The inventions described herein relate to devices and methods for assessing and treating the upper airway. More particularly, the inventions described herein relate to devices and methods for assessing and treating the upper airway in patients with obstructive sleep apnea.
Hypoglossal nerve stimulation has been proposed for the treatment of obstructive sleep apnea. An example of an implantable hypoglossal nerve stimulation system is described in U.S. Pat. No. 7,809,442 to Bolea et al. Published data suggest that response to hypoglossal nerve stimulation varies across subjects. Before undergoing a surgical procedure to implant a hypoglossal nerve stimulation system, it would be desirable to understand the likelihood of therapeutic success, and make clinical judgments accordingly.
To address this and other unmet needs, the present invention offers, in one example embodiment, a method for treating obstructive sleep apnea by first performing an assessment of the patient that involves observing the patient's upper airway during a tongue protrusion maneuver. The assessment may, for example, be done using endoscopy to observe the upper airway while the patient is awake in the supine position. The tongue protrusion maneuver may, for example, involve the patient volitionally protruding the tongue to its maximal extent with the mouth open or the lips loosely touching the tongue. The tongue protrusion maneuver mimics the effect of genioglossus activation by hypoglossal nerve stimulation (HGNS). Thus, an adequate increase in airway size during the tongue protrusion maneuver would be indicative of likely therapeutic success with HGNS. If the assessment shows an adequate increase in airway size during the maneuver, a HGNS device may be implanted in the patient with a higher confidence in a successful outcome. The principles of the present invention may be applied to other therapeutic interventions for OSA involving the upper airway.
It is to be understood that both the foregoing summary and the following detailed description are provided by way of example, not limitation. Together with the following detailed description, the drawings illustrate example embodiments and serve to explain certain principles of the invention. In the drawings,
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
The implanted components 200 of the HGNS system 100 include the INS 210, STL 230, and RSL 320. The INS is designed to accommodate one STL 230 and one RSL 220. One STL 230 may be used for unilateral implantation and unilateral hypoglossal nerve stimulation. Similarly, one RSL 220 may be used for respiration detection, and may be bifurcated as shown.
The implanted components 200 may be surgically implanted with the patient under general anesthesia. The INS 210 may be implanted in a subcutaneous pocket inferior to the clavicle over the pectoralis fascia. The distal end of the STL 230 (cuff 235) may be implanted on the hypoglossal nerve or a branch of the hypoglossal nerve in the submandibular region, and the proximal end of the STL 230 may be tunneled under the skin to the INS 210. The RSL 220 may be tunneled under the skin from the INS 210 to the rib cage and placed on both lateral sides of the costal margin. The INS 210 detects respiration via the RSL 220 using bio-impedance and stimulates the hypoglossal nerve via the STL 230 synchronous with inspiration.
Further aspects of the HGNS system 100 may be found in U.S. Provisional Patent Application No. 61/437,573, filed Jan. 28, 2011, entitled OBSTRUCTIVE SLEEP APNEA TREATMENT DEVICES, SYSTEMS AND METHODS, the entire disclosure of which is incorporated herein by reference.
Patients with obstructive sleep apnea have repeated episodes of complete (apnea) or partial (hypopnea) upper airway collapse during sleep. The upper airway is generally defined by four walls: the posterior pharyngeal wall, the right and left lateral pharyngeal walls, and anteriorly, the soft palate and the tongue. The posterior pharyngeal wall is relatively fixed to the spinal column. Thus, collapse of the upper airway generally involves, depending on the level and mode of collapse, the tongue, the soft palate and/or the lateral walls. In rare cases, collapse may involve the nasopharynx and/or hypopharynx. As seen in
Although the effect of genioglossus activation on the tongue to open the retro-glossal airway is predictable given the mechanism of action, the effect of genioglossus activation on the soft palate and lateral walls has been heretofore poorly understood and variable across subjects. Nevertheless, in the majority of OSA patients, the soft palate and the lateral walls can contribute to upper airway collapse, alone or in combination with the tongue. Thus, observing these effects can be important to predicting the success of HGNS therapy. This is particularly true if the soft palate and/or lateral walls are known to contribute to airway collapse for a given OSA patient.
The present invention offers a method to mimic genioglossus activation to observe and assess the effects thereof on structures of the upper airway. The method generally involves causing the tongue to protrude while observing the response of the upper airway using an imaging technique. In general, the desired response is an increase in airway size. An adequate increase in airway size during the tongue protrusion maneuver is indicative of likely therapeutic success with HGNS. If an adequate increase in airway size is observed during the maneuver, a HGNS device may be implanted in the patient with a higher confidence of a successful outcome.
With reference to
During the tongue protrusion maneuver, observing an adequate increase in size of the retro-glossal airway is predictive of HGNS efficacy in patients with isolated tongue base collapse. However, as mentioned above, the soft palate contributes to upper airway collapse in the majority of OSA patients, thus also observing an increase in size of the retro-palatal airway during the tongue protrusion maneuver is predictive of HGNS efficacy in patients with isolated soft palate collapse and combined tongue plus soft palate collapse.
