with, and upstanding from, the shelf portion, the wall portion being of dimensions such that it forms a snug sliding fit within the chassis. The peripherally-braced shelf portion may itself be supported by the at least one expandable element, which in preferred embodiments of the present invention is a single annular inflatable element which may be provided by an annular inflatable tube or annular bellows mounted in a retaining channel formed by an annular wall extending from an annular ledge welded to the interior of the chassis.
The construction and arrangement of this preferred embodiment is such that, when the separator is assembled, the inflatable member is expanded by pneumatic or hydraulic pressure and urges the hopper, the frame(s) and the skirt of the cover upwardly against the in-turned flange portion of the sheath until the shoulder portion of the cover engages the in-turned flange portion and lifts the sheath until its further movement is prevented by the bayonet fittings. Thereafter, increased pneumatic/hydraulic pressure in the expandable element traps the frame(s) between the skirt of the cover and the shelf portion of the hopper within the sheath and the chassis.
In an alternative embodiment, the engagement of the sheath and the chassis may be provided by forming the sheath with a lower lip arranged to lie under a lower annular edge of the chassis. If the lower lip extends inwardly of the chassis to a sufficient depth, it can support an annular ring that itself supports the expandable element, thereby simplifying the shape of the chassis or the need to weld channeling to the interior of the chassis. Such an annular ring may itself have an annular wall such that an annular channel is formed between it and the chassis to retain the expandable member therein.
The invention also provides screen separating apparatus comprising a chassis for supporting a screen frame carrying a sieve screen, a cover to enclose a space above the sieve screen to contain material to be separated, a hopper to collect fines passing through the sieve screen, at least one inner seal to seal between the cover and the hopper around the circumference of the screen frame when the apparatus is in use, a sheath surrounding said inner seal, at least one outer seal to seal between the sheath and at least one of the cover and the hopper to provide an enclosed volume between the sheath, the cover and the hopper, and an inlet connecting to said enclosed space to enable said enclosed space to be pressurised. This arrangement provides positive leak prevention from the product space in the sieve enclosed by the cover and the collection hopper.
These and other characteristic features of embodiments of the present invention will now be described by way of example with reference to the accompanying drawings, in which:
a is a close-up cross-sectional view of the right-hand side of the separator shown in
a is a cross-sectional view of a variant of the fourth embodiment shown in
a is a cross-sectional view similar to
a is a close-up perspective view of a motor mounting block shown in outline in
b is a further close-up perspective view of a motor housing of a separator according to the present invention, the housing being mountable to the mounting block shown in
c to 11e are perspective views of details of a closure arrangement for holding the sheath of the apparatus of
a is a cross-sectional view illustrating a further modification providing positive prevention of leaks and cross-contamination;
b is a cross-sectional view of a further modification;
a shows in section a separator embodying the invention comprising a chassis 40 which may be mounted on a mobile carriage 42, which is shown in
Mounted on the chassis and attached thereto by a plurality of bayonet fittings or couplings 48 of an annular clamping arrangement evenly positioned around the chassis is a sheath 50 which carries diametrically opposed handles 52 to enable the sheath to be coupled to or uncoupled from the chassis. Secured by the sheath is a lid or cover which has an inlet 56 at its uppermost part through which material can be poured into the separator. The cover also has an observation port which is not shown in
Shown in part section in
The chassis can be mounted either on a fixed base or a mobile base such as the mobile carriage partly shown in
Within the chassis 40, there is provided an annular ledge 60 which is welded or otherwise fixed to the interior face of the chassis. This ledge 60 supports an annular wall 62 concentric with and spaced from the interior face of the chassis, the ledge, the wall and the interior face of the chassis, thereby defining a channel 64 which houses an expandable element in the form of an annular inflatable tube 66. The tube is shown in the drawing as being of square cross-section though in practice it may be of any convenient cross-section, or may be of bellows construction.
The ledge 60 is provided with one or more apertures 68 through which one or more inlets 69 to the tube 66 can pass, to a source of pressure such as a pneumatic or hydraulic pump. The tube 66 is inflatable to an extent such that it can rise above the height of the annular wall 62.
The hopper 58 rests on the wall 62, when the tube 66 is not inflated. To this end, the hopper has an annular shelf portion 70 which at its outer periphery extends upwardly as an annular wall 72 which has an external diameter such that it forms a clearance sliding fit within the chassis 40. The shelf portion is supported by an annular collar 74 which is welded to the hopper and is of elbow cross-section to provide a surface 76 against which the tube 66 can be inflated.
