The present disclosure relates to an oil-management system for a scroll compressor.
This section provides background information related to the present disclosure which is not necessarily prior art.
Scroll compressors are used in applications such as refrigeration systems, air conditioning systems, and heat pump systems to pressurize and, thus, circulate refrigerant within each system.
As the scroll compressor operates, an orbiting scroll member having an orbiting scroll member wrap orbits with respect to a non-orbiting scroll member having a non-orbiting scroll member wrap to make moving line contacts between flanks of the respective scroll wraps. In so doing, the orbiting scroll member and the non-orbiting scroll member cooperate to define moving, crescent-shaped pockets of vapor refrigerant. A volume of the fluid pockets decreases as the pockets move toward a center of the scroll members, thereby compressing the vapor refrigerant disposed therein from a suction pressure to a discharge pressure.
During operation, lubrication is provided to many of the moving components of the scroll compressor in an effort to reduce wear, improve performance, and, in some instances, to cool one or more components. For example, lubrication in the form of oil may be provided to the orbiting scroll member and to the non-orbiting scroll member such that flanks of the orbiting scroll spiral wrap and flanks of the fixed scroll spiral wrap are lubricated during operation. Such lubrication may be returned to a sump of the compressor and in so doing may come in contact with a motor of the compressor, thereby cooling the motor to a desired temperature.
While lubrication is typically used in a scroll compressor to improve performance and longevity, such lubrication is typically separated from vapor refrigerant located within the compressor to improve compressor performance and efficiency.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
A compressor is provided and may include a shell, a main bearing housing disposed within the shell, a driveshaft, a non-orbiting scroll member, and an orbiting scroll member. The driveshaft may be supported by the main bearing housing. The non-orbiting scroll member may be coupled to the main bearing housing and may include a first lubricant supply path in fluid communication with a lubricant source. The orbiting scroll member may be rotatably coupled to the driveshaft and may be meshingly engaged with the non-orbiting scroll member. The orbiting scroll member may include a recess that is moved between a first position in fluid communication with the first lubricant supply path and a second position fluidly isolated from the first lubricant supply path.
In another configuration, a compressor is provided and may include a shell, a main bearing housing disposed within the shell, a driveshaft, a non-orbiting scroll member, and an orbiting scroll member. The driveshaft may be supported by the main bearing housing. The non-orbiting scroll member may be coupled to the main bearing housing and may include a first surface defining a first lubricant recess. The orbiting scroll member may be rotatably coupled to the driveshaft and may be meshingly engaged with the non-orbiting scroll member. The orbiting scroll member may include a second lubricant recess in fluid communication with a lubricant source and movable between a first position in fluid communication with the first lubricant recess and a second position fluidly isolated from the first lubricant recess.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
With reference to the Figures, a compressor 10 is shown to include a generally cylindrical hermetic shell 12, a motor 14, a driveshaft 16, a main bearing housing 18, an orbiting scroll member 22, a non-orbiting scroll member 24, a separation baffle 25, and a lubrication system 27.
The hermetic shell 12 includes a welded cap 26 at a top portion 23, and a base 28 having a plurality of feet 29 welded at a bottom portion 31. The cap 26 and the base 28 are fitted to the shell 12 such that an interior volume 30 of the compressor 10 is defined. Lubricant may be stored within the bottom portion 31 of the hermetic shell 12 for lubricating the moving parts of the compressor 10, as will be described below. The cap 26 is provided with a discharge fitting 32 in fluid communication with the interior volume 30 of the compressor 10 and an inlet fitting 34 in fluid communication with the exterior of the compressor 10. An electrical enclosure, such as a plastic cover (not shown), may be attached to the cap 26 and may support a portion of an electrical protection and control system (not shown) therein.
The driveshaft 16 is rotatably driven by the motor 14 relative to the shell 12. The motor 14 includes a stator 40 fixedly supported by the hermetic shell 12, windings 42 passing therethrough, and a rotor 44 press-fit on the driveshaft 16. The motor 14 and associated stator 40, windings 42, and rotor 44 cooperate to drive the driveshaft 16 relative to the shell 12 to compress a fluid.
The driveshaft 16 may include an eccentric pin 46 mounted to, or integrally formed with, a first end 48 thereof. A portion of the driveshaft 16 is supported by a main bearing 50 provided in the main bearing housing 18. The driveshaft 16 may include a central bore 52 formed at a lower end 54 thereof and an eccentric bore 56 extending upwardly from the central bore 52 to an end surface 58 of the eccentric pin 46. An end portion 60 of the central bore 52 may be immersed in the lubricant at the bottom portion 31 of the hermetic shell 12 of the compressor 10 (
Under the action of the centrifugal force generated by the rotation of the driveshaft 16, the lubricant may traverse the central bore 52 from the end portion 60 to the end surface 58 of the eccentric pin 46. Lubricant exiting the end surface 58 of the eccentric pin 46 may create a lubricant supply area 59 between the eccentric pin 46 and the orbiting scroll member 22 and between the main bearing housing 18 and the orbiting scroll member 22, lubricating the rotational joints and sliding surfaces therebetween. As will be described below, the lubricant supply area 59 may also supply lubricant to the lubrication system 27.