By way of example, not limitation, the following procedure may be followed to conduct the assessment and tongue protrusion maneuver. With the patient awake in the supine position, a nasal endoscope is inserted into the pharynx via one of the nares to allow visualization of the upper airway. Video and still images may be captured at both the retro-palatal and retro-glossal levels to document the effect of different maneuvers on anatomic structures of the upper airway (tongue, palate, epiglottis, pharyngeal walls, etc.). When imaging the retro-palatal level, the endoscope may be placed such that all four walls (soft palate, posterior wall, and the two lateral walls) of the pharynx are visible before, during and after maneuvers. Similarly, when imaging the retro-glossal level, the endoscope may be placed such that all four walls (tongue base, posterior wall, and the two lateral walls) of the pharynx are visible before, during and after maneuvers. The endoscope may be placed such that it runs generally parallel to the posterior wall and provides a symmetric field of view. This may be achieved by initially placing the distal end of the endoscope near the level of the epiglottis and subsequently pulling back to the desired level. The patient then performs a series of maneuvers, including a tongue protrusion maneuver while breathing through their nose. The tongue protrusion maneuvers involves voluntary maximal straight tongue protrusion with lips loosely touching the tongue, with the mouth completely open, and/or with the teeth clenched closed. Other maneuvers such as a Mueller maneuver (inspiratory efforts against a closed airway) may be performed as well. Each maneuver is held for ≧2 seconds, and performed several times while data (images and measurements) are gathered.
Alternative non-volitional tongue protrusion maneuvers include, for example, manually gripping and pulling the tongue anteriorly (e.g., by the physician), using a tongue retaining device (e.g., as used for the treatment of OSA), both of which are non-invasive. Another alternative is to stretch the palatoglossal arch by pushing the tongue down (depress tongue), by pushing the arch laterally outward, or by pulling the arch anteriorly (all palatoglossal maneuvers) using a tongue depressor or similar device. The palatoglossal maneuver may be used in place of or in combination with the tongue protrusion maneuver, and the entire description herein with respect to the tongue protrusion maneuver is applicable to the palatoglossal maneuver. Other alternative non-volitional tongue protrusion maneuvers include, for example, sub-mental stimulation and intra-muscular stimulation (using fine wire electrodes, for example), both of which are relatively more invasive, but have the benefit of more selectively activating the genioglossus muscle alone to more closely mimic HGNS, as compared to volitional tongue protrusion which may recruit more than the genioglossus muscle.
Although naso-endoscopy is perhaps the most practical imaging technique to employ to assess the response of the upper airway to the tongue protrusion maneuver, other imaging techniques may be used as well. For example, x-ray imaging, fluoroscopy, x-ray computed tomography (CT), and optical coherence tomography (OCT) are suitable alternatives. These alternatives may provide more quantitative measurements by using a reference marker of known dimension in the field of view. Alternatively, improvements may be made to conventional naso-endoscopes to facilitate more quantitative measurements. For example, with reference to
As mentioned above, the upper airway assessment during tongue protrusion maneuver may be used as a screening tool wherein the patient is treated with the desired therapy (e.g., HGNS) only if the increase in size of the upper airway meets a predefined criterion. To this end, the response of the upper airway may be measured using a qualitative scale such as a visual analog scale of 0-10, wherein 0 represents a closed airway and 10 represents a completely open or patent airway. The airway size may be scored with the tongue at rest and during the tongue protrusion maneuver. The patient may be treated if the difference between the two scores meets a threshold, if the score during the maneuver meets a threshold, or if both the difference between the scores and the score during the maneuver meet thresholds (e.g., 5 on a scale of 0-10).
Alternatively, the response of the upper airway may be measured using a quantitative scale such as: a pixel count of captured images which may be representative of cross-sectional area; a linear dimension such as anterior-posterior and/or lateral; or a measure of circumference. Here again, the airway size may be measured (e.g., pixel count, AP length, and/or lateral width) with the tongue at rest and during the tongue protrusion maneuver. The patient may be treated if the difference between the two measures meets a threshold, if the measure during the maneuver meets a threshold, or if both the difference in measures and the measure during the maneuver meet thresholds.
In each case, the threshold may be a percentage increase in size (e.g., difference in AP length=50%), an absolute value (e.g., difference of AP length=0.5 cm), or a relative value. The relative value may be with reference to an anatomical landmark such as the width of the superior aspect of the epiglottis (e.g., difference in AP length=50% of epiglottal width).
Other response criteria observed during the tongue protrusion maneuver, in addition to an increase in airway size, may be used as well. For example, movement of the hyoid bone may be observed visually, by palpation or by x-ray. Movement of the hyoid bone in an anterior direction and/or inferior direction during the tongue protrusion maneuver may be predictive of therapeutic success with HGNS.
As mentioned above, although the effect of HGNS and genioglossus activation on the tongue to open the retro-glossal airway is predictable given the mechanism of action, the effect of genioglossus activation on the soft palate and lateral walls has been heretofore poorly understood. The explanation lies in the mechanical linkages between the genioglossus and other pharyngeal structures defining the upper airway. The linkages are primarily muscular, and can be effective without independent activation. Nevertheless, it may be desirable to independently activate any one or a combination of the muscular structures described below by stimulating the muscle directly or by stimulating the corresponding motor nerve innervating the muscle.
