Scroll fluid machine having a heat pipe inside the drive shaft

Information

  • Patent Grant
  • 6186755
  • Patent Number
    6,186,755
  • Date Filed
    Wednesday, April 12, 2000
    24 years ago
  • Date Issued
    Tuesday, February 13, 2001
    23 years ago
Abstract
A scroll fluid machine is disclosed, which comprises a stationary scroll with an embedded wrap which is spiral in form, extending from a central part of a scroll body toward the outer periphery thereof, and a revolving scroll with an embedded spiral wrap engaging with said spiral wrap, the said revolving scroll having a scroll body coupled to a drive shaft 11A coupled to a drive at the central portion thereof. The drive shaft 11A is cooled directly by cooing means provided inside it. The scroll body of the revolving scroll has a central part coupled to a drive. Heat generated in a process, in which fluid sucked from the scroll edge is led to the central part while being progressively compressed, can be removed at the central part which is elevated to a highest temperature, thus permitting efficient cooling of bearings and seal members near the revolving scroll central part and the drive shaft.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to scroll fluid machine, in which sucked fluid is compressed with stationary and revolving scrolls and discharged to the outside.




2. Description of the Related Art




A scroll fluid machine compresses fluid sucked from its peripheral part in a sealed space formed by its stationary and revolving scrolls progressively as the fluid is fed toward its central part, and discharges the compressed fluid from the central part. As the fluid is compressed, the temperature in the sealed space formed by the wraps is elevated. This poses a problem that bearings, seal members, etc. provided in drive parts are soon deteriorated. Heretofore, the scrolls are cooled to hold the temperature within a predetermined temperature.




Well-known cooling systems cool either a non-driven part, i.e., the stationary scroll, or a driven part, i.e., the revolving scroll.





FIG. 16

shows a technique concerning a non-driven part cooling system. As shown, a revolving scroll


116


which is mounted on a frame


109


provided in a sealed housing


105


, comprises a disc-like body


114


having a shaft


113


depending therefrom. The frame


109


has a central hole, in which a drive shaft


104


coupled to a drive (not shown) is fitted for rotation, and the shaft


113


is eccentrically coupled to the drive shaft


104


. The revolving scroll


116


has a wrap


115


engaging with a wrap


111


of a stationary scroll


112


.




The stationary scroll


112


has a peripheral wall having a suction hole


118


. When the revolving scroll


116


is revolved relative to the stationary scroll


112


with the rotation of the drive shaft


104


, a sealed space formed by the wraps


111


and


115


is progressively reduced in volume, thus compressing gas entering the sealed space. The compressed gas is discharged from a discharge hole


121


formed in a central part of the stationary scroll


112


through a discharge pipe


120


to the outside.




A plurality of radially spaced-apart heat pipes


122


are provided in the body


110


of the stationary scroll


112


to remove heat generated in a compression stroke as described above.





FIG. 17

shows a well-known cooling system for cooling driven part, i.e., the revolving scroll.




A housing


211


as shown comprises a rear and a front housing part


212


and


213


, and a drive shaft


214


is supported for rotation by bearings


215


in a bearing portion of the rear housing part


212


. The drive shaft


214


has an extension projecting outward from the bearing portion and coupled to a motor (not shown). The drive shaft


214


also has an eccentric portion


214




b,


which has an eccentric axis


02





02


with respect to the axis


01





01


of the drive shaft


214


by a distance δ.




A revolving scroll


216


which is coupled to the eccentric portion


214




b


of the drive shaft


214


, has a disc-like plate


216




a


having a mirror finished front surface, a spiral wrap


216




b


formed on the front side of the mirror finished plate


216




a,


a boss


216




c


formed as the driving center with an axial line


02





02


on the rear side of the plate


216




a


and having smaller diameter than the inner peripheral surface edge of above portion


213




b,


a ring-like ridge


216




d


formed on the rear side of the above


216




a


and on the periphery thereof, and a plurality of radial vent holes


216




e


formed in a diameter direction above the ridge


216




d.






A stationary scroll


221


, which is secured to the front housing part


213


, has a disc-like plate


211




a


having a mirror finished rear surface, a spiral wrap


221




b


formed on the rear side of the plate


211




a


and a peripheral wall


221




c


surrounding the wrap


221




b.






The wraps


216




b


and


221




b


of the revolving and stationary scrolls


216


and


221


engage with or wrap each other at a predetermined deviation angle, and they form a plurality of compression chambers or spaces when the revolving scroll


216


is revolved.




The drive shaft


214


has a counterweight


225


mounted on its portion extending in the rear housing part


212


, and a centrifugal fan


226


is mounted on the counterweight


225


to generate cooling air flow with the rotation of the drive shaft


214


.




