Scroll compressor with center hub

Information

  • Patent Grant
  • 11846287
  • Patent Number
    11,846,287
  • Date Filed
    Thursday, August 11, 2022
    a year ago
  • Date Issued
    Tuesday, December 19, 2023
    5 months ago
Abstract
A compressor may include non-orbiting and orbiting scrolls, a hub plate, and primary and secondary discharge valve assemblies. The non-orbiting scroll includes a first end plate having primary and secondary discharge passages. The hub plate may be mounted to the non-orbiting scroll and may include a main body and a central hub extending axially from the main body. The central hub may include a recess and a hub aperture. The primary discharge valve assembly may include a retainer and a primary valve member. In a closed position, the primary valve member may restrict fluid flow between the discharge chamber and the primary discharge passage. The secondary discharge valve assembly may include a secondary valve member that selectively allows and restricts fluid communication between the secondary discharge passage and the hub aperture of the central hub.
Description
FIELD

The present disclosure relates to a scroll compressor with a center hub.


BACKGROUND

This section provides background information related to the present disclosure and is not necessarily prior art.


A climate-control system such as, for example, a heat-pump system, a refrigeration system, or an air conditioning system, may include a fluid circuit having an outdoor heat exchanger, an indoor heat exchanger, an expansion device disposed between the indoor and outdoor heat exchangers, and one or more compressors circulating a working fluid (e.g., a refrigerant) between the indoor and outdoor heat exchangers. Efficient and reliable operation of the one or more compressors is desirable to ensure that the climate-control system in which the one or more compressors are installed is capable of effectively and efficiently providing a cooling and/or heating effect on demand.


SUMMARY

This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features.


The present disclosure provides a compressor that may include a shell assembly, a non-orbiting scroll, an orbiting scroll, a hub plate, a primary discharge valve assembly, and a secondary discharge valve assembly. The non-orbiting scroll is disposed within the shell assembly and includes a first end plate and a first spiral wrap. The first end plate includes a primary discharge passage and a secondary discharge passage located radially outward relative to the primary discharge passage. The orbiting scroll is disposed within the shell assembly and includes a second end plate having a second spiral wrap extending therefrom and meshingly engaged with the first spiral wrap. The hub plate may be mounted to the non-orbiting scroll and may include a main body and a central hub extending axially from the main body. The central hub may include a recess and a hub aperture. The hub aperture may be in selective fluid communication with the primary and secondary discharge passages. The primary discharge valve assembly may include a retainer and a primary valve member. The retainer may be disposed at least partially within the recess of the hub plate. The retainer may include a retainer aperture in fluid communication with the hub aperture. The primary valve member may be slidably engaged with the retainer. When the primary valve member is in a closed position, the primary valve member may restrict fluid flow between the discharge chamber and the primary discharge passage. The secondary discharge valve assembly may include a secondary valve member disposed between the hub plate and the first end plate. The secondary valve member may be movable relative to the hub plate and the first end plate. When the secondary valve member is in an open position, fluid is allowed to flow from the secondary discharge passage around an outer periphery of the retainer of the primary discharge valve assembly and through the hub aperture. When the secondary valve member is in a closed position, the secondary valve member restricts fluid communication between the secondary discharge passage and the hub aperture of the central hub.


In some configurations of the compressor of the above paragraph, the first end plate of the non-orbiting scroll includes an annular rim that surrounds an outer periphery of the hub plate and defines a recess in which the hub plate is received.


In some configurations, the compressor of either of the above paragraphs may include a floating seal assembly at least partially received in the recess defined by the annular rim.


In some configurations of the compressor of any one or more of the above paragraphs, the floating seal assembly, the annular rim, and the hub plate cooperate to define a biasing chamber that receives intermediate-pressure working fluid from an aperture in the first end plate.


In some configurations of the compressor of any one or more of the above paragraphs, the primary valve member is a cup-shaped member that slidably engages an inner hub of the retainer.


In some configurations of the compressor of any one or more of the above paragraphs, the inner hub of the retainer includes a central aperture. The retainer aperture and the hub aperture may be disposed radially outward relative to the central aperture.


In some configurations of the compressor of any one or more of the above paragraphs, the retainer includes external threads that threadably engages internal threads formed on the central hub of the hub plate.


In some configurations of the compressor of any one or more of the above paragraphs, the hub aperture is disposed radially outward relative to the internal threads of the hub plate.


In some configurations of the compressor of any one or more of the above paragraphs, a first axial end of the retainer contacts an annular ledge. The hub aperture may be disposed radially outward relative to the annular ledge.


In some configurations of the compressor of any one or more of the above paragraphs, the primary discharge valve assembly includes a spring disposed between the first end plate and a second axial end of the retainer, and wherein the spring biases the retainer into contact with the annular ledge.


In some configurations of the compressor of any one or more of the above paragraphs, the secondary valve member is a reed valve including a fixed end and a movable end that is resiliently bendable relative to the fixed end.


In some configurations, the compressor of any one or more of the above paragraphs may include a drive bearing formed from a polymeric material and a main bearing formed from aluminum. The drive bearing may engage a cylindrical hub of the orbiting scroll and may surround a crank pin of a crankshaft. The main bearing may rotatably support a main body of the crankshaft.


In some configurations of the compressor of any one or more of the above paragraphs, the hub aperture has a larger area than a sum of areas of the secondary discharge passages.


In another form, the present disclosure provides a compressor that may include a shell assembly, a non-orbiting scroll, an orbiting scroll, a hub plate, a primary valve member, and a secondary discharge valve assembly. The non-orbiting scroll is disposed within the shell assembly and including a first end plate and a first spiral wrap. The first end plate includes a primary discharge passage and a secondary discharge passage located radially outward relative to the primary discharge passage. The orbiting scroll is disposed within the shell assembly and includes a second end plate having a second spiral wrap extending therefrom and meshingly engaged with the first spiral wrap. The hub plate may be mounted to the non-orbiting scroll and may include a main body and a central hub extending axially from the main body. The central hub may include a recess and a hub aperture. The hub aperture may be in selective fluid communication with the primary and secondary discharge passages. The central hub may include an integrally formed valve retainer. The primary valve member may be slidably received within the recess of the hub plate. The hub aperture may be disposed radially outward relative to the primary valve member. When the primary valve member is in a closed position, the primary valve member restricts fluid flow between the discharge chamber and the primary discharge passage. The secondary discharge valve assembly may include a secondary valve member disposed between the hub plate and the first end plate. The secondary valve member may be movable relative to the hub plate and the first end plate. When the secondary valve member is in an open position, fluid is allowed to flow from the secondary discharge passage through the hub aperture. When the secondary valve member is in a closed position, the secondary valve member restricts fluid communication between the secondary discharge passage and the hub aperture.


In some configurations of the compressor of the above paragraph, the first end plate of the non-orbiting scroll includes an annular rim that surrounds an outer periphery of the hub plate and defines a recess in which the hub plate is received.


In some configurations, the compressor of either of the above paragraphs includes a floating seal assembly at least partially received in the recess defined by the annular rim.


In some configurations of the compressor of any one or more of the above paragraphs, the floating seal assembly, the annular rim, and the hub plate cooperate to define a biasing chamber that receives intermediate-pressure working fluid from an aperture in the first end plate.


In some configurations of the compressor of any one or more of the above paragraphs, the primary valve member is a cylindrical member.


In some configurations of the compressor of any one or more of the above paragraphs, the valve retainer includes a central aperture. The hub aperture may be disposed radially outward relative to the central aperture.


In some configurations of the compressor of any one or more of the above paragraphs, the secondary valve member is a reed valve including a fixed end and a movable end that is resiliently bendable relative to the fixed end.


In some configurations, the compressor of any one or more of the above paragraphs may include a drive bearing formed from a polymeric material and a main bearing formed from aluminum. The drive bearing may engage a cylindrical hub of the orbiting scroll and may surround a crank pin of a crankshaft. The main bearing may rotatably support a main body of the crankshaft.


Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.





DRAWINGS

The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations and are not intended to limit the scope of the present disclosure.



FIG. 1 is a cross-sectional view of a compressor according to the principles of the present disclosure;



FIG. 2 is a cross-sectional view of a portion of the compressor of FIG. 1 with primary and secondary discharge valve members in closed positions;



FIG. 3 is a cross-sectional view of a portion of the compressor of FIG. 1 with primary and secondary discharge valve members in open positions;



FIG. 4 is a perspective view of a non-orbiting scroll of the compressor with a hub assembly according to the principles of the present disclosure;



FIG. 5 is an exploded view of orbiting and non-orbiting scrolls and the hub assembly;



FIG. 6 is a cross-sectional view of a portion of another compressor according to the principles of the present disclosure;



FIG. 7 is a perspective view of a non-orbiting scroll and hub assembly of the compressor of FIG. 6;



FIG. 8 is a cross-sectional view of a portion of yet another compressor according to the principles of the present disclosure; and



FIG. 9 is a perspective view of a non-orbiting scroll and hub assembly of the compressor of FIG. 8.





Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.


DETAILED DESCRIPTION

Example embodiments will now be described more fully with reference to the accompanying drawings.


Example embodiments are provided so that this disclosure will be thorough and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.


The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.


When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.


Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.


With reference to FIGS. 1-5, a compressor 10 is provided that may include a hermetic shell assembly 12, first and second bearing-housing assemblies 14, 16, a motor assembly 18, a compression mechanism 20, and a hub assembly 22.