With reference to
The anatomical linkage between the tongue base (genioglossus) and the soft palate via the palatoglossal arch may be more clearly seen in
The anatomical linkage between the tongue base (genioglossus) and the lateral pharyngeal walls may be better appreciated with reference to
In sum, activation of the genioglossus muscle opens the retro-glossal airway as well as the retro-palatal airway via the linkages described above. In addition, activation of the genioglossus muscle serves to open the lateral pharyngeal walls via the linkages described above. However, the linked effects on the soft palate and the lateral pharyngeal walls is not present in all subjects but may be important for therapeutic success of HGNS depending on the level and mode of collapse in a given patient. By using a tongue protrusion maneuver to mimic the effect on the genioglossus muscle seen with HGNS, the response of the soft palate and lateral walls may be observed using endoscopy, for example. If the palatal and lateral walls respond sufficiently to the tongue protrusion maneuver, the likelihood of successful treatment with HGNS increases. Thus, observing the response of upper airway structures to the tongue protrusion maneuver may be used as a screening tool prior to implantation of a HGNS device.
Optionally, it may be desirable to observe the response of the airway at the level of collapse. The level of collapse may be determined during sleep or simulated sleep (e.g. sedation) using known techniques such as drug induced sleep endoscopy (DISE), or may be determined by examination of the airway structures using known techniques such as naso-endoscopy. The airway may collapse at the level of the tongue base (i.e., retro-glossal), at the level of the palate (i.e. retro-palatal), or both levels. Because most OSA patients have palatal involvement in airway collapse, it may not be necessary to determine the level of collapse. In this case, collapse may be assumed to occur at least at the level of the palate, and therefore an adequate response (e.g., increase in airway size) in the retro-palatal space during the tongue protrusion maneuver would be indicative of likely therapeutic success with HGNS.
The principles of the present invention may be applied to other therapeutic interventions for OSA involving the upper airway. For example, the tongue protrusion maneuver may be used as a screening tool for surgery of the upper airway, such as uvulopalatopharyngoplasty (UPPP), palatal implants, genioglossus advancement, maxillo-mandibular advancement, etc. Also, the tongue protrusion maneuver may be used as a screening tool for oral appliances such as mandibular repositioning devices, tongue retaining devices, etc.
Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departures in form and detail may be made without departing from the scope and spirit of the present invention as described in the appended claims.
This patent application is a continuation of U.S. patent application Ser. No. 13/113,524, filed on May 23, 2011 now abandoned, entitled SCREENING DEVICES AND METHODS FOR OBSTRUCTIVE SLEEP APNEA THERAPY, which claims the benefits of priority under 35 U.S.C. §§119 and 120 to U.S. Provisional Patent Application No. 61/437,573, filed Jan. 28, 2011, entitled OBSTRUCTIVE SLEEP APNEA TREATMENT DEVICES, SYSTEMS AND METHODS, and U.S. Provisional Patent Application No. 61/467,758, filed Mar. 25, 2011, entitled SCREENING DEVICES AND METHODS FOR OBSTRUCTIVE SLEEP APNEA THERAPY. This patent application is related to U.S. patent application Ser. No. 13/106,460, filed May 12, 2011, entitled OBSTRUCTIVE SLEEP APNEA TREATMENT DEVICES, SYSTEMS AND METHODS to Bolea et al., which claims the benefit of U.S. Provisional Patent Application No. 61/437,573, filed Jan. 28, 2011, entitled OBSTRUCTIVE SLEEP APNEA TREATMENT DEVICES, SYSTEMS AND METHODS. The entire disclosures of each of the above-listed applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
