This application claims the priority benefit of Taiwan patent application number 111135397 filed on Sep. 19, 2022.
The present invention relates to a screw locking unit structure, and more particularly, to a screw locking unit structure including a screw main body, which can be temporarily held to a thermal module or a heat dissipating support for screw locking the latter to an object later.
Currently, screw locking elements are used to facilitate convenient connection of a heat dissipating unit to a heat source. The screw locking elements are tightened to four internally threaded corners of the heat dissipating unit through meshed threads of the screw locking elements and the threaded corners for the heat dissipating unit to closely contact with the heat source.
The screw locking elements can only be fixedly tightened in place at the time of connecting the heat dissipating unit to the heat source. That is, the screw locking elements could not be temporarily held to the heat dissipating unit before the latter is connected to the heat source. It consumes a lot of time for an operator at a work site to pick up the required screw locking elements and then use the same to tighten the heat dissipating unit to the heat source. Some manufacturers tried to fit a locating element on the heat dissipating unit and extend the screw locking element through the locating element, which axially limits the screw locking element from displacing or falling when being screwed into the heat dissipating unit. The locating element includes a sleeve, which is tight-fitted on or welded to a target location in advance. The sleeve internally defines a bore, through which the screw locking element is extended. The bore of the sleeve is internally provided with one or more protrusions or one annular rib; and the screw locking element for extending through the bore of the sleeve is externally provided with a radially outward protruded annular structure, which is diametrically larger than the original male thread on the screw locking elements. When the screw locking element is axially extended through the bore of the sleeve and the radially outward protruded annular structure passes the protrusions or the annular rib in the bore of the sleeve, the screw locking element is axially limited from moving in the sleeve reversely and is therefore, temporarily held in the sleeve. However, in the event the screw locking element having been limited in the sleeve is found damaged or has stripped teeth on the male thread, it would be impossible to remove the damaged screw locking element from the sleeve for reworking or changing, which of course causes many inconvenience in working.
Further, in the assembling operation on a production line, the screw locking element is generally tightened using an electric tool to ensure quick assembling speed. In this case, it is not able to control the tightening strength and screwing depth of the screw locking element, and the screw locking element is easily subjected to excessive tightening to damage the male thread of the screw locking element as well as the female thread in the corresponding internally threaded corner of the heat dissipating unit. It is therefore tried by the inventor to develop an improved screw locking unit structure to overcome the disadvantages in the prior art.
A primary object of the present invention is to solve the above problems by providing an improved screw locking unit structure, a screw main body of which can be temporarily held to an assembling interface for screwing into an object later without being excessively screwed to damage a corresponding internally threaded bolt on the object.
Another object of the present invention is to provide the above screw locking unit structure, the screw main body of which can be exchanged for reworking at any time if it is damaged, and the screw main body would not separate from the assembling interface in the process of being further fixed to the object.
A further object of the present invention is to provide the above screw locking unit structure, which can reduce the time needed on a production line for tightening the screw main body thereof into a corresponding internally threaded location.
To achieve the above and other objects, the screw locking unit structure according to the present invention includes a screw main body and an elastic element. The screw main body includes a head portion, a stem portion extended from a lower side of the head portion, a first screw locking section located below the stem portion, and a second screw locking section located below the first screw locking section. The first screw locking section is externally provided with a first male thread, and the second screw locking section is externally provided with a second male thread. The first and the second male thread are differently structured. The elastic element is externally fitted around the stem portion of the screw main body to be limited between the head portion and the first screw locking section.
In the screw locking unit structure of the present invention, the first and the second male thread of are differently structured to have, for example, different thread pitches or different tightening directions, such that the first male thread can limit the screw main body temporarily held to an assembling interface from moving axially away from the assembling interface, and a joint between the first and the second male thread the screw main body can automatically stop the second male thread from being excessively screwed through the assembling interface into a corresponding internally threaded location on an object.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein
The present invention will now be described with some preferred embodiments thereof. For the purpose of easy to understand, elements that are the same in the preferred embodiments are denoted by the same reference numerals.
Please refer to
The screw main body 1 includes a head portion 11, a stem portion 12 extended from a lower side of the head portion 11, a first screw locking section 13 located below the stem portion 12, and a second screw locking section 14 located below the first screw locking section 13. That is, the second screw locking section 14 is located at a lower end of the screw main body 1. The first screw locking section 13 is externally provided with a first male thread 131, and the second screw locking section 14 is externally provided with a second male thread 141. The first male thread 131 has a structure different from that of the second male thread 141. And, the first screw locking section 13 is diametrically larger than the second screw locking section 14.
