The present application claims priority under 35 USC 119 to German Patent Application No. 10 2010 053 412.9 filed Dec. 6, 2010 and PCT Application No. PCT/EP/2011/071238 filed Nov. 29, 2011 the entire contents of which are hereby incorporated by reference.
1. Field of the Invention
The invention relates to a screw having a screw head, a screw shank and a corrugated conical flange which decreases in thickness towards its periphery and will abut on a component part as the screw is being screwed into the latter.
2. Description of Background Art
A screw of this kind is illustrated and described in European patent specification 00 28 746 A1. As shown in FIG. 11 of this printed document, the screw described therein having a screw head and a screw shank also includes a flange which will contact the surface of a component part as the screw is being screwed into the latter and will be deformed in this process. The sectional view of FIG. 11 shows the screw in its non-tightened state. This flange has a planar lateral surface facing the component part which bends slightly toward the component part approximately in the middle of the flange so as to form an indentation. As a result, the flange tapers to a certain extent and decreases in thickness from the indentation toward its periphery. As the screw is being screwed into the component part, the outer periphery of the flange will first contact the component part and then be bent back about the indentation until the planar surface of the flange contacts the component part. This will provide feedback to the user that the minimum preload force required for this purpose has been reached. Furthermore, the section of the flange extending from its indentation to its periphery is corrugated, which corrugation will to a certain extent absorb the impact of the flange impinging on the component part. The margin for this cushioning effect by the corrugation is kept rather small since the flange also has a planar surface which extends over its inner half. As a result, this inner planar portion of the flange will contact the component part very shortly after the periphery of the flange has contacted the component part, thus practically preventing any further screwing of the screw into the component part.
It is the object of the invention to substantially increase the margin for this cushioning effect. According to the invention, this is accomplished by having both lateral surfaces of the flange extend in a continuously tapering fashion from the screw shank to the periphery of the flange, with the thickness of the flange decreasing toward its periphery and its corrugation substantially extending over the entire radial width of the flange.
Owing to this specific design of the screw and of its associated flange, two mutually reinforcing measures will result in a respective increase of the margin of the force exerted by the screw, i.e. for one thing the fact that the flange decreases in thickness toward its periphery and furthermore the corrugation of the flange which substantially extends over its entire radial width. As the screw is being tightened, bending of the flange itself on the one hand and returning the corrugation into a more elongated state on the other will thus create a tension over a large area. As a result, even if the conditions prevailing outside a screwed connection including a screw of the invention change substantially, i.e. substantial changes in temperature, the screwed connection involving the screw according to the invention will be able to accommodate such changes and its connection force will thus largely be retained over a wide range as the screw is tightened.
The lateral surfaces of the flange extend over its entire width and in a continuously tapering fashion toward its periphery. From when the periphery of the flange contacts the component part to the substantially flattened state of the flange, a range is thus created for the preload force occurring in this process (i.e. the force of the screw that holds component parts together). This range allows the flange to be increasingly pressed onto the component part due to the fact that the flange tapers over its height. The corrugation which extends over substantially the entire radial width of the flange extends the area to the bending of the flange, thus resulting in an accordingly large margin for setting a desired preload force. The screw according to the invention thus allows its user to optionally set the preload force required between the screw and the component part depending on the desired joining characteristics.
The lateral surface facing the component part may advantageously be provided with contact protrusions which will slow down the tightening of the screw once the screw has contacted the component part. If designed appropriately, the protrusions may be used to function in the manner of locking teeth, making it a lot harder to undo the screw.
The corrugation of the screw is expediently designed such that the highest and lowest position of the corrugation is determined by a periodic function. This allows a particular uniform effect of the screw periphery to be obtained with regard to a counterpart.
As regards the actual corrugation, it has turned out to be particularly expedient to design the function defining the corrugation such that it will be between 0.025 times and 0.5 times the value of the circumference of the flange. Advantageously, the corrugation is assigned a certain maximum value so as not to restrict the effect of the flange. This maximum value of the amplitude of the periodic function is appropriately selected to be between 0.006 times and 0.12 times the value of the flange diameter. It has turned out to be particularly advantageous to have the amplitude of the corrugation decrease continuously from the periphery of the flange toward its center.
It should be noted, however, that the corrugation of the flange can also be of an asymmetrical design.
In order to increase the effect of the flange, the lateral surface of the flange facing away from the component part can advantageously be provided with linear reinforcements that extend radially toward its periphery.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
a is a sectional view of the screw head with contact protrusions;
b is a view of the screw head as viewed in the direction from the shank to the flange in which the contact protrusions are designed as locking teeth, and
Shown in
As can be seen from
a and 4b show protrusions 10 that each have an edge 11 which enables them to function in the manner of locking teeth and prevent the screw from becoming undone by pressing into a counterpart of the screw. In this way, a double effect is obtained by means of these protrusions 10: When they contact a counterpart, they will have a desired braking effect on the screw as it is being tightened and at the same time they will largely prevent the screw from becoming undone.
The fact that the screw illustrated in the drawings has a conical flange 4 which extends on either lateral surface 5 and 6 and has a corrugation which extends over a considerable axial portion of the screw lends the screw resilient and flexible characteristics. To be more precise, the screw is capable of bridging a considerable axial area when the flange is bent backwards and its corrugation is compressed, thus maintaining the required clamping force even under special conditions, in particular vast changes of temperature.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 053 412 | Dec 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/071238 | 11/29/2011 | WO | 00 | 6/5/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/076360 | 6/14/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1037384 | White | Sep 1912 | A |
2943528 | Curry | Jul 1960 | A |
3056443 | Knocke | Oct 1962 | A |
3194105 | Gill | Jul 1965 | A |
3877339 | Muenchinger | Apr 1975 | A |
4269248 | MacLean et al. | May 1981 | A |
4293256 | Pamer | Oct 1981 | A |
4431353 | Capuano | Feb 1984 | A |
4490082 | Barth | Dec 1984 | A |
4498825 | Pamer et al. | Feb 1985 | A |
5580199 | Suzuki | Dec 1996 | A |
5782594 | Muller | Jul 1998 | A |
Number | Date | Country |
---|---|---|
1625654 | Jun 2005 | CN |
2 226 161 | Dec 1973 | DE |
0 028 746 | May 1981 | EP |
0 104 642 | Apr 1984 | EP |
0 111 207 | Jun 1984 | EP |
WO 03076816 | Sep 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20130251476 A1 | Sep 2013 | US |