1. Field of the Invention
The present invention is directed to a screw tip, and more particularly to a screw tip for controlling the flow of a melt of material in a barrel of a molding system apparatus. For example, the molding system apparatus may be for a plastic injection molding system, or a metal injection molding system for molding a metal in a thixotropic state, or a die casting molding system.
2. Background Information
Screw tip assemblies forming a check valve mounted on the end of a screw are known in the art. For example, U.S. Pat. No. 2,885,734 issued to Wucher on May 12, 1959. The specification illustrates a two part check valve. A diffuser head is formed by a circular disk member that is mounted into an end of a screw. The disk includes a plurality of semi-circular openings around the peripheral edge of the disk. Portions of the disk intermediate the semi-circular openings extend outwardly and engage a inside cylindrical wall of the barrel to provide a seal and support for an end of the screw when located in a barrel. The semi-circular openings cooperate with the inside cylindrical wall of the barrel to form channels that permit a flow of melted material to pass from an upstream side of the diffuser head to a downstream side of the diffuser head. A non-return valve is formed by a second disk member that is mounted on the downstream side of the diffuser head by a threaded bolt. The second disk includes a plurality of circular openings about the face of the disk. The circular openings permit a flow of melted material to pass when spaced apart from the diffuser head, and stop a flow of melted material when engaged with the diffuser head. The circular peripheral edge of the second disk engages the inside cylindrical wall of the barrel to provide a seal and support for the end of the screw in the barrel.
There are a number of problems with the prior art device. The flow path through the check valve includes a number of sharp corners that will shear the melt. The flow path also includes a number of areas that trap melt which in turn leads to degradation of the melt. The screw is supported by the peripheral edge of the check valve and diffuser engaging the inside cylindrical wall of the barrel causing stress and wear of the check valve. The outside surface of the check valve and inside surface of the opening surrounding the threaded bolt in the non-return valve are prone to wear.
Therefore, there is a need for an improved screw tip and check valve
The present invention has many advantages. The check valve is simpler to manufacture and assemble within the check valve chamber. Movement of the check valve between the flow position and the flow cut off position is damped due to a melt of material, in operation, behind the check valve and in the narrow flow channels of the entry ports. The three pin support of the check valve is simpler to manufacture and assemble in the screw tip head. Machining of the screw tip head is simplified. The screw tip is capable of better withstanding shock energy during injection. Wear between the check valve and the barrel is reduced.
In a first broad aspect of the invention, the invention is directed to a screw tip for use in a molding system apparatus. The screw tip comprises a body, an entry port in the body, and a check valve chamber in the body. The check valve chamber communicating with the entry port to provide a flow path. The check valve chamber having a surface for engaging, in use, a translatable member operable between a flow position and a shut off position. The check valve chamber in the end of the body is operable in use to control a flow of material.
In another broad aspect of the invention, the invention is directed to a molding system apparatus. The apparatus comprises an elongate screw, a screw tip body, an entry port in the body, and a check valve chamber in the body. The check valve chamber communicating with the entry port to provide a flow path. The check valve chamber having a surface for engaging, in use, a translatable member operable between a flow position and a shut off position. The check valve chamber in the end of the body is operable in use to control a flow of material.
In another broad aspect of the invention, the invention is directed to a molding system apparatus. The apparatus comprises a barrel, an elongate screw, the elongate screw disposed in the barrel and operable, in use, to rotate and translate, a screw tip body, the screw tip body disposed on an end of the elongate screw, and entry port in the body, and a check valve chamber in the body. The check valve chamber communicating with the entry port to provide a flow path. The check valve chamber having a surface for engaging, in use, a translatable member operable between a flow position and a shut off position. The check valve chamber in the end of the body is operable in use to control a flow of material.
In an alternate embodiment of the invention, the screw tip includes a plurality of entry ports in the body. The check valve chamber is central in the body about an axis and the plurality of entry ports in the body communicate with the check valve chamber. In a preferred embodiment of the invention, the plurality of entry ports are six equally spaced about a chamfer of the body.
In an embodiment of the invention, the screw tip includes a translatable member positioned in the check valve chamber about the axis.
In an embodiment of the invention, the translatable member includes a sealing surface and the check valve chamber includes a sealing surface. In the shut off position, the sealing surface of the translatable member engages the sealing surface of the check valve chamber preventing, in use, a flow of material.
