This application relates to a slider block for a scroll compressor, wherein a top surface extends upwardly from a nominal surface to provide an oil gap, and wherein this top surface extends for at least 90° and less than 180° to provide an adequate amount of surface area.
Scroll compressors are becoming widely utilized in refrigerant compression applications. In a scroll compressor, a pair of scroll members orbit relative to each other. Generally spiral wraps on the two scroll members move relative to each other during this orbital movement to entrap and then compress a refrigerant.
An electric motor drives an orbiting scroll member to orbit. An eccentric pin on a driveshaft extends upwardly into a slider block. The slider block extends upwardly into a boss extending downwardly from the orbiting scroll member. Oil passes through an oil passage through the shaft, and through the eccentric pin.
In the prior art, it is known to combine a plurality of spaced and small upwardly extending bumps on the upper surface of the slider block. The bumps ensure that a large nominal surface of the slider block is spaced by at least a defined gap from an inner face of the orbiting scroll boss when the slider block occasionally travels up against the inner face of the orbiting scroll boss. This gap ensures that lubricant having passed through the oil passage can circulate along the nominal surface of the slider block, between the eccentric pin and the slider block, and between the slider block and the boss.
The prior art having the discrete bumps has a problem with longevity. In particular, the bumps are formed over a relatively small surface area, and are subject to wear. Thus, in the prior art, these bumps have sometimes become worn prematurely, and then there have been challenges in providing adequate lubrication.
In a disclosed embodiment of this invention, a slider block for a scroll compressor has an upper surface that extends upwardly from a nominal surface of the slider block. This upper surface extends for at least 90°, and less than 180° about a central axis of the slider block. In a disclosed embodiment, the upper surface extends for 120°. Ramps connect the upper surface to the nominal surface.
By providing this greater surface area, the present invention ensures that there will be a good deal of additional surface area to withstand wear during the life of the scroll compressor.
These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
A scroll compressor 20 is illustrated in
As shown in
The upper surface 30 extends for an angle A. The angle A is between 90° and 180°. With a greater range, there could be a restriction of the flow of oil, while a lesser range might not provide adequate wear protection. In a disclosed embodiment, the angle A is 120°. The height of the upper surface 30 compared to the nominal surface 34 may be generally equal to the height of the prior art bumps, or in a range of 0.2 to 2.0 mm.
As shown in
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
5197868 | Caillat | Mar 1993 | A |
5378129 | Dunaevsky et al. | Jan 1995 | A |
5496158 | Barito et al. | Mar 1996 | A |
5772415 | Monnier et al. | Jun 1998 | A |
6053714 | Fenocchi | Apr 2000 | A |
6082495 | Steinbarger et al. | Jul 2000 | A |
6264445 | Beck et al. | Jul 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20070077160 A1 | Apr 2007 | US |