The orbiting scroll member 22 may be disposed within, and axially supported by, the main bearing housing 18. An inner hub 61 of the orbiting scroll member 22 may be rotatably coupled to the eccentric pin 46. Alternatively, the inner hub 61 may be rotatably coupled to the eccentric pin 46 via a bushing or bearing 63. An upper surface 62 of the orbiting scroll member 22 includes a spiral vane or wrap 64 for use in receiving and compressing a fluid received through the inlet fitting 34. An Oldham coupling 66 is disposed generally between the orbiting scroll member 22 and the main bearing housing 18 and is keyed to the orbiting scroll member 22 and the non-orbiting scroll member 24. The Oldham coupling 66 restricts rotational motion between the non-orbiting scroll member 24 and the orbiting scroll member 22. The Oldham coupling 66, and its interaction with the orbiting scroll member 22 and non-orbiting scroll member 24, is preferably of the type disclosed in assignee's commonly owned U.S. Pat. No. 5,320,506, the disclosure of which is incorporated herein by reference.
The non-orbiting scroll member 24 also includes a wrap 68 extending from a lower surface 69 thereof, and positioned in meshing engagement with the wrap 64 of the orbiting scroll member 22. As the compressor 10 operates, the wrap 68 of the non-orbiting scroll member 24 and the wrap 64 of the orbiting scroll member 22 define moving, isolated crescent-shaped pockets of fluid. The fluid pockets carry the fluid to be handled from a low-pressure zone 71, in fluid communication with the inlet fitting 34, to a high-pressure zone 73, in fluid communication a centrally disposed discharge passage 70 provided in the non-orbiting scroll member 24. The discharge passage 70 fluidly communicates with the interior volume 30 of the compressor 10, such that compressed fluid exits the shell 12 via the discharge passage 70 and discharge fitting 32. The non-orbiting scroll member 24 is designed to be mounted to the main bearing housing 18 using mechanical fasteners (not shown) such as threaded fasteners, bolts, screws, or a similar fastening device.
With reference to
With reference to
The upper surface 62 of the orbiting scroll member 22 may include a counter bore or recess 96. The recess 96 may intermittently fluidly communicate with the bore 94. Specifically, and with reference to
The recess 96 can be sized (for example, the diameter, width, depth, or other dimensions) such that a specific and pre-determined amount of lubricant is able to enter the recess 96 during each period of intermittent fluid communication with the bore 94. For example, the recess 96 may have a diameter of between 5 mm and 10 mm and a depth between 1 mm and 10 mm, such that the volume of the recess 96 (and therefore the volume of lubricant stored in the recess 96 during periods of intermittent fluid communication with the bore 94) is approximately 19 mm3 to 785 mm3.
With reference to
In this position, lubricant will exit the recess 96 and enter the low-pressure zone 71, where it will undergo the compression process created by the orbital movement of the wrap 64 relative to the wrap 68, prior to exiting the discharge passage 70 in the high-pressure zone 73. This process will repeat as the compressor 10 operates and the orbiting scroll member 22 orbits relative to the non-orbiting scroll member 24. In this manner, a specific amount of lubrication is provided between the wraps 64, 68 of the orbiting scroll member 22 and the non-orbiting scroll member 24 to reduce frictional forces, create sealing between the wrap 64 of the orbiting scroll member 22 and the wrap 68 of the non-orbiting scroll member 24, and dissipate any heat that is created by such frictional forces and/or the compression process.
With reference to
The first lubricant passageway 98 may be a bore having a first end 102 adjacent to the lubricant supply area 59, and a second end 104 in an outer wall 105 of the main bearing housing 18. The second end 104 may be sealed by a plug member 106, or by sealing engagement with an inner wall 108 of the hermetic shell 12. The first lubricant passageway 98 may extend in a radial direction, substantially perpendicular to the rotational axis 92 of the driveshaft 16. The second lubricant passageway 100 may be a bore having a first end 110 disposed adjacent to the first lubricant passageway 98, and a second end 112 terminating at an upper surface 114 of the main bearing housing 18. The second lubricant passageway 100 may extend in a direction substantially parallel to the rotational axis 92 of the driveshaft 16 or in a direction towards the non-orbiting scroll member 24a.