758030 | Carence | Apr 1904 | A |
1520930 | Calhoun | Dec 1924 | A |
1701277 | Shindel | Feb 1929 | A |
1914418 | Goyena | Jun 1933 | A |
2046664 | Weaver | Jul 1936 | A |
2151227 | Pawelek | Mar 1939 | A |
2237954 | Wilson | Apr 1941 | A |
2243360 | Slatis | May 1941 | A |
2274886 | Carroll | Mar 1942 | A |
2526586 | Shuff | Oct 1950 | A |
2693799 | Herman | Nov 1954 | A |
2777442 | Zelano | Jan 1957 | A |
2928388 | Jaroslaw | Mar 1960 | A |
3457917 | Mercurio | Jul 1969 | A |
3513839 | Vacante | May 1970 | A |
3680555 | Warncke | Aug 1972 | A |
3722509 | Nebel | Mar 1973 | A |
3774618 | Avery | Nov 1973 | A |
3865106 | Palush | Feb 1975 | A |
3884223 | Keindl | May 1975 | A |
3906936 | Habal | Sep 1975 | A |
4220150 | King | Sep 1980 | A |
4221217 | Amezcua | Sep 1980 | A |
4267831 | Aguilar | May 1981 | A |
4374527 | Iversen | Feb 1983 | A |
4567892 | Plicchi et al. | Feb 1986 | A |
4573481 | Bullara | Mar 1986 | A |
4777963 | McKenna | Oct 1988 | A |
4830008 | Meer | May 1989 | A |
4899750 | Eckwall | Feb 1990 | A |
4915105 | Lee | Apr 1990 | A |
4919136 | Alt | Apr 1990 | A |
4940065 | Tanagho et al. | Jul 1990 | A |
4960133 | Hewson | Oct 1990 | A |
4996983 | AmRhein | Mar 1991 | A |
5016808 | Heil, Jr. et al. | May 1991 | A |
5105826 | Smits et al. | Apr 1992 | A |
5121754 | Mullett | Jun 1992 | A |
5133354 | Kallock | Jul 1992 | A |
5146918 | Kallok et al. | Sep 1992 | A |
5158080 | Kallock | Oct 1992 | A |
5174287 | Kallok et al. | Dec 1992 | A |
5178156 | Takishima et al. | Jan 1993 | A |
5190053 | Meer | Mar 1993 | A |
5211173 | Kallok et al. | May 1993 | A |
5215082 | Kallok et al. | Jun 1993 | A |
5277193 | Takishima et al. | Jan 1994 | A |
5281219 | Kallok et al. | Jan 1994 | A |
5300094 | Kallok et al. | Apr 1994 | A |
5324321 | Pohndorf et al. | Jun 1994 | A |
5335657 | Terry, Jr. et al. | Aug 1994 | A |
5344438 | Testerman et al. | Sep 1994 | A |
5388578 | Yomtov et al. | Feb 1995 | A |
5392773 | Bertrand | Feb 1995 | A |
5417205 | Wang | May 1995 | A |
5425359 | Liou | Jun 1995 | A |
5458629 | Baudino et al. | Oct 1995 | A |
5483969 | Testerman et al. | Jan 1996 | A |
5485836 | Lincoln | Jan 1996 | A |
5485851 | Erickson | Jan 1996 | A |
5511543 | Shirley | Apr 1996 | A |
5522382 | Sullivan et al. | Jun 1996 | A |
5522862 | Testerman et al. | Jun 1996 | A |
5531778 | Maschino et al. | Jul 1996 | A |
5540732 | Testerman | Jul 1996 | A |
5540733 | Testerman et al. | Jul 1996 | A |
5540734 | Zabara | Jul 1996 | A |
5546938 | McKenzie | Aug 1996 | A |
5549655 | Erickson | Aug 1996 | A |
5568808 | Rimkus | Oct 1996 | A |
5591216 | Testerman et al. | Jan 1997 | A |
5630411 | Holscher | May 1997 | A |
5682881 | Winthrop et al. | Nov 1997 | A |
5697105 | White | Dec 1997 | A |
5697363 | Hart | Dec 1997 | A |
5730122 | Lurie | Mar 1998 | A |
5740798 | McKinney | Apr 1998 | A |
5752511 | Simmons et al. | May 1998 | A |
5787884 | Tovey | Aug 1998 | A |
5848589 | Welnetz | Dec 1998 | A |
5855552 | Houser et al. | Jan 1999 | A |
5890491 | Rimkus | Apr 1999 | A |
5895360 | Christopherson et al. | Apr 1999 | A |
5922014 | Warman et al. | Jul 1999 | A |
5938596 | Woloszko et al. | Aug 1999 | A |
5944680 | Christopherson et al. | Aug 1999 | A |
5947119 | Reznick | Sep 1999 | A |
6010459 | Silkoff et al. | Jan 2000 | A |
6015389 | Brown | Jan 2000 | A |
6021352 | Christopherson et al. | Feb 2000 | A |
6021354 | Warman et al. | Feb 2000 | A |
6029667 | Lurie | Feb 2000 | A |
6041780 | Richard | Mar 2000 | A |
6066165 | Racz | May 2000 | A |
6098624 | Utamaru | Aug 2000 | A |
6109262 | Tovey | Aug 2000 | A |
6119690 | Pentaleo | Sep 2000 | A |
6126611 | Bourgeois et al. | Oct 2000 | A |
6132384 | Christopherson et al. | Oct 2000 | A |
6198970 | Freed et al. | Mar 2001 | B1 |
6201994 | Warman et al. | Mar 2001 | B1 |