In an embodiment of the invention, the screw tip includes a support guide. The support guide cooperating with the body and the translatable member to position the translatable member in the check valve chamber about the axis and permit the translatable member to operate, in use, between the flow position and the shut off position. In a preferred embodiment of the invention, the support guide is three pins equally spaced about a circumference of the check valve chamber. The pins engaging a sidewall area of the translatable member to support and guide movement, in use, of the translatable member.
In an embodiment of the invention, the screw tip includes a stop member. The stop member cooperating with the body and the translatable member to limit travel, in use, of the translatable member in the flow position. In a preferred embodiment of the invention, the stop member is a pair of pins equally spaced apart from each other in the check valve chamber for engaging, in use, a surface of the translatable member.
In a preferred embodiment of the invention, the translatable member is a cylindrical plate. In an alternate embodiment of the invention, the translatable member is spherical. In another alternate embodiment of the invention, the translatable member is substantially cylindrical. In another alternate embodiment of the invention, the translatable member is substantially spherical. In another alternate embodiment of the invention, the translatable member is substantially conical.
In an embodiment of the invention, the screw tip includes an accumulator chamber. The accumulator chamber intermediate the entry port and the check valve chamber for transferring, in use, a flow of melt from the entry port to the check valve chamber. In an alternate embodiment of the invention, the entry port connects directly to the check valve chamber.
In an embodiment of the invention, the screw tip includes an engagement member for securing the screw tip to a complimentary engagement member of a screw. In another embodiment of the invention, the screw tip is integrally formed on an end of a screw.
In an embodiment of the invention, the check valve chamber includes a substantially cylindrical sidewall and the translatable member is a substantially cylindrical disk. A diameter of the cylindrical disk is smaller than a diameter of the substantially cylindrical sidewall.
In an alternate embodiment of the invention, the check valve member includes a chamfer portion. The translatable member is substantially spherical. A diameter of the translatable member engages the chamfer portion in the stop flow position. In another alternate embodiment of the invention, the check valve chamber includes a conical portion, the translatable member is substantially conical, and a conical section of the translatable member engages, in use, the conical portion in the stop flow position.
Exemplary embodiments of the present invention will now be described with reference to the accompanying drawings, in which:
The present invention is described in accordance with an embodiment as illustrated with reference to
The connection 12 and the screw tip head 36 of the invention are further described with reference to the cross sectional view illustrated in
In an embodiment of the invention, the connection 12 also includes, adjacent the engagement member 32, an optional guide member 34 formed on another cylindrical portion of the connection 12. The diameter of the engagement member 32 is smaller than the diameter of the guide member 34. The guide member provides alignment of the screw tip 10 with the barrel about a central longitudinal axis during assembly of the screw tip 10 with the screw.
A sealing stop 66 is provided in one end of the screw tip head 36. This provides an engaging limit with a screw (not shown) during assembly to tightly retain the screw tip 10 with the screw and to seal out the melt of material from the connection 12.
Adjacent the guide member 34 (or optionally adjacent the engagement member 32) is the screw tip head 36. A chamfer 38 is formed on one end of the screw tip head 36. The chamfer 38, diameter 42, end of the screw, and cylindrical wall member of the barrel form a flow channel 40 (see
An accumulator chamber 46 is formed about the central longitudinal axis of the screw tip head 36. The accumulator chamber 46 is connected to the at least one entry port 44 and accumulates a melt of material during operation. The accumulator chamber 46 also provides some mixing of the various melt streams from a plurality of entry port 44. The accumulator chamber 46 is formed by drilling, or machining, a bore into the body of the screw tip head 36 about the central longitudinal axis.
A check valve chamber 48 is formed in the end of the screw tip head 36. The check valve chamber 48 is connected to the accumulator chamber 46 and permits a flow of melt to pass from the accumulator chamber 46 to the check valve chamber 38 during operation. The check valve chamber 48 is a substantially cylindrical bore with a sidewall 50. The diameter of the check valve chamber 38 is larger than the diameter of the accumulator chamber 46. A sealing surface 52 is formed in a bottom wall at one end of the cylindrical bore. The bottom wall surrounds the opening of the accumulator chamber 46. The check valve chamber 48 is open on an end of the screw tip head 36 to provide an exit port 54 for the melt of material. The accumulator chamber 46 is formed by machining a bore into the body of the screw tip head 36 about the central longitudinal axis. The accumulator chamber 46 connects to the central accumulator chamber 46. The flow path through the screw tip head includes the entry port 44, the accumulator chamber 46 and the check valve chamber 48. Alternatively, the flow path through the screw tip head 36 includes the entry port 44 and the check valve chamber 48.