The shelf portion 70 of the hopper provides support for a frame 78 of a first or lower sieve screen, the frame 78 being, as previously stated, of circular shape and resting on the upper surface of the shelf portion 70. The frame in this example is of square-sectioned tubular construction and supports a tautly held screen (not shown) therein. The frame is seated in a U-shaped or L-section gasket 80 formed of a suitable preferably conductive resilient material to provide a sealing and locating function, to prevent product by-passing the mesh or escaping to the outside of the sieve. Mounted above the first, lower, frame 78 is a second, upper, frame 82 of similar construction to that of frame 78. The two frames 78 and 82 are separated by an annular gasket 86 which provides a similar function to gasket 80. The gasket 86 is also shaped to brace the two frames away from the wall 72 of the hopper 58, and extends over the top of the frame 82 to provide a seat for the cover 54. Frame 78 may carry the primary separator mesh or screen and frame 82 may carry a secondary safety mesh or a magnetic separator. Instead frame 78 may be just a spacer, and frame 82 may carry the single mesh or screen.
The cover 54 is of generally circular cylinder shape having a shallow truncated cone top portion 87 which includes the inlet 56 at its apex. Around the lower perimeter of the main cylindrical part 88 of the cover is formed a shoulder portion 90, depending from which is an annular, inner skirt 92 which lies inside the sheath 50. At its lower edge, the skirt 92 is formed with an in-turned annular flange 94, which rests upon the gasket 86 over the spacer 82.
When the sheath 50 is located in position over the cover 54, an annular in-turned flange portion 96 formed around the upper edge of the sheath 50 overlaps the shoulder portion 90 of the cover 54. The flange portion 96 is encased in a resilient annular gasket 98 to seal with the shoulder portion 90 of the cover. As with the other gaskets, the gasket 98 may be formed of any suitable resilient material (e.g. silicone, polypropylene).
As can be understood from a study of
Thereafter, gaskets 80 and 86 are fitted to the frames 78 and 82, the frame 78 is placed on the shelf portion 70 of the hopper 58, and the second frame 82 is then placed on the first, lower, frame 78 and pressed into position.
The cover 54 is placed on the spacer 86, and the sheath then fitted over the cover so that the protected flange portion 96 seats on the shoulder portion 90 of the cover. The sheath is ‘dropped’ over the cover so that the openings to slots 47 (see
Once the sheath 50 is so engaged, and holds the cover 54 in place, the inflatable tube 66 is inflated via a pump (not shown) filling the tube with compressed air or other suitable fluid causing the tube to inflate. Inflation of the tube causes expansion of the tube, and the expansion exerts an upward force, as indicated by the arrow F, on the collar 74 thereby pressing the shelf portion 70 against the two frames 78, 82, and transmitting this force, via the flange 94, skirt 92 and shoulder portion 90, to the flange portion 96 of the sheath 50. The sheath is thus caused to take up any slack in the bayonet fittings.
Thereafter pressure caused by inflation of the tube 66 causes compression of the gaskets 80, 86 and 98 until the components of the separator are tightly secured.
A perspective view of the separator of
In other embodiments, the separator may have two or more stacked screen decks carrying progressively finer sieve screens. Then the sheath has sufficient depth to clamp together the multiple decks and screen frames. A separator with two sieve decks is shown in
In a second embodiment of the present invention, shown in
A third embodiment of the present invention is shown in
The ledge 114 is located within the confines of the chassis 110 at a position such that a second expandable element, also in the form of an annular inflatable tube 122 can be located below the ledge 114 and within the confines of the chassis.
The separator comprises a hopper 124 which has an annular shelf portion 126 which is protected by a resiliently compressible annular gasket 128. The shelf portion 126 rests on the inflatable tube 120.
The shelf portion 126 supports first, lower and second, upper sieve frames 130, 132 which are mounted in an annular resiliently compressible annular gasket housing 134 on which is supported the cover 136 of the separator. The cover, though of different appearance from that shown in
In this embodiment, a sheath 138 which is of annular form, and of multipart construction, as hereinafter described, envelops the chassis 110 almost completely. The sheath 138 has a skirt portion 140 which embraces the exterior of the chassis 110 and integrally-formed upper and lower in-turned annular flanges 142, 144 respectively. The lower flange 144 extends inwardly below the chassis 110 to provide support for the inflatable tube located below the ledge 114, and the upper flange 142 extends inwardly to overlap a peripheral flange 146 of the cover 136, thereby trapping the two frames 130, 132, shelf portion 126 and the two inflatable tubes 120122.
When either or both of the tubes 120, 122 is/are inflated, pressure is exerted by the tube 122 on the lower flange 144 and, by inflation of the tube 120, on the frame housing 134 and thus against the upper flange 142. Due to the compressible nature of the gasket 128 and of the housing 134, the structure thus assembled is held fast and can withstand vibration imparted to the separator without leakage of material therefrom.