6217527 | Selmon et al. | Apr 2001 | B1 |
6221049 | Selmon et al. | Apr 2001 | B1 |
6231546 | Milo et al. | May 2001 | B1 |
6240316 | Richmond et al. | May 2001 | B1 |
6244267 | Eifrig | Jun 2001 | B1 |
6251126 | Ottenhoff et al. | Jun 2001 | B1 |
6269269 | Ottenhoff et al. | Jul 2001 | B1 |
6345202 | Richmond et al. | Feb 2002 | B2 |
6366815 | Haugland et al. | Apr 2002 | B1 |
6460539 | Japuntich et al. | Oct 2002 | B1 |
6484725 | Chi | Nov 2002 | B1 |
6511458 | Milo et al. | Jan 2003 | B2 |
6514217 | Selmon et al. | Feb 2003 | B1 |
6542776 | Gordon et al. | Apr 2003 | B1 |
6561188 | Ellis | May 2003 | B1 |
6587725 | Durand et al. | Jul 2003 | B1 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6606521 | Paspa et al. | Aug 2003 | B2 |
6626179 | Pedley | Sep 2003 | B1 |
6636767 | Knudson et al. | Oct 2003 | B1 |
6641542 | Cho et al. | Nov 2003 | B2 |
6647289 | Prutchi | Nov 2003 | B2 |
6651652 | Ward | Nov 2003 | B1 |
6718982 | Smith et al. | Apr 2004 | B2 |
6719725 | Milo et al. | Apr 2004 | B2 |
6721603 | Zabara et al. | Apr 2004 | B2 |
6772015 | Dahl et al. | Aug 2004 | B2 |
6776162 | Wood | Aug 2004 | B2 |
6799575 | Carter | Oct 2004 | B1 |
6819958 | Weiner et al. | Nov 2004 | B2 |
6829503 | Alt | Dec 2004 | B2 |
6829508 | Schulman et al. | Dec 2004 | B2 |
RE38705 | Hill et al. | Feb 2005 | E |
6876885 | Swoyer et al. | Apr 2005 | B2 |
6881192 | Park | Apr 2005 | B1 |
6883518 | Mittelstadt et al. | Apr 2005 | B2 |
6890306 | Poezevera | May 2005 | B2 |
6904320 | Park et al. | Jun 2005 | B2 |
6907295 | Gross et al. | Jun 2005 | B2 |
6928324 | Park et al. | Aug 2005 | B2 |
6978171 | Goetz et al. | Dec 2005 | B2 |
6997177 | Wood | Feb 2006 | B2 |
7027869 | Danek et al. | Apr 2006 | B2 |
7054692 | Whitehurst et al. | May 2006 | B1 |
7065410 | Bardy et al. | Jun 2006 | B2 |
7082331 | Park et al. | Jul 2006 | B1 |
7087053 | Vanney | Aug 2006 | B2 |
7089932 | Dodds | Aug 2006 | B2 |
7094206 | Hoffman | Aug 2006 | B2 |
7117036 | Florio | Oct 2006 | B2 |
7128717 | Thatch et al. | Oct 2006 | B1 |
7142919 | Hine et al. | Nov 2006 | B2 |
7149573 | Wang | Dec 2006 | B2 |
7152604 | Hickle et al. | Dec 2006 | B2 |
7155278 | King et al. | Dec 2006 | B2 |
7156098 | Dolezal et al. | Jan 2007 | B2 |
7160252 | Cho et al. | Jan 2007 | B2 |
7160255 | Saadat | Jan 2007 | B2 |
7178524 | Noble | Feb 2007 | B2 |
7200440 | Kim et al. | Apr 2007 | B2 |
7225034 | Ries et al. | May 2007 | B2 |
7239918 | Strother et al. | Jul 2007 | B2 |
7242987 | Holleman et al. | Jul 2007 | B2 |
7277749 | Gordon et al. | Oct 2007 | B2 |
7283867 | Strother et al. | Oct 2007 | B2 |
7302951 | Mittelstadt et al. | Dec 2007 | B2 |
7313442 | Velasco et al. | Dec 2007 | B2 |
7346398 | Gross et al. | Mar 2008 | B2 |
7366572 | Heruth et al. | Apr 2008 | B2 |
7396333 | Stahmann et al. | Jul 2008 | B2 |
7438686 | Cho et al. | Oct 2008 | B2 |
7463928 | Lee et al. | Dec 2008 | B2 |
7473227 | Hsu et al. | Jan 2009 | B2 |
7515968 | Metzler et al. | Apr 2009 | B2 |
7524292 | Cho et al. | Apr 2009 | B2 |
7561922 | Cohen et al. | Jul 2009 | B2 |
7591265 | Lee et al. | Sep 2009 | B2 |
7596413 | Libbus et al. | Sep 2009 | B2 |
7596414 | Whitehurst et al. | Sep 2009 | B2 |
7627375 | Bardy et al. | Dec 2009 | B2 |
7630771 | Cauller | Dec 2009 | B2 |
7634315 | Cholette | Dec 2009 | B2 |
7636602 | Baru Fassio et al. | Dec 2009 | B2 |
7657311 | Bardy et al. | Feb 2010 | B2 |
7660632 | Kirby et al. | Feb 2010 | B2 |
7662105 | Hatlestad | Feb 2010 | B2 |
7672728 | Libbus et al. | Mar 2010 | B2 |
7672729 | Koh et al. | Mar 2010 | B2 |
7680537 | Stahmann et al. | Mar 2010 | B2 |
7680538 | Durand et al. | Mar 2010 | B2 |
7684869 | Bradley et al. | Mar 2010 | B2 |
7697968 | Moore | Apr 2010 | B2 |
7697984 | Hill et al. | Apr 2010 | B2 |
7697990 | Ujhazy et al. | Apr 2010 | B2 |
7717848 | Heruth et al. | May 2010 | B2 |
7720534 | Bardy et al. | May 2010 | B2 |
