A conventional screw hook 100, shown in
The screw hook 100 of
When anchoring the screw hook 100 to a wall or ceiling, rotational torque is applied to the screw hook 100 such that the threaded shank 105 engages the wall or ceiling. That is, the screw hook 100 is screwed into the wall. In some cases, a human hand can provide enough rotational torque to engage the threads with the wall. However, this is not always the case and a tool is typically required to increase the amount of rotational torque able to be applied to the screw hook 100. Further, a tool is also required if the location that the screw hook 100 will be installed is not accessible (too high, for example) by a human.
One such tool used in the past is a pair of pliers (not shown). Pliers can secure the screw hook 100 in its fingers in order to provide more rotational torque to the screw hook 100. This tool, however, is only able to rotate as far as the human hand can rotate in one motion before the fingers must release the screw hook 100 and then engage it again before being able to rotate the screw hook 100 again. It is often the case that one rotational motion of the human hand is not enough for the screw hook's threads 105 to engage the surface enough to support its own weight. As such, the screw hook 100 falls out when the fingers of the pliers are released. Furthermore, pliers require one to be in close proximity to the location that the screw hook 100 is being installed. Therefore, pliers are not a viable solution when the location to install the screw hook 100 is a high ceiling.
Another tool that may be used to assist in installing a screw hook 100 is a scalloped interior socket tool (also not shown), such as the one described in U.S. Pat. No. 5,622,090, filed on Apr. 16, 1996 to Marks and assigned to WorkTools, Inc. of Chatsworth, Calif. Using this socket, fingers inside the socket retract to form a “pocket” around an object. In this fashion, any shape of object can be engaged and rotational torque can be applied.
The retractable fingers, however, are biased outward. As such, when trying to anchor a screw hook 100, one must hold the screw hook 100 in the socket when installing. Otherwise the retractable fingers, being biased outward will push the screw hook 100 out of the socket before one can position the screw hook shank 105 against the wall. This will not work for situations when the screw hook 100 must be anchored on a high ceiling where one cannot hold the screw hook 100 in place until the shank's threads 105 engage the ceiling.
Furthermore, because the retractable fingers are parallel to the longitudinal axis of the screw hook shank 105, the screw hook 100 may rotate away from the longitudinal axis of the socket. That is, the socket does not apply a force to the hook portion 110 in order to keep the screw hook shank 105 from rotating one way or another. As a result, the socket is not capable of maintaining the longitudinal axis of the shank 105 in alignment with its own longitudinal axis before the shank 105 engages the wall or ceiling.
Therefore, it would be beneficial to have a tool that applies the proper forces to the hook portion 110 of the screw hook 100 in order to maintain parallel longitudinal axes of rotation (both the shank and the tool) while a screw hook 100 is being anchored.
An embodiment of the invention is a tool comprising a drive shaft with a longitudinal axis and a socket attached to the drive shaft. The socket includes a cavity having a substantially rectangular opening defined by a pair of parallel side walls of the first side length and a U-shaped wall having two parallel walls adjacent to the opening and a curved portion of the U-shaped wall is opposite the opening. In this manner, the cavity is shaped to fit the contour of a typical screw hook such that the screw hook can be anchored to a wall or ceiling with relative ease because the screw hook will not rotate away from the longitudinal axis of the tool.
Because screw hooks typically have straight parallel runs in the hook portion of the screw hook, the cavity that engages the screw hook is able to apply forces in directions that are not perpendicular to the longitudinal axis of the screw hook. As such, the screw hook will not rotate when engaged with the screw hook socket tool.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
In this embodiment, the screw hook socket 200 is designed to be used with a power drill. Thus, a hexagonal drive shaft 215 is shown that is operable to engage the chuck of a power drill. The drive shaft 215 is coupled to the socket 210 which is designed to engage a typical screw hook 100. The socket 200 includes a cavity or enclosure formed having a rectangular opening 211 formed by a first pair of parallel side walls 212 and a second pair of parallel side walls 214. The cavity includes an enclosed end formed by a U-shaped wall 213 that is opposite the rectangular opening 221. These same features can also be seen more easily in the isometric view of the screw hook socket 200 in
Still referring to
The screw hook 100 in
In the past, a screw hook 100 easily rotated about a horizontal axis 310 when one attempted to anchor the screw hook 100 to a wall. As can be seen in
Unlike conventional tools for anchoring an object with a shank 105, the screw hook socket 200 applies the forces 301 and 302 at an angle that is not perpendicular to the longitudinal axis of the shank 105 of the screw hook 100. As such, the screw hook socket 200 is well suited for anchoring objects, such as the screw hook 100, that have straight runs 120 or 121 that are not parallel or perpendicular to the axis of rotation.
Still referring to
The size of the cavity may be suited to fit any size of screw hook 100. Typical screw hooks 100 have lengths that range from approximately 1 inch to 3 inches, diameters of the hook portion 110 that range from ½ inch to 1.5 inches, and thicknesses that range from 0.08 inches to 0.2 inches. The screw hook socket 200 is typically designed to fit one particular size of screw hook 100 in order to securely fit the contour of the hook portion 110 of the screw hook 100.
By using an extension pole with the screw hook socket 200, one can reach more inaccessible places with the screw hook socket 200 for anchoring screw hooks. For example, screw hooks can be anchor on high ceilings or under awnings of a house using an extension pole 401 with a screw hook socket 200.
Other mounting options are contemplated for the screw hook socket 200 but are not shown in the drawings for brevity. For example, the screw hook socket 200 may be mounted in a conventional way to a typical ratchet or wrench. Further, the screw hook socket 200 may be used in conjunction with a drive mechanism, i.e. power drill, ratchet, extension pole, having a jointed drive shaft, i.e. a universal joint. As such, the rotational axis of the drive mechanism may be a different angle than that of the longitudinal axis of the screw hook 100.
From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention.
This application claims priority from U.S. Provisional Application 60/492,504 titled, “ROUND SCREW HOOK FOR EXTENSION POLE,” which was filed on Aug. 4, 2003, and which is incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60492504 | Aug 2003 | US |