In the prior art non-driven part cooling system shown in

FIG. 16

, in which the heat pipes


122


are provided in the stationary scroll body, the heat absorbing portions of the heat pipes


122


are more remote from the revolving scroll which is driven than from the stationary scroll. Therefore, the neighborhood of the bearings, seal members and other parts which are driven in contact with the revolving scroll


116


in the driving thereof, is cooled less efficiently compared to the cooling of the stationary scroll. This means that uniform temperature distribution cannot be obtained.




The heat radiating portions of the heat pipes


122


are cooled by their heat radiation to the sealed housing inner space


105




a,


which is filled with gas-sucked through a suction pipe


119


.




In communication with the space


105




a


is the suction hole


118


, through which gas enters the compression space which is formed by the stationary and revolving scrolls. This means that gas having been elevated in temperature by the heat radiation from the heat pipes


122


again enters the compression space through the suction hole


118


, thus reducing the cooling efficiency.




In order to prevent the cooling efficiency reduction, it is necessary to provide special cooling means on an external part to which the suction pipe


119


is connected, thus complicating the construction and increasing the size of the apparatus.




In the well-known driven part cooling system shown in

FIG. 17

, with the rotation of the drive shaft


214


external gas is sucked through a suction passage


227


by the centrifugal fan


226


and led through a ring-like space B and a cooling air passage


220


to be discharged through a discharge passage


228


.




Since in this system the gas having cooled down a central part of the revolving scroll


216


is discharged along the rear side of the revolving scroll


216


and through the discharge passage


228


, the provision of the discharge passage is necessary. In addition, in order to increase the cooling efficiency, a cooling fan for cooling the rear side of the stationary scroll


221


has to be provided, thus increasing the size of the apparatus.




OBJECT AND SUMMARY OF THE INVENTION




The invention was made in view of the affairs discussed above, and it has an object of providing a scroll fluid machine with an improved cooling efficiency.




Another object of the invention is to provide a scroll fluid machine with improved durability.




A further object of the invention is to provide a scroll fluid machine which is reduced in size.




According to the invention, in a scroll fluid machine comprising stationary scrolls each having a wrap embedded spirally in a scroll body such as to extend from a central part toward the outer periphery of the scroll body, and a revolving scroll having spiral wraps embedded in a scroll body and engaging with the spiral wraps of the stationary scrolls, the revolving scroll being coupled to a drive shaft coupled to a drive, it is featured that cooling means is provided in the drive shaft.




With this construction according to the invention, the drive shaft can be cooled directly. Since the revolving scroll is driven by the drive shaft coupled to the drive, it is possible to cool heat generated in a process, in which fluid sucked from the edge of the scroll is led to a central part thereof while being progressively compressed. It is thus possible to obtain efficient cooling of bearings and seal members provided around the revolving scroll and also those provided around the drive shaft.




It is also possible to eliminate the thermal expansion difference between the stationary scrolls and the revolving scroll, provide a uniform temperature distribution, prevent scoring of the wraps, extend the grease maintenance cycle and improve the durability.




It is further possible to reduce heat generation for reducing the scroll clearance, increasing the operation speed and increasing the attainable pressure.




Suitably, the drive shaft is formed with a hollow cooling passage for introducing cooling gas from one end and discharging the same from the other end in it.




Suitably, turbulent flow forming means is provided in the cooling passage to stir the introduced cooling gas.




It is thus possible to provide gas cooling means with a simple construction. Besides, by providing the turbulent flow forming means the gas temperature difference between an edge part of the cooling passage adjacent the surface thereof and a central part thereof can be quickly reduced, thus obtaining an improved cooling efficiency.




More suitably, a fan is provided at one end of the drive shaft while providing at the other end of the cooling passage with radial communication holes toward the outer periphery of the above drive shaft, thus causing gas having contributed to the cooling by the fun to be compulsively exhausted through the communication holes to cool the drive shaft.




Specifically, the revolving scroll


3


(

FIG. 5

) is cooled by cooling gas


32


passing through the cooling passage


11


A


d


(

FIG. 1

) or


11


B


d


(FIG.


2


), and the gas that has contributed to the cooling is exhausted by the fan


13


through the communication holes


11


A


c


(

FIG. 1

) or


11


B


c


(FIG.


2


).




It is further suitable to form the drive shaft to be hollow and provide heat transfer means therein.




As shown in

FIG. 3

, heat pipes


24


A and


24


B may be provided in an axially formed hollow passage


11


C


d


in a drive shaft


11


C.