The shell assembly 12 may form a compressor housing and may include a cylindrical shell 32, an end cap 34 at an upper end thereof, a transversely extending partition 36, and a base 38 at a lower end thereof. The end cap 34 and the partition 36 may define a discharge chamber 40. The partition 36 may separate the discharge chamber 40 from a suction chamber 42. A discharge passage 44 may extend through the partition 36 to provide communication between the compression mechanism 20 and the discharge chamber 40. A suction fitting 45 may provide fluid communication between the suction chamber 42 and a low side of a system in which the compressor 10 is installed. A discharge fitting 46 may provide fluid communication between the discharge chamber 40 and a high side of the system in which the compressor 10 is installed.


The first bearing-housing assembly 14 may be fixed relative to the shell 32 and may include a main bearing-housing 48 and a main bearing 50. The main bearing-housing 48 may axially support the compression mechanism 20 and may house the main bearing 50 therein. The main bearing-housing 48 may include a plurality of radially extending arms engaging the shell 32. The main bearing 50 may be formed from aluminum (or aluminum alloys), for example, or other suitable materials.


The motor assembly 18 may include a motor stator 60, a rotor 62, and a driveshaft 64. The motor stator 60 may be press fit into the shell 32. The rotor 62 may be press fit on the driveshaft 64 and may transmit rotational power to the driveshaft 64. The driveshaft 64 may be rotatably supported by the first and second bearing-housing assemblies 14, 16. The driveshaft 64 may include an eccentric crank pin 66 having a flat surface thereon. A main body 69 of the driveshaft 64 may be rotatably supported by the main bearing 50 and main-bearing housing 48.


The compression mechanism 20 may include an orbiting scroll 70 and a non-orbiting scroll 72. The orbiting scroll 70 may include an end plate 74 and a spiral wrap 76 extending therefrom. A cylindrical hub 80 may project downwardly from the end plate 74 and may include a drive bushing 82 disposed therein. A drive bearing 81 may also be disposed within the hub 80 and may surround the drive bushing 82 and the crank pin 66 (i.e., the drive bearing 81 may be disposed radially between the hub 80 and the drive bushing 82). The drive bearing 81 may be formed from a polymeric material, for example, or any other suitable material. The drive bushing 82 may include an inner bore in which the crank pin 66 is drivingly disposed. The crank pin flat may drivingly engage a flat surface in a portion of the inner bore to provide a radially compliant driving arrangement. An Oldham coupling 84 may be engaged with the orbiting and non-orbiting scrolls 70, 72 to prevent relative rotation therebetween.


The non-orbiting scroll 72 may include an end plate 86 and a spiral wrap 88 projecting downwardly from the end plate 86. The spiral wrap 88 may meshingly engage the spiral wrap 76 of the orbiting scroll 70, thereby creating a series of moving fluid pockets (e.g., fluid pockets 89, 91, 97). The fluid pockets 89, 91, 97 defined by the spiral wraps 76, 88 may decrease in volume as they move from a radially outer position (at a suction pressure) to radially intermediate positions (at intermediate pressures between suction pressure and discharge pressure) to a radially inner position (at a discharge pressure) throughout a compression cycle of the compression mechanism 20. The non-orbiting scroll 72 may be formed from steel, cast iron, or aluminum, for example, or any other suitable material.


As shown in FIG. 2, the end plate 86 may include a primary discharge passage 90, a first discharge recess 92, a second discharge recess 93, one or more first apertures (e.g., variable-compression-ratio apertures or secondary discharge passages) 94, a second aperture (e.g., axial biasing aperture) 95, and an annular recess 96. The discharge passage 90 may be in communication with the fluid pocket 97 (e.g., a discharge-pressure pocket) at the radially inner position and allows compressed working fluid (at the discharge pressure) to flow through the hub assembly 22 and into the discharge chamber 40. The second discharge recess 93 may be in fluid communication with the discharge passage 90. The first discharge recess 92 may be an annular recess that is disposed radially outward relative to the second discharge recess 93. The second discharge recess 93 may be disposed between the discharge passage 90 and the first discharge recess 92. The first apertures 94 may be disposed radially outward relative to the discharge passage 90 and may selectively allow fluid communication between the fluid pockets 91 at radially intermediate positions (e.g., intermediate-pressure fluid pockets 91) and the first discharge recess 92. The second aperture 95 may be disposed radially outward relative to the discharge passage 90. The second aperture 95 may be disposed radially outward to relative to the first apertures 94 and may be rotationally offset from the first apertures 94. The second aperture 95 may provide communication between one of the fluid pockets 89 at a radially intermediate position (e.g., at an intermediate pressure that may be lower than the intermediate pressures of pockets 91) and the annular recess 96. The annular recess 96 may be defined by an annular rim 99 of the end plate 86 of the non-orbiting scroll. The annular recess 96 may encircle the first and second discharge recesses 92, 93 and may be substantially concentric therewith.


The hub assembly 22 may be mounted to the end plate 86 of the non-orbiting scroll 72 on a side of the end plate 86 opposite the spiral wrap 88. As shown in FIGS. 2-5, the hub assembly 22 may include a hub plate 98, a seal assembly 100, a primary discharge valve assembly 102, and one or more secondary discharge valve assemblies (or variable compression ratio valve assemblies) 104.


The hub plate 98 may include a main body 106, a central hub 110, and a mounting flange 114. The main body 106 may extend partially into the first discharge recess 92. The central hub 110 may extend axially from a radially inner portion of the main body 106. The mounting flange may extend radially outward from the main body 106 and may receive bolts 116 that secure the hub plate 98 to the end plate 86 of the non-orbiting scroll 72. An annular gasket 118 may surround the first discharge recess 92 in the end plate 86 and may be disposed between and sealingly engage the main body 106 and the end plate 86. The hub plate 98 may be formed from steel, cast iron, or aluminum, for example, or any other suitable material. The hub plate 98 may be formed from the same material as the non-orbiting scroll 72, or the hub plate 98 may be formed from a different material than the non-orbiting scroll 72.


The annular rim 99 and the central hub 110 may cooperate with the main body 106 to define an annular recess 122 (FIG. 2) that may movably receive the seal assembly 100 therein. The seal assembly 100 may sealingly engage the partition 36 (as shown in FIG. 2). The annular recess 122 may cooperate with the seal assembly 100 to define an annular biasing chamber 124 therebetween. The biasing chamber 124 receives fluid from the intermediate fluid pocket 89 via second aperture 95 (e.g., fluid may flow from the second aperture 95 around the outer periphery of the mounting flange 114 and/or through an aperture in the hub plate 98). A pressure differential between the intermediate-pressure fluid in the biasing chamber 124 and suction-pressure fluid in the suction chamber 42 exerts a net axial biasing force on the hub plate 98 and non-orbiting scroll 72 urging the non-orbiting scroll 72 toward the orbiting scroll 70, while still allowing axial compliance of the non-orbiting scroll 72 relative to the orbiting scroll 70 and the partition 36. In this manner, the tips of the spiral wrap 88 of the non-orbiting scroll 72 are urged into sealing engagement with the end plate 74 of the orbiting scroll 70 and the end plate 86 of the non-orbiting scroll 72 is urged into sealing engagement with the tips of the spiral wrap 76 of the orbiting scroll 70. This pressure differential also urges the seal assembly 100 into engagement with the partition 36.


The central hub 110 may define a recess 128 and one or more hub apertures 129 through which the recess 128 fluidly communicates with the discharge chamber 40. The aperture 129 may be disposed axially between the recess 128 and the discharge passage 44 of the partition 36. The aperture 129 may include a plurality of scallop-shaped cutouts, as shown in FIGS. 4 and 5. The recess 128 may at least partially receive the primary discharge valve assembly 102. The recess 128 may be in fluid communication with the first discharge recess 92 in the non-orbiting scroll 72 and in selective fluid communication with the first apertures 94 in the non-orbiting scroll 72.


The primary discharge valve assembly 102 may include a retainer (or valve body) 130 and a primary valve member 132 that is movable relative to the retainer 130. In some configurations, the primary discharge valve assembly 102 may also include an annular valve seat 131 and a spring 133 (e.g., a wave ring or coil spring, for example). The valve seat 131 has an inner diameter that may be sized to provide a desired flow area for discharging working fluid from the compression mechanism 20. In some configurations, the size, shape, and number of the scalloped-shaped cutouts of the aperture 129 may be selected to provide a flow area of the aperture 129 (around the radially outer periphery of the retainer 130) that is (or multiple flow areas having a sum that is) equal to or greater than the sum of flow areas defined by the diameters of the first apertures 94.


The retainer 130 may be received in the recess 128 of the hub plate 98. The retainer 130 may include an inner hub 134 and one or more retainer apertures 135 that surround the inner hub 134. The valve seat 131 may engage an axial end of the retainer 130 and may be received in the second discharge recess 93. The valve member 132 movably engages an inner hub 134 of the retainer 130 and selectively seats against the valve seat 131. For example, the valve member 132 may be a cup-shaped member that movably receives the inner hub 134. The valve member 132 may be spaced apart from the valve seat 131 during normal operation of the compressor 10 to allow fluid to flow from the compression mechanism 20 to the discharge chamber 40. That is, when the valve member 132 is in an open position (i.e., when the valve member 132 is spaced apart from the valve seat 131; shown in FIG. 3) fluid is allowed to flow from the discharge passage 90, through the valve seat 131, through the apertures 135, through the aperture 129, and through the discharge passage 44 and into the discharge chamber 40. The valve member 132 may move downward to a closed position (in which the valve member 132 contacts the valve seat 131; shown in FIG. 2) after shutdown of the compressor 10 to restrict or prevent fluid from flowing from the discharge chamber 40 back into the compression mechanism 20 through the discharge passage 90. The spring 133 may be disposed within the second discharge recess 93 and may contact the end plate 86 and the valve seat 131. The spring 133 may bias the valve seat 131 and retainer 130 upward against an annular ledge 149 (e.g., an axially facing surface) defining an axial end of the recess 128.