The first male thread 131 can be any one of an Imperial unit coarse thread, an Imperial unit fine thread and a Metric unit thread; and the second male thread 141 can be one of an Imperial unit coarse thread, an Imperial unit fine thread and a Metric unit thread other than that of the first male thread 131. The first male thread 131 can be any one of a left-hand and a right-hand thread, and the second male thread 141 can be one of the left-hand and the right-hand thread other than that of the first male thread 131. That is, the first and the second male thread 131, 141 can be two differently featured male threads selected from the group consisting of above listed male threads.
The head portion 11 is provided at an upper end surface with a socket 11a for engaging with a correspondingly configured hand tool, such as a flat-head, a crosshead, an inner hexagon, or a star head hand tool.
The elastic element 2 is externally fitted around the stem portion 12 of the screw main body 1 and located between the head portion 11 and the first screw locking section 13. The elastic element 2 can be a compression spring.
Please refer to
In the second embodiment, the sleeve 3 is integrally formed on an assembling interface, which may be, for example, a heat dissipating support 4 or a heat radiating element. In the second embodiment, while the assembling interface is illustrated as a heat dissipating support 4, it is understood the present invention is not necessarily limited thereto. The sleeve 3 can be integrally formed on the heat dissipating support 4 through integral extrusion, deep drawing, or drawing.
The heat dissipating support 4 is to be screw-locked to a system-end interface, such as a heat source, a computer chassis, or a server cabinet. In the second embodiment, the system-end interface is illustrated as a computer chassis 5, which is only partially shown in
To preliminarily assemble the screw main body 1 to the sleeve 3, first extend the first screw locking section 13 and the second screw locking section 14 of the screw main body 1 through the axial bore 32 of the sleeve 3. The second screw locking section 14 located at the lower end of the screw main body 1 is the first part of the screw main body 1 to pass through the length of the axial bore 32 at the inner shoulder portion 311. Further, since the second screw locking section 14 is diametrically smaller than the axial bore 32, it can easily pass through the axial bore 32 without being hindered. When the first screw locking section 13 reaches the inner shoulder portion 311, the first male thread 131 externally formed on the first screw locking section 13 meshes with the female thread 321 formed on the length of the axial bore 32 corresponding to the inner shoulder portion 311, allowing the first screw locking section 13 to pass through the inner shoulder portion 311 into the sleeve 3. Since the sleeve 3 has been connected to the heat dissipating support 4 in advance, the screw main body 1 with the first and second screw locking sections 13, 14 extended into the sleeve 3 is now temporarily held to the heat dissipating support 4 without the risk of separating therefrom during transportation of the partially assembled screw locking unit structure and heat dissipating support 4. In the event the screw main body 1 temporarily held to the heat dissipating support 4 must be changed due to any damage thereof, simply pull and turn the screw main body 1 reversely for the first male thread 131 of the first screw locking section 13 to mesh with the female thread 321 on the axial bore 32 corresponding to the inner shoulder portion 311, and the screw main body 1 can be loosened from the axial bore 32 and removed from the sleeve 3.
To fixedly connect the heat dissipating support 4 to the computer chassis 5, first align each mounting hole 41 on the heat dissipating support 4 with an internally threaded hole 511 formed on one corresponding fixing bracket 51 and then turn the screw main bodies 1 further into the sleeve 3, such that the second male thread 141 on the second screw locking section 14 at the lower end of the screw main body 1 is extended into and engaged with the internally threaded hole 511 to lock the heat dissipating support 4 to the computer chassis 5.
Since the first male thread 131 and the second male thread 141 selected for use are different in structure, such as being different in tightening directions or thread pitches, the screw locking of the second screw locking section 14 of the screw main body 1 into the fixing bracket 51 would automatically stop when a joint between the structurally different second male thread 141 and first male thread 131 reaches the fixing bracket 51, and the second male thread 141 is prevented from being excessively threaded into the fixing bracket 51. Further, the elastic element 2 with two ends elastically pressed against the lower side of the head portion 11 of the screw main body 1 and the upper surface of the inner shoulder portion 311 of the sleeve 3 also provides the screw main body 1 a good anti-loosening effect.
The present invention has been described with some preferred embodiments thereof and it is understood that many changes and modifications in the described embodiments can be carried out without departing from the scope and the spirit of the invention that is intended to be limited only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
111135397 | Sep 2022 | TW | national |