Turning now to
The resilient mounts 210 are formed of any suitable material, e.g. vulcanised natural or synthetic rubbers, or plastics materials, capable of absorbing vibration transmitted from the motor, so that the base remains substantially vibration free during use, and are located in recesses 212 provided in the base 112. Mounts in the form of springs may also be used. Further detail of the construction of the fourth embodiment can be gleaned from the variant thereof which is shown in
As stated above, the construction shown in
In
The construction of the embodiment of
A modification of the embodiment shown in
The manner in which a sheath such as is illustrated in
As can be seen in each of
As shown in detail in
Each hinge pin 160 passes through a respective pin hole which is formed in a mounting block 164 which is welded to the chassis 166, and through a bearing aperture in a retaining plate 168 which is welded in situ between the mounting block 164 and the chassis 166.
At their opposite ends, i.e. those ends opposite the hinges, the two halves 153, 154 of the sheath, when closed onto the chassis are in substantially end-to-end relationship, as shown in
When the two halves 153, 154 are closed onto the chassis 166, the two flange portions 174, 176 are in closely-separated relationship, the separation corresponding to the width of a slot 182 formed in a magnetic locking bar 184 which is used to clamp the two halves 153, 154 together on the chassis 166. The bar 184 is provided with a pair of hooks 186, 188 which hook over the horizontal hinge 180 to act as a pivot for the bar 184. At its opposite end, the bar 184 has a magnet 190 inset into the body of the bar. This magnet 190 co-operates with the magnetic keeper 178 to hold the locking bar 184 in situ when it is moved from the position shown in
This construction permits ready locking of the two halves 153, 154 of the sheath 152 and quick release when it is required to uncouple them. The two halves can then be parted and swung back from the chassis 166 as shown in
As mentioned above, the collar 150 of the motor is mounted on the mounting block 164.
The manner in which the separator can be assembled and dis-assembled is shown in
In the structure shown in
Pivotally mounted on the chassis 166 are two toggled hinge pins 202, 204 that can pivot between a horizontal position as shown in
With such an arrangement, the two halves of the sheath 152 can be quickly released, and subsequently coupled around the chassis 166.
Turning now to
In this embodiment, a further variation from the preceding embodiments is that the at least one expandable element is provided by a plurality of pneumatic (or hydraulic) piston-and-cylinder arrangements 250 which are mounted on and secured to the base 112 and extend upwardly therefrom to engage the underside of the annular ledge 114.
In this construction, and in that of the seventh embodiment of the present invention, shown in
The construction shown in
In the embodiment of
A similar arrangement is shown in
In
The general construction using a plurality of sheath segments 252 can be seen in
All of the sheath segments 252 are pivotal on mountings such as described with reference to
To release the segments from the positions shown in either of
In either construction, the segments then adopt the position shown in
Instead of the annular wall 62 welded or otherwise fixed to the annular ledge 60 as described and illustrated in the first embodiment and shown in
The angle ring 300 effectively provides the annular channel 64 of the first embodiment and as illustrated in
Importantly, the annular ring 300 and the gasket 303 can be removed from the chassis structure to facilitate cleaning.
An additional modification in the embodiment of
Importantly, this design avoids the enclosed space defined by the annular shelf portion 70 and lower surface 76 of the hopper 58 in the first embodiment as illustrated in
Finally, as can be seen in
In other respects, the modified embodiment of
a illustrates the modified embodiment of
In addition a gas connection 340 is provided at an upper part of the sheath 50 so that the interior space defined by the sheath unit 50, the inner skirt 92 of the lid or cover, the gaskets 86 and 320, the periphery of the hopper 58, the bellows 66, the angle ring 300, the annular gasket 303, the annular ledge 60, and the chassis wall 40, can be pressurised, e.g. to 0.5 bar gauge. This over pressure then prevents any residual leakage from within the sieve product space through the seals between the cover 54 and the hopper 58. Also, leakage of possibly contaminating ambient air into the product space is prevented.
It is not critical to provide a perfect seal between the sheath 50 and the chassis and cover, so long as the desired over pressure can be maintained. However, a pressure sensing leak detection system may be provided if required to monitor the over pressure in the region enclosed by the sheath 50.
b illustrates a variation of the arrangement for positive leak prevention using internal bayonet fittings comprising studs 48 engaging in slots provided in an internal flange 340 secured to the inside face of the sheath 50. This variation provides a smoother exterior surface to the assembled separator.
The positive leak prevention system may also be applied to the separator with integrally formed cover and sheath of
A supply of pressurised air is connected at push connector 400 and is fed to the bellows 66 (together with the annular sealing tube 331 if fitted) by means of an outlet push connector 401. The pressure supplied to the sieve through the outlet 401 is controlled by a pressure regulator and gauge unit 402.