The secondary discharge valve assemblies 104 may be disposed within the first discharge recess 92 and between the hub plate 98 and the non-orbiting scroll 72. Each of the secondary discharge valve assemblies 104 may include a retainer (or valve backer) 150 and a secondary valve member 152 (e.g., a resiliently flexible reed valve). The retainer 150 may be pinned, bolted, or otherwise attached to the end plate 86. The retainer 150 may be sandwiched between the end plate 86 and the hub plate 98.


As shown in FIG. 5, the valve retainers 150 may include a base portion 154 and an arm portion 156 that extends at an angle from the base portion 154. The base portion 154 may include a pair of pin bores 158. A distal end of the arm portion 156 includes an inclined surface that faces the valve member 152. The valve members 152 may be reed valve members that are thin, resiliently flexible members shaped to correspond to the shape of the valve retainers 150. The valve members 152 may include a fixed end 160 and a movable end 162. The fixed end 160 may include a pair of pin bores 164 that are coaxially aligned with pin bores 158 in a corresponding one of the valve retainers 150 and a corresponding pair of pin bores in the end plate 86 of the non-orbiting scroll 72. Mounting pins (or other fasteners) 166 may be press fit (or otherwise received) in the pin bores in the retainers 150, valve members, and end plate 86 to secure the secondary discharge valve assemblies 104 to the end plate 86.


The movable ends 162 of the valve members 152 are deflectable relative to the fixed ends 160 between a closed position (FIG. 2) in which the movable ends 162 sealingly seat against the end plate 86 to restrict or prevent fluid flow through respective first apertures 94 and an open position (FIG. 3) in which the movable ends 162 are deflected upward away from the end plate 86 and toward the valve retainers 150 to allow fluid to flow through the respective apertures 94 and up into the recess 128 in the central hub 110 of the hub plate 98.


It will be appreciated that the secondary discharge valve assembly 104 could be configured in any other manner to selectively allow and restrict fluid flow through the first apertures 94. For example, instead of valve members 152 and retainers 150, the secondary discharge valve assemblies 104 could include a biasing member (a spring) and an annular valve member. Other types and/or configurations of valves could be employed to control fluid flow through the first apertures 94.


The seal assembly 100 may be a floating seal assembly. For example, the seal assembly 100 may be formed from one or more annular flexible seals 170, 172 and one or more annular rigid seal plates 174, 176. The seal assembly 100 may be received in the biasing chamber 124 between the annular rim 99 and the central hub 110 of the hub plate 98. The seal assembly 100 may sealingly engage the annular rim 99 and the central hub 110. As described above, during operation of the compressor 10, the seal assembly 100 may contact the partition 36 to seal the discharge chamber 40 from the suction chamber 42.


With continued reference to FIGS. 1-5, operation of the compressor 10 will be described in detail. During normal operation of the compressor 10, low-pressure fluid may be received into the compressor 10 via the suction fitting 45 and may be drawn into the compression mechanism 20, where the fluid is compressed in the fluid pockets defined by spiral wraps 76, 88, as described above. Fluid may be discharged from the compression mechanism 20 at a relatively high discharge pressure through the discharge passage 90. Discharge-pressure fluid flows from the discharge passage 90, through the second discharge recess 93, through the primary discharge valve assembly 102 (i.e., the discharge-pressure fluid forces the valve member 132 upward away from the valve seat 131 to allow the fluid to flow through apertures 135 in the valve retainer 130), through aperture 129, and into the discharge chamber 40, where the fluid then exits the compressor 10 through the discharge fitting 46. When the compressor shuts down, fluid may flow into a central aperture 180 in the retainer 130 to force the valve member 132 back to the closed position (i.e., into engagement with the valve seat 131).


Over-compression is a compressor operating condition where the internal compression ratio of the compressor (i.e., a ratio of a pressure of the compression pocket at the radially innermost position to a pressure of the compression pocket at the radially outermost position) is higher than a pressure ratio of a system in which the compressor is installed (i.e., a ratio of a pressure at a high side of the system to a pressure of a low side of the system). In an over-compression condition, the compression mechanism is compressing fluid to a pressure higher than the pressure of fluid downstream of a discharge fitting of the compressor. Accordingly, in an over-compression condition, the compressor is performing unnecessary work, which reduces the efficiency of the compressor. The compressor 10 of the present disclosure may reduce or prevent over-compression by allowing fluid to exit the compression mechanism 20 through the first apertures 94 and the secondary discharge valve assemblies 104 before the fluid pocket reaches the discharge passage 90.


The valve members 152 of the secondary discharge valve assemblies 104 move between the open and closed positions in response to pressure differentials between fluid in the intermediate fluid pockets 91 at radially intermediate positions and fluid in the discharge chamber 40. When fluid in fluid pockets 91 at radially intermediate positions is at a pressure that is greater than the pressure of the fluid in the discharge chamber 40, the relatively high-pressure fluid in the fluid pockets 91 may flow into the first apertures 94 and may force the valve members 152 upward toward the open position (i.e., whereby the movable ends 162 of the valve members 152 are spaced apart from the end plate 86) to allow fluid to be discharged from the compression mechanism 20 through the first apertures 94 and into the discharge chamber 40 via the recess 128 and aperture 129 of the hub plate 98 (i.e., around the outside of the retainer 130 of the primary discharge valve assembly 102). In this manner, the first apertures 94 may function as secondary discharge passages that may reduce or prevent over-compression of the working fluid.


When the pressure of the fluid in the fluid pockets 91 at the intermediate position corresponding to the first apertures 94 falls below the pressure of the fluid in the discharge chamber 40, the movable ends 162 of the valve members 152 may resiliently return to the closed position (FIG. 2), where the valve members 152 are sealingly engaged with the end plate 86 to restrict or prevent fluid-flow through the first apertures 94.


With reference to FIGS. 6 and 7, another compressor 210 is provided. The structure and function of the compressor 210 may be similar or identical to that of the compressor 10 described above, apart from any differences described below and/or shown in the figures. Therefore, similar features may not be described again in detail. Like the compressor 10, the compressor 210 may include a shell assembly 212 (similar or identical to the shell assembly 12), a first and second bearing-housing assemblies (similar or identical to the bearing-housing assemblies 14, 16), a motor assembly (similar or identical to the motor assembly 18), a compression mechanism 220 (similar or identical to the compression mechanism 20), and a hub assembly 222 (similar to the hub assembly 22).


The hub assembly 222 may include a hub plate 298, a seal assembly 300, a primary discharge valve assembly 302, and one or more secondary discharge valve assemblies 304. The structures and functions of the seal assembly 300 and the secondary discharge valve assemblies 304 may be substantially identical to that of the seal assembly 100 and the secondary discharge valve assemblies 104, respectively.


The structure and function of the hub plate 298 may be similar to that of the hub plate 98 described above, except the primary discharge valve assembly 302 may be threadably engaged with the hub plate 298. Like the hub plate 98, the hub plate 298 may include a main body 306, a central hub 310, and a mounting flange 314. The structure and function of the main body 306 and mounting flange 314 may be substantially similar to that of the main body 106 and mounting flange 114. The central hub 310 includes a recess 328 and one or more scallop-shaped apertures 329. The recess 328 may include internal threads 350. As in the primary discharge valve 102, the recess 328 and apertures 329 are in fluid communication with first apertures 294 in the non-orbiting scroll 272 when the secondary discharge valve assemblies 304 are in the open position.


The primary discharge valve assembly 302 may include a retainer (or valve body) 330 and a valve member 332 that is movable relative to the retainer 330. In some configurations, the primary discharge valve assembly 302 may also include an annular valve seat 331. The structure and function of the retainer 330, valve member 332, and valve seat 331 may be similar or identical to that of the retainer 130, valve member 132, and valve seat 131, except the retainer 330 includes external threads 333 that threadably engage the threads 350 of the hub plate 298. This threaded engagement is what fixedly secures the retainer 330 to the hub plate 298 (unlike the retainer 130 that is secured to the hub plate 98 by being biased against the ledge 149 by spring 133).


Operation of the compressor 210 may be similar or identical to operation of the compressor 10, and therefore, will not be described again.


With reference to FIGS. 8 and 9, another compressor 410 is provided. The structure and function of the compressor 410 may be similar or identical to that of the compressor 10, 210 described above, apart from any differences described below and/or shown in the figures. Therefore, similar features may not be described again in detail. Like the compressor 10, the compressor 410 may include a shell assembly 412 (similar or identical to the shell assembly 12), first and second bearing-housing assemblies (similar or identical to the bearing-housing assemblies 14, 16), a motor assembly (similar or identical to the motor assembly 18), a compression mechanism 420 (similar or identical to the compression mechanism 20), and a hub assembly 422 (similar to the hub assembly 22). Operation of the compressor 410 may be similar or identical to operation of the compressor 10.


The hub assembly 422 may include a hub plate 498, a seal assembly 500, a primary discharge valve assembly 502, and one or more secondary discharge valve assemblies 504. The structures and functions of the seal assembly 500 and the secondary discharge valve assemblies 504 may be substantially identical to that of the seal assembly 100 and the secondary discharge valve assemblies 104, respectively.


Like the hub plate 98, the hub plate 498 may include a main body 506, a central hub 510, and a mounting flange 514. The structure and function of the main body 506 and mounting flange 514 may be substantially similar to that of the main body 106 and mounting flange 114. The central hub 510 includes an integrally formed valve retainer (or valve body) 530 and a recess 528. The retainer 530 may include a plurality of apertures 529 that are in fluid communication with discharge chamber 440 (similar or identical to discharge chamber 40). The apertures 529 are in fluid communication with first apertures 494 in the non-orbiting scroll 472 when the secondary discharge valve assemblies 504 are in the open position.