7725195 | Lima et al. | May 2010 | B2 |
7725198 | Cross, Jr. et al. | May 2010 | B2 |
7734340 | De Ridder | Jun 2010 | B2 |
7734348 | Zhang et al. | Jun 2010 | B2 |
7738952 | Yun et al. | Jun 2010 | B2 |
7747323 | Libbus et al. | Jun 2010 | B2 |
7751880 | Cholette | Jul 2010 | B1 |
7751885 | Bardy et al. | Jul 2010 | B2 |
7758384 | Alexander et al. | Jul 2010 | B2 |
7765000 | Zhang et al. | Jul 2010 | B2 |
7769461 | Whitehurst et al. | Aug 2010 | B2 |
7783353 | Libbus et al. | Aug 2010 | B2 |
7785262 | Melker et al. | Aug 2010 | B2 |
7787959 | Morgan | Aug 2010 | B1 |
7792590 | Pianca et al. | Sep 2010 | B1 |
7797050 | Libbus et al. | Sep 2010 | B2 |
7797057 | Harris | Sep 2010 | B2 |
7797058 | Mrva et al. | Sep 2010 | B2 |
7805195 | Zealear | Sep 2010 | B2 |
7809442 | Bolea et al. | Oct 2010 | B2 |
7813797 | Bardy et al. | Oct 2010 | B2 |
7813802 | Tcheng et al. | Oct 2010 | B2 |
7813809 | Strother et al. | Oct 2010 | B2 |
7818063 | Wallace et al. | Oct 2010 | B2 |
7822486 | Foster et al. | Oct 2010 | B2 |
8249723 | McCreery | Aug 2012 | B2 |
8386046 | Tesfayesus et al. | Feb 2013 | B2 |
20010010010 | Richmond et al. | Jul 2001 | A1 |
20010031929 | O'Toole | Oct 2001 | A1 |
20020010495 | Freed et al. | Jan 2002 | A1 |
20020049479 | Pitts | Apr 2002 | A1 |
20020092527 | Wood | Jul 2002 | A1 |
20020128700 | Cross | Sep 2002 | A1 |
20020166556 | Jacob | Nov 2002 | A1 |
20020195108 | Mittelstadt et al. | Dec 2002 | A1 |
20020195109 | Mittelstadt et al. | Dec 2002 | A1 |
20030034031 | Lev et al. | Feb 2003 | A1 |
20030083696 | Avital | May 2003 | A1 |
20030093128 | Freed et al. | May 2003 | A1 |
20030106555 | Tovey | Jun 2003 | A1 |
20030106556 | Alperovich et al. | Jun 2003 | A1 |
20030114895 | Gordon et al. | Jun 2003 | A1 |
20030114905 | Kuzma | Jun 2003 | A1 |
20030167018 | Wyckoff | Sep 2003 | A1 |
20030195571 | Burnes et al. | Oct 2003 | A1 |
20030209145 | Soper | Nov 2003 | A1 |
20030216789 | Deem et al. | Nov 2003 | A1 |
20040015204 | Whitehurst et al. | Jan 2004 | A1 |
20040020489 | Gillespie et al. | Feb 2004 | A1 |
20040049241 | Campos | Mar 2004 | A1 |
20040055603 | Bruce | Mar 2004 | A1 |
20040073272 | Knudson et al. | Apr 2004 | A1 |
20040089303 | Chien | May 2004 | A1 |
20040111139 | McCreery | Jun 2004 | A1 |
20040116819 | Alt | Jun 2004 | A1 |
20040162499 | Nagai et al. | Aug 2004 | A1 |
20040194784 | Bertrand | Oct 2004 | A1 |
20040215288 | Lee et al. | Oct 2004 | A1 |
20040230278 | Dahl et al. | Nov 2004 | A1 |
20040233058 | Dodds | Nov 2004 | A1 |
20040260310 | Harris | Dec 2004 | A1 |
20040261791 | Horian | Dec 2004 | A1 |
20050004610 | Kim et al. | Jan 2005 | A1 |
20050010265 | Fassio et al. | Jan 2005 | A1 |
20050038490 | Gross et al. | Feb 2005 | A1 |
20050039757 | Wood | Feb 2005 | A1 |
20050043644 | Stahmann et al. | Feb 2005 | A1 |
20050043772 | Stahmann et al. | Feb 2005 | A1 |
20050076908 | Lee et al. | Apr 2005 | A1 |
20050085865 | Tehrani | Apr 2005 | A1 |
20050085866 | Tehrani | Apr 2005 | A1 |
20050085868 | Tehrani et al. | Apr 2005 | A1 |
20050085869 | Tehrani et al. | Apr 2005 | A1 |
20050085874 | Davis et al. | Apr 2005 | A1 |
20050098176 | Hoffrichter | May 2005 | A1 |
20050101833 | Hsu et al. | May 2005 | A1 |
20050119711 | Cho et al. | Jun 2005 | A1 |
20050139216 | Mittelstadt et al. | Jun 2005 | A1 |
20050165457 | Benser et al. | Jul 2005 | A1 |
20050209513 | Heruth et al. | Sep 2005 | A1 |
20050209643 | Heruth et al. | Sep 2005 | A1 |
20050234523 | Levin et al. | Oct 2005 | A1 |
20050235992 | Djupesland | Oct 2005 | A1 |
20050240241 | Yun et al. | Oct 2005 | A1 |
20050251216 | Hill et al. | Nov 2005 | A1 |
20050261747 | Schuler et al. | Nov 2005 | A1 |
20050267380 | Poezevara | Dec 2005 | A1 |
20050267547 | Knudson et al. | Dec 2005 | A1 |
20050277844 | Strother et al. | Dec 2005 | A1 |
20050277999 | Strother et al. | Dec 2005 | A1 |
20050278000 | Strother et al. | Dec 2005 | A1 |