A T-piece 403 in the pressure line supplies the applied pressure to a pressure sensor 404 which may be connected to disable the main sieve motor on detection of an applied pressure below a predetermined threshold, e.g. 5 bar. For example, the pressure sensor 404 may be connected to one of the starter coils in the starter box of the separator.
The pneumatic control system also includes a second T-piece 405 connecting to exhaust via an exhaust valve 406. In addition an isolator valve 407 enables the inlet pressure supply to be isolated from the sieve.
In operation, the bellows 66 of the separator unit is inflated to apply the required clamping pressure by closing the exhaust valve 406 and opening the isolation valve 407. These valves may be manual. Then, so long as the applied pressure as sensed by the sensor 404 exceeds the threshold (e.g. 5 bar) the sieve can be started in the usual way. If the applied pressure drops below the threshold, the sieve stops automatically and cannot be restarted until the pressure is restored.
If the leak detection system of
It will be clearly understood from the foregoing description of various embodiments of the invention, that various combinations, other than those described, of the characteristic features of the invention are possible without departing from the scope of the invention so defined by the claims. For example, the sheath could be formed of various combinations as a hybrid of the structures shown in
In embodiments described above, the expandable element is an inflatable continuous tube or annular bellows extending around the circumference of the screen frame. However, in other embodiments, multiple lengths of inflatable tube or bellows elements may be used distributed around the screen frame to provide a substantially even clamping force.
In another embodiment the annular bellows may be replaced by an annular ring and at least two pneumatic or hydraulic rams operable to drive the ring to effect said clamping.
Other embodiments may use magnetic force to provide the expansion force for said expandable element or elements. Electro-magnets may be employed which can be switched on and off to apply clamping when required. Opposed permanent magnets may also be used and rotated from an opposing position when switching from repulsion (providing clamping pressure) to a released non-repelling position.
It should also be clearly understood that, though described in specific arrangements, it is possible to re-arrange the assembly of the frame(s) and expandable element(s) can be adjusted, provided that a clamping arrangement is achieved with the sheath enclosing the chassis. Thus, for example, the arrangement shown in
The various embodiments of the invention described above have the following advantages:
a) By providing one or more expandable members essentially inside the outer structure of the separator, the outer structure can be substantially “cleaned up” to minimise external crevices and other surface structures which can trap unwanted dirt or contaminants.
b) The clamping arrangements described, in particular that using the single clamping sleeve located around the cover of the separator structure, substantially simplifies the operation of clamping the various screening elements together, so that operator error is minimised.
c) The provision of pneumatic or hydraulically operated inflatable elements to provide the clamping pressure permits a reliable clamping pressure to be applied and provides the possibility of automatic pressure monitoring for added security.
d) Embodiments of the invention ensure that the clamping pressure is applied substantially uniformly around the entire circumference of the sieve frame, thereby improving sealing between the various clamped elements of the separator.
e) The additional provision in embodiments of the invention of an over pressure in the enclosed region between the sleeve and the clamped elements of the separator, enables positive leak prevention from the product space within the separator and prevents incursion of contaminants from ambient atmosphere.
The embodiment providing positive leak prevention which is described above and illustrated in
Number | Date | Country | Kind |
---|---|---|---|
0326514.7 | Nov 2003 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2004/004813 | 11/12/2004 | WO | 00 | 5/12/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/049230 | 6/2/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3422955 | Mock et al. | Jan 1969 | A |
4082657 | Gage | Apr 1978 | A |
4582597 | Huber | Apr 1986 | A |
4755287 | Jones | Jul 1988 | A |
4816153 | Ando et al. | Mar 1989 | A |
4846352 | Bailey | Jul 1989 | A |
5226546 | Janssens et al. | Jul 1993 | A |
6096210 | Hazrati et al. | Aug 2000 | A |
6938779 | Burnett | Sep 2005 | B2 |
20030057140 | Hukki et al. | Mar 2003 | A1 |
20090159507 | Mainwaring et al. | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
202 11 833 | Dec 2002 | DE |
02 18 315 | Apr 1987 | EP |
1 135 402 | Dec 1968 | GB |
2 059 807 | Apr 1981 | GB |
21 76 425 | Dec 1986 | GB |
2176424 | Dec 1986 | GB |
23 27 897 | Feb 1999 | GB |
2001038293 | Feb 2001 | JP |
839611 | Jun 1981 | SU |
1488027 | Jun 1989 | SU |
WO 9747404 | Dec 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20070084762 A1 | Apr 2007 | US |