The primary discharge valve assembly 502 may include the retainer 530 and a valve member 532 that is movable relative to the retainer 530. The valve member 532 can be a cylindrical block, for example. The function of the retainer 530 and valve member 532 may be similar or identical to that of the retainer 130 and valve member 132. During operation of the compressor 410, fluid pressure in the discharge passage 490 forces the valve member 532 upward to an open position (i.e., spaced apart from the end plate 486 of the non-orbiting scroll 472) to allow the fluid to flow from the discharge passage 490 and through apertures 529 and into the discharge chamber 440. The retainer 530 may include a central aperture 580 (similar to central aperture 180) through which fluid from the discharge chamber 440 may flow to force the valve member 532 down into contact with the end plate 486 when the compressor 410 shuts down. In this manner, the valve member 532 prevents back-flow of working fluid from the discharge chamber 440 into the compression mechanism 420.


The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.

Claims
  • 1. A compressor comprising: a shell assembly;a non-orbiting scroll disposed within the shell assembly and including a first end plate and a first spiral wrap, the first end plate including a primary discharge passage and a secondary discharge passage located radially outward relative to the primary discharge passage;an orbiting scroll disposed within the shell assembly and including a second end plate having a second spiral wrap extending therefrom and meshingly engaged with the first spiral wrap;a hub plate mounted to the non-orbiting scroll and including a main body and a central hub extending axially from the main body, wherein the central hub includes a recess and a hub aperture, and wherein the hub aperture is in selective fluid communication with the primary and secondary discharge passages;a primary discharge valve assembly including a retainer and a primary valve member, wherein the retainer is disposed at least partially within the recess of the hub plate, wherein the retainer includes a retainer aperture in fluid communication with the hub aperture, wherein the primary valve member is slidably engaged with the retainer, wherein when the primary valve member is in a closed position, the primary valve member restricts fluid flow between a discharge chamber and the primary discharge passage, and wherein a first axial end of the retainer contacts an annular ledge, and wherein the hub aperture is disposed radially outward relative to the annular ledge; anda secondary discharge valve assembly including a secondary valve member disposed between the hub plate and the first end plate, wherein the secondary valve member is movable relative to the hub plate and the first end plate, wherein when the secondary valve member is in an open position, fluid is allowed to flow from the secondary discharge passage around an outer periphery of the retainer of the primary discharge valve assembly and through the hub aperture, and wherein when the secondary valve member is in a closed position, the secondary valve member restricts fluid communication between the secondary discharge passage and the hub aperture of the central hub.
  • 2. The compressor of claim 1, wherein the first end plate of the non-orbiting scroll includes an annular rim that surrounds an outer periphery of the hub plate and defines a recess in which the hub plate is received.
  • 3. The compressor of claim 2, further comprising a floating seal assembly at least partially received in the recess defined by the annular rim.
  • 4. The compressor of claim 3, wherein the floating seal assembly, the annular rim, and the hub plate cooperate to define a biasing chamber that receives intermediate-pressure working fluid from an aperture in the first end plate.
  • 5. The compressor of claim 4, wherein the primary valve member is a cup-shaped member that slidably engages an inner hub of the retainer.
  • 6. The compressor of claim 5, wherein the inner hub of the retainer includes a central aperture, and wherein the retainer aperture and the hub aperture are disposed radially outward relative to the central aperture.
  • 7. The compressor of claim 1, wherein the primary discharge valve assembly includes a spring disposed between the first end plate and a second axial end of the retainer, and wherein the spring biases the retainer into contact with the annular ledge.
  • 8. The compressor of claim 1, wherein the secondary valve member is a reed valve including a fixed end and a movable end that is resiliently bendable relative to the fixed end.
  • 9. The compressor of claim 1, further comprising: a drive bearing formed from a polymeric material; anda main bearing formed from aluminum,wherein the drive bearing engages a cylindrical hub of the orbiting scroll and surrounds a crank pin of a crankshaft that drives the orbiting scroll, andwherein the main bearing rotatably support a main body of the crankshaft.
  • 10. The compressor of claim 1, wherein the non-orbiting scroll includes at least another secondary discharge passage located radially outward relative to the primary discharge passage, and wherein the hub aperture has a larger area than a sum of areas of the secondary discharge passages.
  • 11. A compressor comprising: a shell assembly;a non-orbiting scroll disposed within the shell assembly and including a first end plate and a first spiral wrap, the first end plate including a primary discharge passage and a secondary discharge passage located radially outward relative to the primary discharge passage;an orbiting scroll disposed within the shell assembly and including a second end plate having a second spiral wrap extending therefrom and meshingly engaged with the first spiral wrap;a hub plate mounted to the non-orbiting scroll and including a main body and a central hub extending axially from the main body, wherein the central hub includes a recess and a hub aperture, and wherein the hub aperture is in selective fluid communication with the primary and secondary discharge passages;a primary discharge valve assembly including a retainer and a primary valve member, wherein the retainer is disposed at least partially within the recess of the hub plate, wherein the retainer includes a retainer aperture in fluid communication with the hub aperture, wherein the primary valve member is slidably engaged with the retainer, and wherein when the primary valve member is in a closed position, the primary valve member restricts fluid flow between a discharge chamber and the primary discharge passage; anda secondary discharge valve assembly including a secondary valve member disposed between the hub plate and the first end plate, wherein the secondary valve member is movable relative to the hub plate and the first end plate, wherein when the secondary valve member is in an open position, fluid is allowed to flow from the secondary discharge passage around an outer periphery of the retainer of the primary discharge valve assembly and through the hub aperture, and wherein when the secondary valve member is in a closed position, the secondary valve member restricts fluid communication between the secondary discharge passage and the hub aperture of the central hub,wherein the retainer includes external threads that threadably engages internal threads formed on the central hub of the hub plate, and wherein the hub aperture is disposed radially outward relative to the internal threads of the hub plate.
  • 12. The compressor of claim 11, wherein the first end plate of the non-orbiting scroll includes an annular rim that surrounds an outer periphery of the hub plate and defines a recess in which the hub plate is received.
  • 13. The compressor of claim 12, further comprising a floating seal assembly at least partially received in the recess defined by the annular rim.
  • 14. The compressor of claim 13, wherein the floating seal assembly, the annular rim, and the hub plate cooperate to define a biasing chamber that receives intermediate-pressure working fluid from an aperture in the first end plate.
  • 15. The compressor of claim 14, wherein the primary valve member is a cup-shaped member that slidably engages an inner hub of the retainer.
  • 16. The compressor of claim 15, wherein the inner hub of the retainer includes a central aperture, and wherein the retainer aperture and the hub aperture are disposed radially outward relative to the central aperture.