20060005842 | Rashad et al. | Jan 2006 | A1 |
20060025828 | Armstrong et al. | Feb 2006 | A1 |
20060030919 | Mrva et al. | Feb 2006 | A1 |
20060032497 | Doshi | Feb 2006 | A1 |
20060052836 | Kim et al. | Mar 2006 | A1 |
20060058588 | Zdeblick | Mar 2006 | A1 |
20060058852 | Koh et al. | Mar 2006 | A1 |
20060064029 | Arad | Mar 2006 | A1 |
20060064138 | Velasco et al. | Mar 2006 | A1 |
20060079802 | Jensen et al. | Apr 2006 | A1 |
20060095088 | De Ridder | May 2006 | A1 |
20060111755 | Stone et al. | May 2006 | A1 |
20060116739 | Betser et al. | Jun 2006 | A1 |
20060129189 | George et al. | Jun 2006 | A1 |
20060135886 | Lippert et al. | Jun 2006 | A1 |
20060136024 | Cohen et al. | Jun 2006 | A1 |
20060142815 | Tehrani et al. | Jun 2006 | A1 |
20060144398 | Doshi et al. | Jul 2006 | A1 |
20060150978 | Doshi et al. | Jul 2006 | A1 |
20060150979 | Doshi et al. | Jul 2006 | A1 |
20060150980 | Kim | Jul 2006 | A1 |
20060167497 | Armstrong et al. | Jul 2006 | A1 |
20060184204 | He | Aug 2006 | A1 |
20060195170 | Cohen et al. | Aug 2006 | A1 |
20060211951 | Milijasevic et al. | Sep 2006 | A1 |
20060224209 | Meyer | Oct 2006 | A1 |
20060224211 | Durand | Oct 2006 | A1 |
20060241506 | Melker et al. | Oct 2006 | A1 |
20060241708 | Boute | Oct 2006 | A1 |
20060247729 | Tehrani et al. | Nov 2006 | A1 |
20060259079 | King | Nov 2006 | A1 |
20060264777 | Drew | Nov 2006 | A1 |
20060266369 | Atkinson et al. | Nov 2006 | A1 |
20060271118 | Libbus et al. | Nov 2006 | A1 |
20060271137 | Stanton-Hicks | Nov 2006 | A1 |
20060282127 | Zealear | Dec 2006 | A1 |
20060293720 | DiLorenzo | Dec 2006 | A1 |
20060293723 | Whitehurst et al. | Dec 2006 | A1 |
20070021785 | Inman et al. | Jan 2007 | A1 |
20070027482 | Parnis et al. | Feb 2007 | A1 |
20070038265 | Tcheng et al. | Feb 2007 | A1 |
20070043411 | Foster et al. | Feb 2007 | A1 |
20070095347 | Lampotang et al. | May 2007 | A1 |
20070125379 | Pierro et al. | Jun 2007 | A1 |
20070175478 | Brunst | Aug 2007 | A1 |
20070227542 | Kashmakov et al. | Oct 2007 | A1 |
20070277832 | Doshi et al. | Dec 2007 | A1 |
20070283692 | Tetsuka et al. | Dec 2007 | A1 |
20070283962 | Doshi et al. | Dec 2007 | A1 |
20070295338 | Loomas et al. | Dec 2007 | A1 |
20080023007 | Dolezal et al. | Jan 2008 | A1 |
20080027480 | van der Burg et al. | Jan 2008 | A1 |
20080041373 | Doshi et al. | Feb 2008 | A1 |
20080163875 | Aarestad et al. | Jul 2008 | A1 |
20080183254 | Bly et al. | Jul 2008 | A1 |
20090270707 | Alfoqaha et al. | Oct 2009 | A1 |
20090276024 | Bonde et al. | Nov 2009 | A1 |
20090308395 | Lee et al. | Dec 2009 | A1 |
20090318986 | Alo et al. | Dec 2009 | A1 |
20090326408 | Moon et al. | Dec 2009 | A1 |
20100016749 | Atsma et al. | Jan 2010 | A1 |
20100036285 | Govari et al. | Feb 2010 | A1 |
20100047376 | Imbeau et al. | Feb 2010 | A1 |
20100076536 | Merz et al. | Mar 2010 | A1 |
20100094379 | Meadows et al. | Apr 2010 | A1 |
20100100150 | Kirby et al. | Apr 2010 | A1 |
20100125310 | Wilson et al. | May 2010 | A1 |
20100131029 | Durand et al. | May 2010 | A1 |
20100137931 | Hopper et al. | Jun 2010 | A1 |
20100137949 | Mazgalev et al. | Jun 2010 | A1 |
20100137956 | Osypka et al. | Jun 2010 | A1 |
20100152553 | Ujhazy et al. | Jun 2010 | A1 |
20100174341 | Bolea et al. | Jul 2010 | A1 |
20100228133 | Averina et al. | Sep 2010 | A1 |
20100228317 | Libbus et al. | Sep 2010 | A1 |
20100241207 | Bluger | Sep 2010 | A1 |
20100257729 | Alexander et al. | Oct 2010 | A1 |
20100262209 | King et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
0 892 926 | Jun 2002 | EP |
0 900 102 | Jul 2004 | EP |
1 854 494 | Nov 2007 | EP |
53118893 | Oct 1978 | JP |
9-294819 | Nov 1997 | JP |
2000-506601 | May 2000 | JP |
2000-508562 | Jul 2000 | JP |
2003-305135 | Oct 2003 | JP |
2004-508908 | Mar 2004 | JP |
2004-532707 | Oct 2004 | JP |
3688301 | Jun 2005 | JP |
2005-521485 | Jul 2005 | JP |
2007-21156 | Feb 2007 | JP |