With reference to
With reference to
The third bore 120 may extend from an outer surface 124 of the non-orbiting scroll member 24b and may be in fluid communication with the first bore 116a and the second bore 118. The third bore 120 may extend in a radial direction, substantially perpendicular to the rotational axis 92 of the driveshaft 16. A first end 122 of the third bore 120 may be sealed by at least one of a plug member 126 or by sealing engagement with the inner wall 108 of the hermetic shell 12. In the second configuration, lubricant may be supplied by the central bore 52 of the driveshaft 16, thereby eliminating the need for a separate lubricant supply tube extending from the bottom portion 31 of the hermetic shell 12.
In the first and second arrangements of the lubrication system 27a (
With reference to
The lower surface 69 of the non-orbiting scroll member 24c may include a counter bore or recess 96c. A first end 132 of the lubricant passageway 128 may be in fluid communication with the lubricant supply area 59 while a second end 134 of the lubricant passageway 128 may be in intermittent fluid communication with the recess 96c. As will be described below, the recess 96c may be in intermittent fluid communication with the lubricant recess 130. The recess 96c can be sized (for example, the diameter, width, depth, or other dimensions) such that a specific and pre-determined amount of lubricant is able to enter the recess 96c during each period of intermittent fluid communication with the lubricant passageway 128. For example, the recess 96c may have a diameter of between 5 mm and 10 mm and a depth between 1 mm and 10 mm, such that the volume of the recess 96c (and therefore the volume of lubricant stored in the recess 96c during periods of intermittent fluid communication with the lubricant passageway 128) is approximately 19 mm3 to 785 mm3.
With reference to
Upon further rotation of the driveshaft 16 (
Upon further rotation of the driveshaft 16 (
With reference to
The lower surface 69 of the non-orbiting scroll member 24d may include a counter bore or recess 96d and a groove or channel 136. As illustrated in
A first end 132d of the lubricant passageway 128d may be in fluid communication with the lubricant supply area 59 while a second end 134d of the lubricant passageway 128d may be in intermittent fluid communication with the recess 96d. Specifically, high-pressure lubricant may enter the first end 132d of the lubricant passageway 128d from the lubricant supply area 59. The high-pressure lubricant may traverse the lubricant passageway 128d before filling the recess 96d provided in the non-orbiting scroll member 24d, in the manner described above with respect to the recess 96c of the third configuration (
Upon further rotation of the driveshaft 16, and orbital movement of the orbiting scroll member 22d, the recess 96d and the high-pressure lubricant disposed therein may be exposed to the low-pressure lubricant recess 130d provided in the orbiting scroll member 22d. The high-pressure lubricant may exit the recess 96d and enter the lubricant recess 130d, in the manner described above with respect to the lubricant recess 130 of the third configuration (
Upon further rotation of the driveshaft 16, and orbital movement of the orbiting scroll member 22d, the high-pressure lubricant disposed in the lubricant recess 130d may be exposed to the channel 136 formed in the non-orbiting scroll member 24d. Specifically, as the orbiting scroll member 22d orbits about the axis 92, the lubricant recess 130d will align with, and be exposed to, the channel 136. The lubricant may enter the first end 138 of the channel 136, and thereafter traverse the length of the channel 136 between the first and second ends 138, 140. Specifically, the second end 140 of the channel 136 may be intermittently exposed to the low-pressure zone 71 when the orbiting scroll member 22d orbits relative to the non-orbiting scroll member 24d. The high-pressure lubricant may exit the second end 140 of the channel 136 and enter the low-pressure zone 71 due to the pressure differential therebetween. Once the lubricant has entered the low-pressure zone 71, it will undergo the compression process created by the orbital movement of the wrap 64 relative to the wrap 68, and then exit the discharge passage 70 in the high-pressure zone 73, in the manner described above with respect to the third configuration (