  • 17. The compressor of claim 11, wherein the secondary valve member is a reed valve including a fixed end and a movable end that is resiliently bendable relative to the fixed end.
  • 18. The compressor of claim 11, further comprising: a drive bearing formed from a polymeric material; anda main bearing formed from aluminum,wherein the drive bearing engages a cylindrical hub of the orbiting scroll and surrounds a crank pin of a crankshaft that drives the orbiting scroll, andwherein the main bearing rotatably support a main body of the crankshaft.
US Referenced Citations (402)
Number Name Date Kind
3303988 Weatherhead Feb 1967 A
4058988 Shaw Nov 1977 A
4216661 Tojo et al. Aug 1980 A
4382370 Suefuji et al. May 1983 A
4383805 Teegarden et al. May 1983 A
4389171 Eber et al. Jun 1983 A
4466784 Hiraga Aug 1984 A
4475360 Suefuji et al. Oct 1984 A
4475875 Sugimoto et al. Oct 1984 A
4496296 Arai et al. Jan 1985 A
4497615 Griffith Feb 1985 A
4508491 Schaefer Apr 1985 A
4545742 Schaefer Oct 1985 A
4547138 Mabe et al. Oct 1985 A
4552518 Utter Nov 1985 A
4564339 Nakamura et al. Jan 1986 A
4580949 Maruyama et al. Apr 1986 A
4609329 Pillis et al. Sep 1986 A
4650405 Iwanami et al. Mar 1987 A
4696630 Sakata et al. Sep 1987 A
4727725 Nagata et al. Mar 1988 A
4772188 Kimura et al. Sep 1988 A
4774816 Uchikawa et al. Oct 1988 A
4818195 Murayama et al. Apr 1989 A
4824344 Kimura et al. Apr 1989 A
4838773 Noboru Jun 1989 A
4842499 Nishida et al. Jun 1989 A
4846633 Suzuki et al. Jul 1989 A
4877382 Caillat et al. Oct 1989 A
4886425 Itahana et al. Dec 1989 A
4886433 Maier Dec 1989 A
4898520 Nieter et al. Feb 1990 A
4927339 Riffe et al. May 1990 A
4936543 Kamibayasi Jun 1990 A
4940395 Yamamoto et al. Jul 1990 A
4954057 Caillat et al. Sep 1990 A
4990071 Sugimoto Feb 1991 A
4997349 Richardson, Jr. Mar 1991 A
5024589 Jetzer et al. Jun 1991 A
5040952 Inoue et al. Aug 1991 A
5040958 Arata et al. Aug 1991 A
5055010 Logan Oct 1991 A
5059098 Suzuki et al. Oct 1991 A
5071323 Sakashita et al. Dec 1991 A
5074760 Hirooka et al. Dec 1991 A
5080056 Kramer et al. Jan 1992 A
5085565 Barito Feb 1992 A
5098265 Machida et al. Mar 1992 A
5145346 Iio et al. Sep 1992 A
5152682 Morozumi et al. Oct 1992 A
RE34148 Terauchi et al. Dec 1992 E
5169294 Barito Dec 1992 A
5171141 Morozumi et al. Dec 1992 A
5192195 Iio et al. Mar 1993 A
5193987 Iio et al. Mar 1993 A
5199862 Kondo et al. Apr 1993 A
5213489 Kawahara et al. May 1993 A
5240389 Oikawa et al. Aug 1993 A
5253489 Yoshii Oct 1993 A
5304047 Shibamoto Apr 1994 A
5318424 Bush et al. Jun 1994 A
5330463 Hirano Jul 1994 A
5336068 Sekiya et al. Aug 1994 A
5340287 Kawahara et al. Aug 1994 A
5356271 Miura et al. Oct 1994 A
5395224 Caillat et al. Mar 1995 A
5411384 Bass et al. May 1995 A
5425626 Tojo et al. Jun 1995 A
5427512 Kohsokabe et al. Jun 1995 A
5451146 Inagaki et al. Sep 1995 A
5458471 Ni Oct 1995 A
5458472 Kobayashi et al. Oct 1995 A
5482637 Rao et al. Jan 1996 A
5511959 Tojo et al. Apr 1996 A
5547354 Shimizu et al. Aug 1996 A
5551846 Taylor et al. Sep 1996 A
5557897 Kranz et al. Sep 1996 A
5562426 Watanabe et al. Oct 1996 A
5577897 Inagaki et al. Nov 1996 A
5591014 Wallis et al. Jan 1997 A
5607288 Wallis et al. Mar 1997 A
5611674 Bass et al. Mar 1997 A
5613841 Bass et al. Mar 1997 A
5624247 Nakamura Apr 1997 A
5639225 Matsuda et al. Jun 1997 A
5640854 Fogt et al. Jun 1997 A
5649817 Yamazaki Jul 1997 A
5660539 Matsunaga et al. Aug 1997 A
5674058 Matsuda et al. Oct 1997 A
5678985 Brooke et al. Oct 1997 A
5707210 Ramsey et al. Jan 1998 A
5722257 Ishii et al. Mar 1998 A
5741120 Bass et al. Apr 1998 A
5775893 Takao et al. Jul 1998 A
5842843 Haga Dec 1998 A
5855475 Fujio et al. Jan 1999 A
5885063 Makino et al. Mar 1999 A
5888057 Kitano et al. Mar 1999 A
5938417 Takao et al. Aug 1999 A
5993171 Higashiyama Nov 1999 A
5993177 Terauchi et al. Nov 1999 A
6010312 Suitou et al. Jan 2000 A
6015277 Richardson, Jr. Jan 2000 A
6030192 Hill et al. Feb 2000 A
6047557 Pham et al. Apr 2000 A
6068459 Clarke et al. May 2000 A
6086335 Bass et al. Jul 2000 A
6093005 Nakamura Jul 2000 A
6095765 Khalifa Aug 2000 A
6102671 Yamamoto et al. Aug 2000 A
6120255 Schumann et al. Sep 2000 A
6123517 Brooke et al. Sep 2000 A
6123528 Sun et al. Sep 2000 A
6132179 Higashiyama Oct 2000 A
6139287 Kuroiwa et al. Oct 2000 A
6139291 Perevozchikov Oct 2000 A
6149401 Iwanami et al. Nov 2000 A
6152714 Mitsuya et al. Nov 2000 A
6164940 Terauchi et al. Dec 2000 A
6174149 Bush Jan 2001 B1
6176686 Wallis et al. Jan 2001 B1
6179589 Bass et al. Jan 2001 B1
6182646 Silberstein et al. Feb 2001 B1
6202438 Barito Mar 2001 B1
6210120 Hugenroth et al. Apr 2001 B1
6213731 Doepker et al. Apr 2001 B1
6231316 Wakisaka et al. May 2001 B1
6257840 Ignatiev et al. Jul 2001 B1
6264444 Nakane et al. Jul 2001 B1
6267565 Seibel et al. Jul 2001 B1
6273691 Morimoto et al. Aug 2001 B1
6280154 Clendenin et al. Aug 2001 B1
6290477 Gigon Sep 2001 B1
6293767 Bass Sep 2001 B1
6293776 Hahn et al. Sep 2001 B1
6309194 Fraser et al. Oct 2001 B1
6322340 Itoh et al. Nov 2001 B1
6338912 Ban et al. Jan 2002 B1
6350111 Perevozchikov et al. Feb 2002 B1
6361890 Ban et al. Mar 2002 B1
6379123 Makino et al. Apr 2002 B1
6389837 Morozumi May 2002 B1
6412293 Pham et al. Jul 2002 B1
6413058 Williams et al. Jul 2002 B1
6419457 Seibel et al. Jul 2002 B1
6428286 Shimizu et al. Aug 2002 B1
6454551 Kuroki et al. Sep 2002 B2
6457948 Pham Oct 2002 B1
6464481 Tsubai et al. Oct 2002 B2
6478550 Matsuba et al. Nov 2002 B2
6506036 Tsubai et al. Jan 2003 B2
6514060 Ishiguro et al. Feb 2003 B1
6537043 Chen Mar 2003 B1
6544016 Gennami et al. Apr 2003 B2
6558143 Nakajima et al. May 2003 B2
6589035 Tsubono et al. Jul 2003 B1
6619062 Shibamoto et al. Sep 2003 B1
6679683 Seibel et al. Jan 2004 B2
6705848 Scancarello Mar 2004 B2
6715999 Ancel et al. Apr 2004 B2
6746223 Manole Jun 2004 B2
6769881 Lee Aug 2004 B2
6769888 Tsubono et al. Aug 2004 B2
6773242 Perevozchikov Aug 2004 B1
6817847 Agner Nov 2004 B2
6821092 Gehret et al. Nov 2004 B1
6863510 Cho Mar 2005 B2
6881046 Shibamoto et al. Apr 2005 B2
6884042 Zili et al. Apr 2005 B2
6887051 Sakuda et al. May 2005 B2
6893229 Choi et al. May 2005 B2
6896493 Chang et al. May 2005 B2
6896498 Patel May 2005 B1
6913448 Liang et al. Jul 2005 B2
6984114 Zili et al. Jan 2006 B2
7018180 Koo Mar 2006 B2
7029251 Chang et al. Apr 2006 B2
7118358 Tsubono et al. Oct 2006 B2
7137796 Tsubono et al. Nov 2006 B2
7160088 Peyton Jan 2007 B2
7172395 Shibamoto et al. Feb 2007 B2
7197890 Taras et al. Apr 2007 B2
7207787 Liang et al. Apr 2007 B2
7228710 Lifson Jun 2007 B2
7229261 Morimoto et al. Jun 2007 B2
7255542 Lifson et al. Aug 2007 B2
7261527 Alexander et al. Aug 2007 B2
7311740 Williams et al. Dec 2007 B2
7344365 Takeuchi et al. Mar 2008 B2
RE40257 Doepker et al. Apr 2008 E
7354259 Tsubono et al. Apr 2008 B2
7364416 Liang et al. Apr 2008 B2
7371057 Shin et al. May 2008 B2
7371059 Ignatiev et al. May 2008 B2
RE40399 Hugenroth et al. Jun 2008 E
RE40400 Bass et al. Jun 2008 E
7393190 Lee et al. Jul 2008 B2
7404706 Ishikawa et al. Jul 2008 B2
RE40554 Bass et al. Oct 2008 E
7510382 Jeong Mar 2009 B2
7547202 Knapke Jun 2009 B2
7641455 Fujiwara et al. Jan 2010 B2
7674098 Lifson Mar 2010 B2
7695257 Joo et al. Apr 2010 B2
7717687 Reinhart May 2010 B2
7771178 Perevozchikov et al. Aug 2010 B2
7802972 Shimizu et al. Sep 2010 B2
7815423 Guo et al. Oct 2010 B2
7891961 Shimizu et al. Feb 2011 B2
7896629 Ignatiev et al. Mar 2011 B2
RE42371 Peyton May 2011 E
7956501 Jun et al. Jun 2011 B2
7967582 Akei et al. Jun 2011 B2
7967583 Stover et al. Jun 2011 B2
7972125 Stover et al. Jul 2011 B2
7976289 Masao Jul 2011 B2
7976295 Stover et al. Jul 2011 B2
7988433 Akei et al. Aug 2011 B2
7988434 Stover et al. Aug 2011 B2
8025492 Seibel et al. Sep 2011 B2
8303278 Roof et al. Nov 2012 B2
8303279 Hahn Nov 2012 B2
8308448 Fields et al. Nov 2012 B2
8313318 Stover et al. Nov 2012 B2
8328531 Milliff et al. Dec 2012 B2
8393882 Ignatiev et al. Mar 2013 B2
8506271 Seibel et al. Aug 2013 B2
8517703 Doepker Aug 2013 B2
8585382 Akei et al. Nov 2013 B2
8616014 Stover et al. Dec 2013 B2
8672646 Ishizono et al. Mar 2014 B2
8757988 Fukudome et al. Jun 2014 B2
8790098 Stover et al. Jul 2014 B2
8840384 Patel et al. Sep 2014 B2
8857200 Stover et al. Oct 2014 B2
8932036 Monnier et al. Jan 2015 B2
9080446 Heusler et al. Jul 2015 B2
9127677 Doepker Sep 2015 B2
9145891 Kim et al. Sep 2015 B2
9169839 Ishizono et al. Oct 2015 B2
9217433 Park et al. Dec 2015 B2
