The present invention relates to a scroll fluid machine and especially to a scroll fluid machine such as a scroll compressor or a scroll vacuum pump in which a fixed wrap of a fixed scroll engages with an orbiting wrap of an orbiting scroll mounted around an eccentric axial portion of a driving shaft, the orbiting scroll being eccentrically revolved by the driving shaft so that a gas sucked from the outer circumference of the fixed scroll can be compressed towards the center and discharged.
In a scroll fluid machine, a long-time operation increases temperature of an eccentric axial portion of a driving shaft, and bearings and packing that support the driving shaft to cause the bearings and packing to be damaged.
To prevent such situation, US2004/0241030A1 discloses a scroll fluid machine having a number of cooling fins on the surface of a fixed scroll to increase cooling efficiency.
However, in the scroll fluid machine, the cooling fins are radially provided on the surface of a fixed scroll to limit a cooling area and cooling performance. To increase the cooling area, increased number of the radial cooling fins makes gaps between the cooling fins denser to make cooling wind more unlikely to pass through to decrease cooling efficiency. Particularly, in the radial cooling fins, the gap between the cooling fins becomes narrower towards the center to make it more difficult for cooling wind to pass through towards the center having relatively higher temperature than in the outer circumference.
In view of the disadvantage in the prior art, it is an object of the invention to provide a scroll fluid machine improving cooling efficiency by increasing a cooling area along which air flows on the surface of a fixed scroll.
The features and advantages of the invention will become more apparent from the following description with respect to embodiments as shown in accompanying drawings wherein:
In
The casing 3 and the cover 4 comprises approximately circular fixed end plates 31,41 facing each other and having fixed wraps 32 and 42 spirally formed as an involute curve to constitute fixed scrolls 33,43.
On the rear surface of the fixed scroll 33 and on the front surface of the fixed scroll 43, there are provided a plurality of cooling fins 10 radially extending from the center of the fixed scrolls 33,43 to the outer circumference and a plurality of short heat-releasing projections 11,11 each of which is disposed between the adjacent cooling fins 10 and 10.
The heat-releasing projection 11 is provided close to the outer circumference of each of the fixed scrolls 33,43 or at a wider gap between the adjacent cooling fins 10 and 10. The projection 11 is lower in height than the fin 10.
A number of radial cooling fins 10 and small heat-releasing projections 11 are provided on the surfaces of the fixed scrolls 33,43 of the housing 1 thereby increasing cooling area without making denser between the cooling fins 10 and 10 through which external air passes. Furthermore, when cooling fans 8,9 described later rotates, turbulence occurs in air current thereby preventing bearings 14,15 and packing from being damaged by heat.
In the radially-extending cooling fins 10, the gap between the adjacent cooling fins 10 and 10 becomes wider from the center toward the outer circumference. Thus, during operation, a finger of an operator is likely to put in the gap between the cooling fins 10 and 10 to cause hindrance in the operation. In this embodiment, the heat-releasing projection 11 is provided to prevent the operator's finger from putting in the gap thereby improving security.
The heat-releasing projection 11 extends radially straight or inclined as shown as 11a in
In a sealed chamber 2 between the fixed scrolls 33 and 43, an orbiting scroll 5 is rotatably supported around an eccentric axial portion 61 of a driving shaft 6 rotatably fitted in the center of the housing 1. The driving shaft 6 is connected at the rear end to a motor(not shown) and rotatably supported in axial holes 31a,41a along the center of the fixed end plates 31,41 via bearings 14,15.
The orbiting scroll 5 has on the front and rear surfaces orbiting wraps 51,51 engaging with the fixed wraps 32,42 respectively and is connected to the fixed end plate 31 with three known pin-crank-type self-rotation preventing devices 7.
The driving shaft 6 rotates by the motor, so that the orbiting scroll 5 is eccentrically revolved thereby gradually reducing the volume of the compressing chambers 21,21 towards the center. A external gas in the compressing chambers 21,21 from the inlet 1a is gradually compressed and finally discharged to the outside from the outlet 1b. External air sucked from the inlet 1a is compressed and its temperature rises as it flows towards the center.
To the driving shaft 6 which projects from the fixed end plates 41,31, the front and rear cooling fans 8,9 are mounted. The front cooling fan 8 rotates to produce external air current going forwards, while the rear cooling fan 9 rotates to produce air current going rearwards.
Cover plates 12,12 are fixed to the front surface of the cover 4 and the rear surface of the casing 3. In the cover 4, a cover protection 13 is mounted on the front surface of the cover plate 12 to cover the cooling fan 8.
The rear surfaces of the cover plates 12,12 contact the cooling fins 10,10 but does not contact the heat-releasing projections 11,11. Thus, the front and rear cooling fans 8,9 rotate to allow external air to pass towards the center between the cooling fins 10. The rear surfaces of the cover plates 12,12 may be placed close to the cooling fins 10,10 without contacting them.
In the front side of the housing 1, rotation of the front cooling fan 8 allows external air A to be sucked between the cooling fins 10 and 10 on the outer circumference of the cover 4.
Sucked air A goes towards the center along the side of the cooling fin 10 with turbulence by the heat-releasing projection 11 thereby increasing cooling effect. Air goes to the center without hindrance between the cooling fins 10 and 10 to effectively cool the center which is likely to become high temperature.
Air A sucked in the center is transferred forwards through an opening 121 and discharged from an opening 131 of the protecting cover 13.
In the rear part of the housing 1, the rear cooling fan 9 rotates to allow external air B to be sucked between the cooling fins 10 and 10 on the outer circumference of the casing 3. Sucked air B goes towards the center as well as air A and discharged through an opening 121 of the cover plate 12 rearwards to cool the motor disposed behind.
The embodiments relate to a both-side scroll fluid machine in which a both-side orbiting scroll is disposed between two fixed scrolls. The present invention may also apply to a one-side scroll fluid machine in which a one-side fixed scroll engages with a one-side orbiting scroll. With rotation of the cooling fans 8,9, external air current flows towards the center, but may flow towards the outer circumference.
The foregoing merely relate to embodiments of the invention. Various changes and modifications may be made by a person skilled in the art without departing from the scope of claims wherein:
Number | Date | Country | Kind |
---|---|---|---|
2006-014704 | Jan 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5417554 | Kietzman et al. | May 1995 | A |
5558156 | Tsutsui | Sep 1996 | A |
5775888 | Sakamoto et al. | Jul 1998 | A |
6324061 | Kinoshita et al. | Nov 2001 | B1 |
20040241030 | Matsushima | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
58035389 | Mar 1983 | JP |
2002016385 | Jan 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20070172372 A1 | Jul 2007 | US |