The screw tip head 36 includes a support surface 56. The support surface 56 is an elongate larger diameter section of the screw tip head 36 and supports and guides an end of the screw (not shown) in the barrel (not shown). A groove 58 is formed in the support surface 56 of the screw tip head 36. The groove receives a seal 60 to provide a seal between the screw tip head 36 and the inner cylindrical wall of the barrel. The seal 60 prevents the melt of material, in operation, from leaking past the outer surface of the screw tip head 36. In an embodiment of the invention, the seal 60 is a piston ring.
The screw tip head 36 is a length and diameter to accommodate the at least one angled entry port 44, the accumulator chamber 36, and check valve chamber 48. A reduced diameter 62 of the screw tip head 36 is provided about the check valve chamber 48. This limits the contact area between the inner sidewall of the barrel and the outer surface of the screw tip head 36 and reduces friction between the screw tip head 36 and the inner sidewall of the barrel.
In an embodiment of the invention, the check valve 64 is a substantially cylindrical disk of suitable thickness to withstand injection pressures. The check valve 64 is disposed about the central axis of the body 30 and located within the check valve chamber 48. The diameter of the check valve 64 is such to cover the opening between the accumulator chamber 46 and the check valve chamber 48 and to extend a suitable distance over the sealing surface 52. A surface 72 of the check valve 64 is complimentary to the sealing surface 52 to control a flow of melt during operation from the accumulator chamber 46 to the check valve chamber 48.
The check valve 64 is supported by a plurality of support guides 68, preferably three equally spaced support guides. In an embodiment of the invention, the support guides 68 are short dowels or pins that are pressed into openings 70 bored through a thickness of the sidewall 50. The heads of the support guides 68 engage a side surface of the check valve 64 to support and align the check valve 64 about the central horizontal axis while permitting the check valve 64 to move between a flow position and a shut off position. The check valve 64 is illustrated in the open position and is moved aft to the closed position where the sealing surface 52 engages the complimentary surface of the check valve 64.
A stop member 74 is located in the check valve chamber 48 and before the exit port 54. Preferably, the stop member 74 is a pair of long dowels or pins that are pressed into openings 76 bored through a thickness of the sidewall 70 and equally spaced about the check valve chamber. An upper surface of the check valve 64 engages the stop member 74 providing a stop for the check valve 64 in the flow position.
Referring now to
Referring now to
The screw tip 10 is machined from metal material that can withstand the injection molding environment. The screw tip is preferably manufactured separate from the screw and then assembled with the screw by rotating the screw tip 10 about the connection 12 into the screw. Alternatively, the screw tip 10 could be manufactured and integral with the screw as a complete part.
The check valves (either the cylindrical plate valve or the substantially spherical valve) are preferably stock items. However, they may also be machined from a metal material such as the conical check valve. Assembly requires placing the check valve into the check valve chamber 48. The pins 68 are then pressed into their respective openings to locate and center the check valve-about the horizontal axis. Alternatively, the pins 68 could be threaded into their respective openings. The stop members 72 are then pressed into their respective openings. Alternatively, the stop members 72 could be threaded into their respective openings. To complete the assembly, the seal 60 is assembled into the groove 58.
Persons skilled in the art will appreciate the shape and configuration of the alternate check valves for use in a plastic molding apparatus should be a shape and configuration that does not create a stagnation point or flow trap with respect to the flow of a melt of plastic material. For example, some plastic resins will degrade and burn in a stagnation or flow trap area. Depending upon the application and resin, this may be undesirable and the shape and configuration of the check valve should avoid stagnation points and flow traps. However, the alternate check valves for use in a metal molding apparatus do not have this limitation as the flow of a melt of metal material will not degrade and burn in a stagnation or flow trap area.
Operation of the screw tip 10 is now described with reference to
Referring now to
Referring now to
It will, of course, be understood that the above description has been given by way of example only and that modifications in detail may be made within the scope of the present invention.