9228587 Lee et al. Jan 2016 B2
9249802 Doepker et al. Feb 2016 B2
9297383 Jin et al. Mar 2016 B2
9303642 Akei et al. Apr 2016 B2
9435340 Doepker et al. Sep 2016 B2
9494157 Doepker Nov 2016 B2
9541084 Ignatiev et al. Jan 2017 B2
9556862 Yoshihiro et al. Jan 2017 B2
9605677 Heidecker et al. Mar 2017 B2
9624928 Yamazaki et al. Apr 2017 B2
9638191 Stover May 2017 B2
9651043 Stover et al. May 2017 B2
9777730 Doepker et al. Oct 2017 B2
9777863 Higashidozono et al. Oct 2017 B2
9790940 Doepker et al. Oct 2017 B2
9850903 Perevozchikov Dec 2017 B2
9869315 Jang et al. Jan 2018 B2
9879674 Akei et al. Jan 2018 B2
9885347 Lachey et al. Feb 2018 B2
9920759 Sung Mar 2018 B2
9989057 Lochner et al. Jun 2018 B2
10066622 Pax et al. Sep 2018 B2
10087936 Pax et al. Oct 2018 B2
10094380 Doepker et al. Oct 2018 B2
10428818 Jin et al. Oct 2019 B2
10563891 Smerud et al. Feb 2020 B2
10724523 Wu et al. Jul 2020 B2
10815999 Jeong Oct 2020 B2
10907633 Doepker et al. Feb 2021 B2
10954940 Akei et al. Mar 2021 B2
10974317 Ruxanda et al. Apr 2021 B2
20010010800 Kohsokabe et al. Aug 2001 A1
20020039540 Kuroki et al. Apr 2002 A1
20020057975 Nakajima et al. May 2002 A1
20030044296 Chen Mar 2003 A1
20030044297 Gennami et al. Mar 2003 A1
20030186060 Rao Oct 2003 A1
20030228235 Sowa et al. Dec 2003 A1
20040126259 Choi et al. Jul 2004 A1
20040136854 Kimura et al. Jul 2004 A1
20040146419 Kawaguchi et al. Jul 2004 A1
20040170509 Wehrenberg et al. Sep 2004 A1
20040184932 Lifson Sep 2004 A1
20040197204 Yamanouchi et al. Oct 2004 A1
20050019177 Shin et al. Jan 2005 A1
20050019178 Shin et al. Jan 2005 A1
20050053507 Takeuchi et al. Mar 2005 A1
20050069444 Peyton Mar 2005 A1
20050140232 Lee et al. Jun 2005 A1
20050201883 Clendenin et al. Sep 2005 A1
20050214148 Ogawa et al. Sep 2005 A1
20060099098 Lee et al. May 2006 A1
20060138879 Kusase et al. Jun 2006 A1
20060198748 Grassbaugh et al. Sep 2006 A1
20060228243 Sun et al. Oct 2006 A1
20060233657 Bonear Oct 2006 A1
20070003666 Gutknecht et al. Jan 2007 A1
20070036661 Stover Feb 2007 A1
20070110604 Peyton May 2007 A1
20070130973 Lifson et al. Jun 2007 A1
20080115357 Li et al. May 2008 A1
20080138227 Knapke Jun 2008 A1
20080159892 Huang et al. Jul 2008 A1
20080159893 Caillat Jul 2008 A1
20080196445 Lifson et al. Aug 2008 A1
20080223057 Lifson et al. Sep 2008 A1
20080226483 Iwanami et al. Sep 2008 A1
20080286118 Gu et al. Nov 2008 A1
20080305270 Uhlianuk et al. Dec 2008 A1
20090013701 Lifson et al. Jan 2009 A1
20090035167 Sun Feb 2009 A1
20090068048 Stover et al. Mar 2009 A1
20090071183 Stover et al. Mar 2009 A1
20090185935 Seibel et al. Jul 2009 A1
20090191080 Ignatiev et al. Jul 2009 A1
20090297377 Stover et al. Dec 2009 A1
20090297378 Stover et al. Dec 2009 A1
20090297379 Stover et al. Dec 2009 A1
20090297380 Stover et al. Dec 2009 A1
20100111741 Chikano et al. May 2010 A1
20100135836 Stover et al. Jun 2010 A1
20100158731 Akei et al. Jun 2010 A1
20100209278 Tarao et al. Aug 2010 A1
20100212311 McQuary et al. Aug 2010 A1
20100212352 Kim et al. Aug 2010 A1
20100254841 Akei et al. Oct 2010 A1
20100300659 Stover et al. Dec 2010 A1
20100303659 Stover et al. Dec 2010 A1
20110052437 Iitsuka et al. Mar 2011 A1
20110135509 Fields et al. Jun 2011 A1
20110206548 Doepker Aug 2011 A1
20110243777 Ito et al. Oct 2011 A1
20110250085 Stover et al. Oct 2011 A1
20110293456 Seibel et al. Dec 2011 A1
20120009076 Kim et al. Jan 2012 A1
20120107163 Monnier et al. May 2012 A1
20120183422 Bahmata Jul 2012 A1
20120195781 Stover et al. Aug 2012 A1
20130078128 Akei Mar 2013 A1
20130089448 Ginies et al. Apr 2013 A1
20130094987 Yamashita et al. Apr 2013 A1
20130121857 Liang et al. May 2013 A1
20130177465 Clendenin et al. Jul 2013 A1
20130195707 Kozuma et al. Aug 2013 A1
20130302198 Ginies et al. Nov 2013 A1
20130309118 Ginies et al. Nov 2013 A1
20130315768 Le Coat et al. Nov 2013 A1
20140023540 Heidecker et al. Jan 2014 A1
20140024563 Heidecker et al. Jan 2014 A1
20140037486 Stover et al. Feb 2014 A1
20140134030 Stover et al. May 2014 A1
20140134031 Doepker May 2014 A1
20140147294 Fargo et al. May 2014 A1
20140154121 Doepker Jun 2014 A1
20140154124 Doepker et al. Jun 2014 A1
20140219846 Ignatiev et al. Aug 2014 A1
20150037184 Rood et al. Feb 2015 A1
20150086404 Kiem et al. Mar 2015 A1
20150192121 Sung et al. Jul 2015 A1
20150275898 Ahire Oct 2015 A1
20150300353 Utpat Oct 2015 A1
20150330386 Doepker Nov 2015 A1
20150345493 Lochner Dec 2015 A1
20150354719 van Beek et al. Dec 2015 A1
20160025093 Doepker Jan 2016 A1
20160025094 Ignatiev et al. Jan 2016 A1
20160032924 Stover Feb 2016 A1
20160047380 Kim et al. Feb 2016 A1
20160053755 Taguchi Feb 2016 A1
20160053759 Choi et al. Feb 2016 A1
20160076543 Akei et al. Mar 2016 A1
20160115954 Doepker et al. Apr 2016 A1
20160138879 Matsukado et al. May 2016 A1
20160201673 Perevozchikov et al. Jul 2016 A1
20160208803 Uekawa et al. Jul 2016 A1
20170002817 Stover Jan 2017 A1
20170002818 Stover Jan 2017 A1
20170030354 Stover Feb 2017 A1
20170241417 Jin et al. Aug 2017 A1
20170268510 Stover et al. Sep 2017 A1
20170306960 Pax et al. Oct 2017 A1
20170314558 Pax et al. Nov 2017 A1
20170342978 Doepker Nov 2017 A1
20170342983 Jin et al. Nov 2017 A1
20170342984 Jin et al. Nov 2017 A1
20180023570 Huang et al. Jan 2018 A1
20180038369 Doepker et al. Feb 2018 A1
20180038370 Doepker et al. Feb 2018 A1
20180066656 Perevozchikov et al. Mar 2018 A1
20180066657 Perevozchikov et al. Mar 2018 A1
20180135625 Naganuma et al. May 2018 A1
20180149155 Akei et al. May 2018 A1
20180216618 Jeong Aug 2018 A1
20180223823 Ignatiev et al. Aug 2018 A1
20190040861 Doepker et al. Feb 2019 A1
20190101120 Perevozchikov et al. Apr 2019 A1
20190186491 Perevozchikov et al. Jun 2019 A1
20190203709 Her et al. Jul 2019 A1
20190353164 Berning et al. Nov 2019 A1
20200057458 Taguchi Feb 2020 A1
20200291943 McBean et al. Sep 2020 A1
Foreign Referenced Citations (133)
Number Date Country
2002301023 Jun 2005 AU
1137614 Dec 1996 CN
1158944 Sep 1997 CN
1158945 Sep 1997 CN
1177681 Apr 1998 CN
1177683 Apr 1998 CN
1259625 Jul 2000 CN
1286358 Mar 2001 CN
1289011 Mar 2001 CN
1339087 Mar 2002 CN
1349053 May 2002 CN
1382912 Dec 2002 CN
1407233 Apr 2003 CN
1407234 Apr 2003 CN
1517553 Aug 2004 CN
1601106 Mar 2005 CN
1680720 Oct 2005 CN
1702328 Nov 2005 CN
2747381 Dec 2005 CN
1757925 Apr 2006 CN
1828022 Sep 2006 CN
1854525 Nov 2006 CN
1963214 May 2007 CN
1995756 Jul 2007 CN
101358592 Feb 2009 CN
101684785 Mar 2010 CN
101761479 Jun 2010 CN
101806302 Aug 2010 CN
101910637 Dec 2010 CN
102076963 May 2011 CN
102089525 Jun 2011 CN
102272454 Dec 2011 CN
102400915 Apr 2012 CN
102422024 Apr 2012 CN
102449314 May 2012 CN
102705234 Oct 2012 CN
102762866 Oct 2012 CN
202926640 May 2013 CN
103502644 Jan 2014 CN
103671125 Mar 2014 CN
203962320 Nov 2014 CN
204041454 Dec 2014 CN
104838143 Aug 2015 CN
105317678 Feb 2016 CN
205533207 Aug 2016 CN
205823629 Dec 2016 CN
205876712 Jan 2017 CN
205876713 Jan 2017 CN
205895597 Jan 2017 CN
106662104 May 2017 CN
106979153 Jul 2017 CN
207513832 Jun 2018 CN
209621603 Nov 2019 CN
209654225 Nov 2019 CN
209781195 Dec 2019 CN
3917656 Nov 1995 DE
102011001394 Sep 2012 DE
0256445 Feb 1988 EP
0747598 Dec 1996 EP
0822335 Feb 1998 EP
1067289 Jan 2001 EP
1087142 Mar 2001 EP
1182353 Feb 2002 EP
1241417 Sep 2002 EP
1371851 Dec 2003 EP
1382854 Jan 2004 EP
2151577 Feb 2010 EP
1927755 Nov 2013 EP
2764347 Dec 1998 FR
2107829 May 1983 GB
S58214689 Dec 1983 JP
S60259794 Dec 1985 JP
S62220789 Sep 1987 JP
S6385277 Apr 1988 JP
S63205482 Aug 1988 JP
H01178789 Jul 1989 JP
H0281982 Mar 1990 JP
H02153282 Jun 1990 JP
H03081588 Apr 1991 JP
H03233101 Oct 1991 JP
H04121478 Apr 1992 JP
H04272490 Sep 1992 JP
H0610601 Jan 1994 JP
H0726618 Mar 1995 JP
H07293456 Nov 1995 JP
H08247053 Sep 1996 JP
H08320079 Dec 1996 JP
H08334094 Dec 1996 JP
H09177689 Jul 1997 JP
H11107950 Apr 1999 JP
H11166490 Jun 1999 JP
2951752 Sep 1999 JP
H11324950 Nov 1999 JP
2000104684 Apr 2000 JP
2000161263 Jun 2000 JP
2000329078 Nov 2000 JP
3141949 Mar 2001 JP
2002202074 Jul 2002 JP
2003074481 Mar 2003 JP
2003074482 Mar 2003 JP
2003106258 Apr 2003 JP
2003214365 Jul 2003 JP
2003227479 Aug 2003 JP
2004239070 Aug 2004 JP
2005264827 Sep 2005 JP
2006083754 Mar 2006 JP
2006183474 Jul 2006 JP
2007154761 Jun 2007 JP
2007228683 Sep 2007 JP
2008248775 Oct 2008 JP
2008267707 Nov 2008 JP
2013104305 May 2013 JP
2013167215 Aug 2013 JP
870000015 Jan 1987 KR
20050027402 Mar 2005 KR
20050095246 Sep 2005 KR
100547323 Jan 2006 KR
20100017008 Feb 2010 KR
101009266 Jan 2011 KR
20120008045 Jan 2012 KR
101192642 Oct 2012 KR
