1. Field of the Invention
The invention relates to a screw detecting machine, and more particularly to a screw detecting machine consisting of a transmission device that is composed of two parallel strip-like bodies driven by means of a motor, thereby screws to be detected can be held and detected, replacing current way of detecting by means of a rotary disk. The machine can lower greatly the production cost, can increase the accuracy by preventing from wobbling and is applicable to use as a quality-control equipment for detecting the quality of screws.
2. Description of the Prior Art
A variety of instruments and technologies have been used widely in the industry to perform non-destructive test tasks in order to find out the intrinsic or potential defects of a product so as to achieve a safer and more reliable extent of the product and the equipment. By “the product and the equipment”, a very wide range is encompassed, ranges from a small part such as screw to large equipment such as a heat exchanger, a pressure vessel, a boiler, a building, a bridge, a steamer, an airplane, a cement machinery, an oil drilling equipment, a petroleum chemical equipment, a metallurgic equipment, a nuclear power equipment and the like, that have to be subjected to a non-destructive test.
A conventional quality screening for a screw must be carried out manually that is extremely time-consumptive and is not accurate. As shown in
Although the modern detecting machines can achieve the purpose of screw detecting and screening, however, there are following disadvantages in their practical uses:
The inventor has recognized the disadvantages such as the inconveniences and the high cost in performing and operating the conventional screw detecting machine that utilizes a rotary disk to convey the screw, and finally, after studying intensively to improve it, had accomplished the screw detecting machine according to the invention.
The main objective of the invention is to provide a screw detecting machine characterized in that it has a simple structure and low cost, and can lower the effect of the vibration, thereby increases the accuracy of the screw detecting.
Another objective of the invention is to provide a screw detecting machine characterized in that it can be adapted immediately to the sizes of various type of screws.
In order to achieve the above-described objectives, the invention provides a screw detecting machine comprising a vibratory bowl, a screw conveying channel, a transmission device and several detectors, and operates for detecting the screw by arranging under vibration screws that are conveyed onto the vibratory bowl, conveying said screws by the conveying channel to the transmission device and detecting said screws by said several detectors. The practice of the screw detecting machine according to the invention comprises, after arranging under vibration screws conveyed on the vibratory bowl, transferring those screws to the transmission device through the screw conveying channel and detecting them with several detectors. The invention is characterized in that the transmission device is composed of two parallel strip-like bodies driven by a motor, wherein said two parallel strip-like bodies are provided below said screw conveying channel.
Thus, as the screw on the screw conveying channel has been moved to the end of the screw conveying channel, the screw can drop straight onto the interval between those two parallel strip-like bodies, thereby moves forwardly through entrained by those two parallel strip-like bodies.
The invention can be more deeply understood by way of an example described in more detailed below.
These features and advantages of the present invention will be fully understood and appreciated from the following detailed description of the accompanying Drawings.
Referring to
Said vibratory bowl 2 is used to support and arrange screws 7 to be detected output from a collection tank, wherein an inlet 21 is provided on said vibratory bowl 2.
Said screw conveying channel 3 is connected to said inlet 21 of said vibratory bowl 2, and is provided thereon a groove 31 for conveying said screws 7 to be detected.
Said transmission device 4 is composed of two parallel strip-like bodies 42, 43 driven by a motor 41, wherein said two parallel strip-like bodies 42, 43 are positioned underneath said screw conveying channel 3, and there is a gap 46 therebetween. Said strip-like bodies 42, 43 can be a linear body, a belt or a O-ring, depending on the need in use. Further, Said strip-like bodies 42, 43 can be provided as a whole on the machine or with half body of them protruding out of the machine (not shown in the Figure) depending on the configuration of the machine. A pneumatic valve 44 is provided on the ends of those strip-like bodies 42, 43 and is used to blow the certified screws 7 into a collecting tank as soon as said screws 7 dropping from ends of strip-like bodies 42, 43. A collecting rack 45 is provided below ends of those strip-like bodies 42, 43 for collecting unqualified screws 7 dropping from the transmission device 4 into another collecting tank. The purpose of this rejection design resides on, when the pneumatic valve 44 is brokendown, the certified screw can be classified into unqualified product while there is no way for unqualified product to contaminate the certified product, in order to assure the consistency of the certified product.
Said detectors 5 is located separately over two sides of the transmission device 4, thereby as the transmission device 4 rotates, screws 7 thereon can be detected by every detector 5. Said detector 5 comprises a pinhole depth detector 51, for detecting the depth of a pinhole in a screw 7; a vertical image sensor 52, for detecting the size, appearance and color of the top of a screw 7; and two side view detectors 53, for detecting the size, appearance and color on the side of a screw 7.
Thereby, the screw 7 on the screw conveying channel 3 is moved to the end of the screw conveying channel 3, and then they can drop directly on the gap 46 between those two parallel strip-like bodies 42, 43 and is entrained and moves forwardly by these two parallel strip-like bodies 42, 43 to be detected by several detectors 5 provided over two sides of the transmission device 4.
Referring again to
Furthermore, since said several detectors 5 are provided over two sides of said two parallel strip-like bodies 42, 43, as the transmission device 4 rotates, screws 7 thereon can pass every detector 5 to be subjected to various detects such as depth of the pinhole, the appearance, the color and the size. Unqualified screw 7 will drop directly from ends of the two parallel strip-like bodies 42, 43 into a collecting rack 45, and is then conveyed to a collecting tank (not shown in the Figure). Whereas the certified screw 7 will be blown to another collecting tank (not shown in the Figure) by activating a pneumatic valve 44 when the screw 7 drops from ends of two parallel strip-like bodies 42, 43.
Accordingly, the invention exhibits advantages as follows:
Many changes and modifications in the above described embodiment of the invention can, of course, be carried out without departing from the scope thereof. Accordingly, to promote the progress in science and the useful arts, the invention is disclosed and is intended to be limited only by the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
093208044 | May 2004 | TW | national |