WO 9820938 | May 1998 | WO |
WO 0224279 | Mar 2002 | WO |
WO 03000133 | Jan 2003 | WO |
WO 03000347 | Jan 2003 | WO |
WO 03082393 | Oct 2003 | WO |
WO 2005004993 | Jan 2005 | WO |
WO 2006045251 | May 2006 | WO |
WO 2006063339 | Jun 2006 | WO |
WO 2007134458 | Nov 2007 | WO |
Entry |
---|
Spence et al., “High-flow nasal cannula as a device to provide continuous positive airway pressure in infants,” Journal of Perinatology, Dec. 2007, pp. 772-775, vol. 27 (12), Nature Publishing Group. |
Kirkness et al., “Nasal airflow dynamics: mechanisms and responses associated with an external nasal dilator strip,” University of Western Sydney, T.C. Amis School of Science, Department of Respiratory Medicine, Westmead Hospital and University of Sydney, Westmead, Australia, 2000. |
De Almeida et al., “Nasal pressure recordings to detect obstructive sleep apnea,” Sleep and Breathing, Feb. 25, 2006, pp. 62-69, vol. 10 (2), Springer Heidelberg. |
Saslow et al., “Work of breathing using high-flow nasal cannula in preterm infants,” Journal of Perinatology, May 11, 2006, pp. 476-480, vol. 26 (8), Nature Publishing Group. |
Campbell et al., “Nasal Continuous positive airway pressure from high flow cannula versus Infant Flow for preterm infants,” Journal of Perinatology, Jul. 2006, pp. 546-549, vol. 26 (9), Nature Publishing Group. |
Trevisanuto et al., “A new device for administration of continuous positive airway pressure in preterm infants: comparison with a standard nasal CPAP continuous positive airway pressure system,” Intensive Care Medicine, Apr. 2005, pp. 859-864, vol. 31 (6), Springer-Verlag. |
Verse et al., “New developments in the therapy of obstructive sleep apnea,” European Archives of Oto-Rhino-Larvngology, Jan. 2001, pp. 31-37, vol. 258 (1), Springer-Verlag. |
Paquereau et al., “Positive pressure titration in the treatment of obstructive sleep apnea syndrome using continuous airway positive pressure,” Revue Des Maladies Respiratoires, Apr. 2000, pp. 459-465, vol. 17(2), Masson Editeur. |
Mahadevia et al., “Effects of expiratory positive airway pressure on sleep-induced respiratory abnormalities in patients with hypersomnia-sleep apnea syndrome,” Am. Rev. Respir. Dis., Feb. 1983, vol. 128, pp. 708-711. |
Tiran et al., “An Improved Device for Posterior Rhinomanometry to Measure Nasal Resistance,” Journal of Biomechnical Engineering, Nov. 2005, vol. 127, pp. 994-997. |
Noseda et al., “Compliance with nasal continuous positive airway pressure assessed with a pressure monitor: pattern of use and influence of sleep habits,” Chest Clinics and Sleep Laboratories, Hôpitaux Erasme et Brugmann, UniversitéLibre de Bruxelles, Brussels, Belgium, 2000, vol. 94, pp. 76-81. |
Goding Jr. et al., “Relief of Upper Airway Obstruction With Hypoglossal Nerve Stimulation in the Canine,” The Laryngoscope, Feb. 1998, pp. 162-169, vol. 108, Lippincott-Raven Publishers, U.S.A. |
Sahin et al., “Chronic recordings of hypoglossal nerve activity in a dog model of upper airway obstruction,” Journal of Applied Physiology 87(6), 1999, The American Physiological Society, pp. 2197-2206. |
Ferguson et al., “Effect of Mandibular and Tongue Protrusion on Upper Airway Size During Wakefulness,” American Journal of Respiratory and Critical Care Medicine, 1997, pp. 1748-1754, vol. 155. |
Isono et al., “Interaction of cross-sectional area, driving pressure, and airflow of passive velopharynx,” American Physiological Society, 1997, pp. 851-859, vol. 83. |
Oliven et al., “Effect of genioglossus contraction on pharyngeal lumen and airflow in sleep apnoea patients,” European Respiratory Journal, 2007, pp. 748-758, vol. 30, No. 4. |
Number | Date | Country | |
---|---|---|---|
20140188185 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61437573 | Jan 2011 | US | |
61467758 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13113524 | May 2011 | US |
Child | 13205315 | US |