20120115581 Oct 2012 KR
20130094646 Aug 2013 KR
WO-9515025 Jun 1995 WO
WO-0073659 Dec 2000 WO
WO-2007046810 Apr 2007 WO
WO-2008060525 May 2008 WO
WO-2009017741 Feb 2009 WO
WO-2009155099 Dec 2009 WO
WO-2010118140 Oct 2010 WO
WO-2011106422 Sep 2011 WO
WO-2012114455 Aug 2012 WO
WO-2017071641 May 2017 WO
Non-Patent Literature Citations (181)
Entry
Office Action dated Mar. 9, 2023, in U.S. Appl. No. 17/835,048.
Notice of Allowance regarding U.S. Appl. No. 17/196,119 dated Apr. 26, 2023.
Advisory Action regarding U.S. Appl. No. 14/073,293, dated Apr. 18, 2016.
Office Action regarding Chinese Patent Application No. 200710160038.5, dated Jan. 31, 2012. Translation provided by Unitalen Attorneys At Law.
Office Action regarding Chinese Patent Application No. 201080020243.1, dated Nov. 5, 2013. Translation provided by Unitalen Attorneys At Law.
Search Report regarding European Patent Application No. 07254962.9, dated Mar. 12, 2008.
Office Action regarding Chinese Patent Application No. 200710160038.5, dated Jul. 8, 2010. Translation provided by Unitalen Attorneys At Law.
Office Action regarding Chinese Patent Application No. 201380059666.8, dated Apr. 5, 2016. Translation provided by Unitalen Attorneys At Law.
International Search Report regarding International Application No. PCT/US2010/030248, dated Nov. 26, 2010.
International Search Report regarding International Application No. PCT/US2011/025921, dated Oct. 7, 2011.
International Search Report regarding International Application No. PCT/US2013/051678, dated Oct. 21, 2013.
International Search Report regarding International Application No. PCT/US2013/069456, dated Feb. 18, 2014.
International Search Report regarding International Application No. PCT/US2013/069462, dated Feb. 21, 2014.
International Search Report regarding International Application No. PCT/US2013/070981, dated Mar. 4, 2014.
International Search Report regarding International Application No. PCT/US2013/070992, dated Feb. 25, 2014.
International Search Report regarding International Application No. PCT/US2015/033960, dated Sep. 1, 2015.
Notice of Allowance regarding U.S. Appl. No. 14/060,240, dated Dec. 1, 2015.
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Feb. 25, 2016. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201410461048.2, dated Nov. 30, 2015. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 14/081,390, dated Mar. 27, 2015.
Office Action regarding U.S. Appl. No. 14/060,240, dated Aug. 12, 2015.
Office Action regarding U.S. Appl. No. 14/073,293, dated Jan. 29, 2016.
Office Action regarding U.S. Appl. No. 14/073,293, dated Sep. 25, 2015.
Restriction Requirement regarding U.S. Appl. No. 14/060,102, dated Mar. 16, 2016.
Restriction Requirement regarding U.S. Appl. No. 14/060,102, dated Oct. 7, 2015.
Search Report regarding European Patent Application No. 10762374.6, dated Jun. 16, 2015.
Office Action regarding Chinese Patent Application No. 201180010366.1, dated Dec. 31, 2014. Translation provided by Unitalen Attorneys At Law.
Office Action regarding U.S. Appl. No. 11/645,288, dated Nov. 30, 2009.
Office Action regarding U.S. Appl. No. 13/181,065, dated Nov. 9, 2012.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2013/069462, dated Feb. 21, 2014.
Written Opinion of the International Search Authority regarding International Application No. PCT/US2011/025921, dated Oct. 7, 2011.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2010/030248, dated Nov. 26, 2010.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2013/051678, dated Oct. 21, 2013.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2013/069456, dated Feb. 18, 2014.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2013/070981, dated Mar. 4, 2014.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2013/070992, dated Feb. 25, 2014.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2015/033960, dated Sep. 1, 2015.
Office Action regarding Chinese Patent Application No. 201380062614.6, dated Apr. 5, 2016. Translation provided by Unitalen Attorneys At Law.
Office Action regarding Chinese Patent Application No. 201380062657.4, dated May 4, 2016. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201380059963.2, dated May 10, 2016. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 14/060,102, dated Jun. 14, 2016.
Office Action regarding U.S. Appl. No. 14/846,877, dated Jul. 15, 2016.
Office Action regarding Chinese Patent Application No. 201410461048.2, dated Jul. 26, 2016. Translation provided by Unitalen Attorneys at Law.
Search Report regarding European Patent Application No. 13858194.7, dated Aug. 3, 2016.
Search Report regarding European Patent Application No. 13859308.2, dated Aug. 3, 2016.
Office Action regarding U.S. Appl. No. 14/294,458, dated Aug. 19, 2016.
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Oct. 21, 2016. Translation provided by Unitalen Attorneys At Law.
Search Report regarding European Patent Application No. 11747996.4, dated Nov. 7, 2016.
Office Action regarding Chinese Patent Application No. 201380059666.8, dated Nov. 23, 2016. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 14/060,102, dated Dec. 28, 2016.
Office Action regarding U.S. Appl. No. 15/156,400, dated Feb. 23, 2017.
Office Action regarding U.S. Appl. No. 14/294,458, dated Feb. 28, 2017.
Advisory Action regarding U.S. Appl. No. 14/060,102, dated Mar. 3, 2017.
Office Action regarding U.S. Appl. No. 14/663,073, dated Apr. 11, 2017.
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Apr. 24, 2017. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 14/946,824, dated May 10, 2017.
Advisory Action regarding U.S. Appl. No. 14/294,458, dated Jun. 9, 2017.
Office Action regarding Chinese Patent Application No. 201610703191.7, dated Jun. 13, 2017. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Indian Patent Application No. 2043/MUMNP/2011, dated Jul. 28, 2017.
International Search Report regarding International Application No. PCT/CN2016/103763, dated Jan. 25, 2017.
Written Opinion of the International Searching Authority regarding International Application No. PCT/CN2016/103763, dated Jan. 25, 2017.
Office Action regarding U.S. Appl. No. 14/294,458, dated Sep. 21, 2017.
Office Action regarding U.S. Appl. No. 14/757,407, dated Oct. 13, 2017.
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Nov. 1, 2017. Translation provided by Unitalen Attorneys At Law.
Office Action regarding Chinese Patent Application No. 201610158216.X, dated Oct. 30, 2017. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201610512702.7, dated Dec. 20, 2017. Partial translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Jan. 9, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201580029636.1, dated Jan. 17, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 15/651,471, dated Feb. 23, 2018.
Office Action regarding U.S. Appl. No. 15/646,654, dated Feb. 9, 2018.
Office Action regarding Indian Patent Application No. 1907/MUMNP/2012, dated Feb. 26, 2018.
Restriction Requirement regarding U.S. Appl. No. 15/784,458, dated Apr. 5, 2018.
Restriction Requirement regarding U.S. Appl. No. 15/186,092, dated Apr. 3, 2018.
Office Action regarding U.S. Appl. No. 15/186,151, dated May 3, 2018.
Restriction Requirement regarding U.S. Appl. No. 15/187,225, dated May 15, 2018.
Notice of Allowance regarding U.S. Appl. No. 14/757,407, dated May 24, 2018.
Office Action regarding Chinese Patent Application No. 201610930347.5, dated May 14, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 15/186,092, dated Jun. 29, 2018.
Notice of Allowance regarding U.S. Appl. No. 15/646,654, dated Jul. 11, 2018.
Notice of Allowance regarding U.S. Appl. No. 15/651,471, dated Jul. 11, 2018.
Office Action regarding Korean Patent Application No. 10-2016-7034539, dated Apr. 11, 2018. Translation provided by Y.S. Chang & Associates.
Office Action regarding Chinese Patent Application No. 201610158216.X, dated Jun. 13, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 15/784,540, dated Jul. 17, 2018.
Office Action regarding European Patent Application No. 13859308.2, dated Jun. 22, 2018.
Office Action regarding U.S. Appl. No. 15/784,458, dated Jul. 19, 2018.
Restriction Requirement regarding U.S. Appl. No. 15/587,735, dated Jul. 23, 2018.
Interview Summary regarding U.S. Appl. No. 15/186,092, dated Aug. 14, 2018.
Office Action regarding U.S. Appl. No. 15/187,225, dated Aug. 27, 2018.
Office Action regarding Indian Patent Application No. 1307/MUMNP/2015, dated Sep. 12, 2018.