The foregoing process will repeat as the compressor 10 operates and the orbiting scroll member 22d orbits relative to the non-orbiting scroll member 24d. In this manner, a specific amount of lubrication is provided between the wraps 64, 68 of the orbiting scroll member 22d and non-orbiting scroll member 24d to reduce frictional forces and dissipate any heat that is created by such forces.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application is a division of U.S. patent application Ser. No. 14/413,204 filed on Jan. 6, 2015, which is a National Stage of International Application No. PCT/CN2014/080951, filed on Jun. 27, 2014, which claims the benefit of U.S. Provisional Application No. 61/840,153, filed on Jun. 27, 2013. The entire disclosures of each of the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4596521 | Murayama et al. | Jun 1986 | A |
4669962 | Mizuno et al. | Jun 1987 | A |
4743181 | Murayama | May 1988 | A |
4877382 | Caillat et al. | Oct 1989 | A |
5102316 | Caillat et al. | Apr 1992 | A |
5176506 | Siebel | Jan 1993 | A |
5263822 | Fujio | Nov 1993 | A |
5320506 | Fogt | Jun 1994 | A |
5379516 | Vaccaro et al. | Jan 1995 | A |
5395224 | Caillat et al. | Mar 1995 | A |
5803722 | Noboru et al. | Sep 1998 | A |
5810573 | Mitsunaga et al. | Sep 1998 | A |
6071100 | Yamada et al. | Jun 2000 | A |
6074186 | Lifson | Jun 2000 | A |
6273691 | Morimoto et al. | Aug 2001 | B1 |
6375444 | Dewar | Apr 2002 | B1 |
6422843 | Sun et al. | Jul 2002 | B1 |
6533561 | Furusho et al. | Mar 2003 | B1 |
6893235 | Furusho et al. | May 2005 | B2 |
6932586 | Furusho | Aug 2005 | B2 |
7322809 | Kitaura et al. | Jan 2008 | B2 |
7458789 | Hiwata et al. | Dec 2008 | B2 |
7614859 | Sawai et al. | Nov 2009 | B2 |
7699591 | Futagami et al. | Apr 2010 | B2 |
7837452 | Ignatiev et al. | Nov 2010 | B2 |
8070465 | Ginies et al. | Dec 2011 | B2 |
8303280 | Kiyokawa et al. | Nov 2012 | B2 |
8348647 | Kiyokawa et al. | Jan 2013 | B2 |
8585381 | Kiyokawa et al. | Nov 2013 | B2 |
8992191 | Ahn et al. | Mar 2015 | B2 |
9133843 | Tsuka et al. | Sep 2015 | B2 |
9181945 | Takeda | Nov 2015 | B2 |
9316225 | Nagahara et al. | Apr 2016 | B2 |
9759216 | Kato | Sep 2017 | B2 |
20020136652 | Gennami et al. | Sep 2002 | A1 |
20030063983 | Ancel et al. | Apr 2003 | A1 |
20040247474 | Kitaura et al. | Dec 2004 | A1 |
20040265159 | Furusho et al. | Dec 2004 | A1 |
20060006598 | Kimura et al. | Jan 2006 | A1 |
20070092390 | Ignatiev et al. | Apr 2007 | A1 |
20090162231 | Liang et al. | Jun 2009 | A1 |
20100212352 | Kim et al. | Aug 2010 | A1 |
20110011123 | Matsuura et al. | Jan 2011 | A1 |
20120258004 | Ignatiev et al. | Oct 2012 | A1 |
20130189080 | Nakai et al. | Jul 2013 | A1 |
20140017108 | Uekawa et al. | Jan 2014 | A1 |
20140248169 | Uekawa | Sep 2014 | A1 |
20150030487 | Toyama et al. | Jan 2015 | A1 |
20160187173 | Jang et al. | Jun 2016 | A1 |
20170051742 | Tang et al. | Feb 2017 | A1 |
20170146265 | Fujitaka et al. | May 2017 | A1 |
20180080448 | Ma et al. | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
1215806 | May 1999 | CN |
1533480 | Sep 2004 | CN |
101663485 | Mar 2010 | CN |
102454603 | May 2012 | CN |
202250844 | May 2012 | CN |
202250848 | May 2012 | CN |
202266436 | Jun 2012 | CN |
202597102 | Dec 2012 | CN |
204126898 | Jan 2015 | CN |
204646671 | Sep 2015 | CN |
H03105092 | May 1991 | JP |
H03237287 | Oct 1991 | JP |
H11247772 | Sep 1999 | JP |
H11247780 | Sep 1999 | JP |
2001234879 | Aug 2001 | JP |
2001234880 | Aug 2001 | JP |
2011052576 | Mar 2011 | JP |
2012215174 | Nov 2012 | JP |
WO-2012132436 | Oct 2012 | WO |
Entry |
---|
International Search Report regarding International Application No. PCT/CN2014/08095, dated Sep. 29, 2014. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/CN2014/08095, dated Sep. 29, 2014. |
Office Action regarding Chinese Patent Application No. 201410302694.4, dated Dec. 31, 2015. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201410302694.4, dated Sep. 5, 2016. Translation provided by Unitalen Attorneys at Law. |
Restriction Requirement regarding U.S. Appl. No. 14/413,204, dated Aug. 25, 2017. |
Office Action regarding U.S. Appl. No. 14/413,204, dated Nov. 29, 2017. |
Interview Summary regarding U.S. Appl. No. 14/413,204, dated Jan. 23, 2018. |
Notice of Allowance regarding U.S. Appl. No. 14/413,204 dated Jun. 19, 2018. |
International Search Report regarding International Application No. PCT/CN2016/074823, dated May 27, 2016. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/CN2016/074823, dated May 27, 2016. |
Office Action regarding Chinese Patent Application No. 201510216987.5, dated Dec. 5, 2017. Translation provided by Unitalen Attorneys at Law. |
Number | Date | Country | |
---|---|---|---|
20180335036 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
61840153 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14413204 | US | |
Child | 16047675 | US |