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Aug. 1, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Korean Patent Application No. 10-2016-7034539, dated Sep. 6, 2018. Translation provided by Y.S. Chang & Associates.
Office Action regarding U.S. Appl. No. 15/587,735, dated Oct. 9, 2018.
Office Action regarding U.S. Appl. No. 11/522,250, dated Aug. 1, 2007.
Office Action regarding Chinese Patent Application No. 200710153687.2, dated Mar. 6, 2009. Translation provided by CCPIT Patent and Trademark Law Office.
Office Action regarding U.S. Appl. No. 12/103,265, dated May 27, 2009.
Office Action regarding U.S. Appl. No. 12/103,265, dated Dec. 17, 2009.
Office Action regarding Korean Patent Application No. 10-2007-0093478, dated Feb. 25, 2010. Translation provided by Y.S. Chang & Associates.
Office Action regarding U.S. Appl. No. 12/103,265, dated Jun. 15, 2010.
Office Action regarding Korean Patent Application No. 10-2007-0093478, dated Aug. 31, 2010. Translation provided by Y.S. Chang & Associates.
Advisory Action regarding U.S. Appl. No. 12/103,265, dated Sep. 17, 2010.
Office Action regarding Chinese Patent Application No. 201010224582.3, dated Apr. 17, 2012. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Indian Patent Application No. 1071/KOL/2007, dated Apr. 27, 2012.
Office Action regarding U.S. Appl. No. 13/036,529, dated Aug. 22, 2012.
International Search Report regarding International Application No. PCT/US2015/042479, dated Oct. 23, 2015.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2015/042479, dated Oct. 23, 2015.
Restriction Requirement regarding U.S. Appl. No. 14/809,786, dated Aug. 16, 2017.
International Search Report regarding International Application No. PCT/US2017/050525, dated Dec. 28, 2017.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2017/050525, dated Dec. 28, 2017.
Office Action regarding U.S. Appl. No. 14/809,786, dated Jan. 11, 2018.
Office Action regarding Chinese Patent Application No. 201580041209.5, dated Jan. 17, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Sep. 5, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201580029636.1, dated Oct. 8, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 15/186,151, dated Nov. 1, 2018.
Luckevich, Mark, “MEMS microvalves: the new valve world.” Valve World, May 2007, pp. 79-83.
Office Action regarding Korean Patent Application No. 10-2017-7033995, dated Nov. 29, 2018. Translation provided by Ks Koryo International IP Law Firm.
Office Action regarding Indian Patent Application No. 1306/MUMNP/2015, dated Dec. 31, 2018.
Notice of Allowance regarding U.S. Appl. No. 15/187,225, dated Jan. 3, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/186,092, dated Dec. 20, 2018.
Notice of Allowance regarding U.S. Appl. No. 15/784,458, dated Feb. 7, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/784,540, dated Feb. 7, 2019.
Office Action regarding Chinese Patent Application No. 201610516097.0, dated Jun. 27, 2017. Translation provided by Unitalen Attorneys at Law.
Search Report regarding European Patent Application No. 18198310.7, dated Feb. 27, 2019.
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Feb. 1, 2019. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201180010366.1, dated Jun. 4, 2014. Translation provided by Unitalen Attorneys at Law.
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Mar. 19, 2019.
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Apr. 29, 2019. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 15/587,735, dated May 17, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/187,225, dated May 2, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/186,092, dated Apr. 19, 2019.
Office Action regarding European Patent Application No. 11747996.4, dated Jun. 26, 2019.
Office Action regarding Chinese Patent Application No. 201811011292.3, dated Jun. 21, 2019. Translation provided by Unitalen Attorneys at Law.
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Jul. 25, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/587,735, dated Aug. 23, 2019.
Office Action regarding U.S. Appl. No. 15/692,844, dated Sep. 20, 2019.
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Aug. 1, 2019. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201780055443.2, dated Sep. 2, 2019. Translation provided by Unitalen Attorneys at Law.
Restriction Requirement regarding U.S. Appl. No. 15/682,599, dated Aug. 14, 2019.
Office Action regarding Chinese Patent Application No. 201811168307.7, dated Aug. 12, 2019. Translation provided by Unitalen Attorneys at Law.
International Search Report regarding International Application No. PCT/US2019/032718, dated Aug. 23, 2019.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2019/032718, dated Aug. 23, 2019.
Office Action regarding European Patent Application No. 11747996.4, dated Nov. 5, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Nov. 14, 2019.
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Oct. 28, 2019. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 15/682,599, dated Jan. 24, 2020.
Office Action regarding U.S. Appl. No. 15/881,016, dated Jan. 23, 2020.
Office Action regarding U.S. Appl. No. 15/831,423, dated Jan. 31, 2020.
Office Action regarding Chinese Patent Application No. 201811480347.5, dated Jan. 10, 2020. Translation provided by Unitalen Attorneys at Law.
Office Action regarding European Patent Application No. 11747996.4, dated Jan. 14, 2020.
Office Action regarding Indian Patent Application No. 2043/MUMNP/2011, dated Nov. 27, 2019.
Office Action regarding Chinese Patent Application No. 201811541653.5, dated Jan. 10, 2020. Translation provided by Unitalen Attorneys at Law.
Notice of Allowance regarding U.S. Appl. No. 15/692,844, dated Feb. 20, 2020.
Office Action regarding Chinese Patent Application No. 201811168307.7, dated Mar. 27, 2020. Translation provided by Unitalen Attorneys at Law.
Office Action regarding European Patent Application No. 13859308.2, dated Mar. 4, 2020.
Office Action regarding Korean Patent Application No. 10-2018-0159231, dated Apr. 7, 2020. Translation provided by Ks Koryo International IP Law Firm.
Notice of Allowance regarding U.S. Appl. No. 15/682,599, dated Apr. 22, 2020.
Office Action regarding Chinese Patent Application No. 201780055443.2, dated Apr. 14, 2020. Translation provided by Unitalen Attorneys At Law.
Notice of Allowance regarding U.S. Appl. No. 15/831,423, dated May 20, 2020.
Restriction Requirement regarding U.S. Appl. No. 16/147,920, dated Jun. 25, 2020.
Notice of Allowance regarding U.S. Appl. No. 15/692,844, dated Jun. 4, 2020.
Office Action regarding U.S. Appl. No. 16/154,406, dated Jun. 29, 2020.
Restriction Requirement regarding U.S. Appl. No. 16/154,844, dated Jul. 2, 2020.
International Search Report regarding International Application No. PCT/US2020/022030, dated Jul. 2, 2020.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2020/022030, dated Jul. 2, 2020.
Office Action regarding U.S. Appl. No. 16/177,902, dated Jul. 23, 2020.
Office Action regarding U.S. Appl. No. 15/881,016, dated Jul. 21, 2020.
Office Action regarding Chinese Patent Application No. 201811480347.5, dated Jul. 21, 2020. Translation provided by Unitalen Attorneys at Law.
Notice of Allowance regarding U.S. Appl. No. 16/154,406, dated Oct. 2, 2020.
Office Action regarding U.S. Appl. No. 16/154,844, dated Oct. 5, 2020.
Office Action regarding U.S. Appl. No. 16/147,920, dated Sep. 25, 2020.
Notice of Allowance regarding U.S. Appl. No. 15/881,016, dated Nov. 17, 2020.
Notice of Allowance regarding U.S. Appl. No. 16/177,902, dated Nov. 27, 2020.
Notice of Allowance regarding U.S. Appl. No. 16/147,920, dated Feb. 2, 2021.
Notice of Allowance regarding U.S. Appl. No. 16/154,844, dated Feb. 10, 2021.
Heatcraft RPD; How and Why we use Capacity Control; dated Jan. 17, 2016; 12 Pages.
Non-Final Office Action regarding U.S. Appl. No. 17/176,080 dated Mar. 30, 2022.
First Chinese Office Action & Search Report regarding Application No. 201980040745.1 dated Jan. 6, 2022. English translation provided by Unitalen Attorneys at Law.
Non-Final Office Action regarding U.S. Appl. No. 17/388,923 dated Jun. 9, 2022.
Notice of Allowance regarding U.S. Appl. No. 17/157,588 dated Jun. 16, 2022.
Final Office Action regarding U.S. Appl. No. 17/176,080 dated Aug. 12, 2022.
Advisory Action regarding U.S. Appl. No. 17/176,080 dated Oct. 17, 2022.
Performance of the Use of Plastics in Oil-Free Scroll Compressors, Shaffer et al., 2012.