As shown in

FIG. 4

, each of the heat pipes


24


A and


24


B has a sealed pipe-like vessel


25


made of such material as copper, stainless steel, nickel, tungsten, molybdenum, etc., a wick structure


28


disposed in the vessel


25


, an inner space


25




d


defined by the wick structure


28


and operating fluid re-circulated between the wick structure and the inner space while being gasified and liquified by heating and cooling. In an evaporating zone


25




a,


the operating fluid is gasified by receiving heat from the revolving scroll to be transferred to a condensing zone


25




c


as shown by arrow


37


. In the condensing zone


25




c,


it releases heat and is liquified again to return to the wick structure


28


.




The heat pipes


24


A and


24


B can transfer heat a great deal, specifically several hundred times compared to such metals as copper and aluminum which are good heat conductors, thus it is possible to get a efficient cooling of revolving scroll.




It is further suitable to provide a fan at an end of the drive shaft for cooling the heat radiating part of the heat transfer means.




The heat transfer means may be provided in the hollow drive shaft such that its heat absorbing zone and heat radiating zone are inclined with respect to the axis of rotation of the drive shaft. Particularly, it may be provided such that the heat absorbing zone is located in an eccentric portion of the shaft and the heat radiating portion is located in a portion other than the eccentric portion. With this arrangement, a centrifugal force generated by the rotation of the drive shaft has an effect of forcing the operating fluid having been liquified in the condensing zone


25




c


(

FIG. 4

) to the heating zone, thus promoting the re-circulation of the operating fluid and improving the cooling efficiency.




According to the invention it is effective, in a scroll fluid machine comprising stationary scrolls having a wrap embedded spirally in a scroll body such as to extend from a central part toward the outer periphery of the scroll body, and a revolving scroll having spiral wraps embedded in a scroll body and engaging with the spiral wraps of the stationary scrolls, said the revolving scroll being coupled to a drive shaft coupled to a drive at the central portion of the scroll body, to drive the eccentric portion of the drive shaft for cooling the shaft.




The revolving scroll thus has a central part of its body driven by the drive shaft coupled to the drive, and heat generated in the process, in which fluid sucked from the edge of the scroll is led to a central part thereof while being progressively compressed, can be removed in the central part which is at the highest temperature. Thus, parts provided in the neighborhood of the central part of the revolving scroll can be cooled efficiently.




According to the invention it is further effective to provide a fan at one end of the drive shaft, form the drive shaft with a hollow cooling passage for introducing cooling gas from one end and discharging the same from the other end of the drive shaft, and radial communication holes toward the periphery of revolving shaft in the other end of the cooling passage, thereby causing gas having contributed to the cooling by the fun to be compulsively exhausted through the communication holes to cool the central part of the revolving scroll, while cooling the other part thereof except above central part with gas not having passed through said communication hole.




With this construction, the central part of the revolving scroll


3


(

FIG. 5

) is cooled by cooling gas


32


passing through the cooling passage


11


A


d


(

FIG. 1

) or


11


B


d


(FIG.


2


), and the gas having contributed to the cooling is compulsively exhausted by the fan


13


through the communication holes


11


A


c


(

FIG. 1

) or


11


B


c


(FIG.


2


).




The fan


13


further exhausts gas that has cooled the rear side of the housing part


4


(FIG.


5


), i.e., the stationary scroll, with the warp


7


embedded therein, in the directions of arrows


40


in FIG.


8


.




Thus, not only the central part of revolving scroll but also other parts can be cooled, that is, efficient cooling can be obtained.




According to the invention it is further effective to provide a fan on an end of said drive shaft, said heat transfer means being able to cool a central part of said revolving scroll, said fan being able to cool said revolving scroll inclusive of the heat radiating zones of the heat transfer means or said stationary scrolls on the side thereof opposite the wraps side.




In this case, the fans (

FIG. 3

) produce cooling air flows in the directions of arrows


35


and


36


to cool the heat radiating zones (i.e., condensing zones).




Where the double-wrap revolving scroll with wraps embedded in opposite side surfaces of the scroll body is combined with the stationary scrolls, the fans


12


and


13


produce cooling air flows in the directions of arrows


39


and


40


(

FIG. 8

) to cool the heat pipes, while exhausting gas having cooled the stationary scrolls constituted by the housing parts


4


and


5


on the side thereof opposite the wraps.




The invention is further applicable to scroll fluid machine comprising a single-wrap revolving scroll with a single wrap embedded in one side surface of the scroll body and a single stationary scroll. In this case, either the stationary scroll or the revolving scroll may be located near a fan for exhausting gas having cooled the heat pipes and the stationary or revolving scroll on the side thereof opposite the wrap.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a view showing the shaft/fan assembly in a first embodiment of the scroll fluid machine according to the invention;





FIG. 2

is a view showing the shaft/fan assembly in a second embodiment of the scroll fluid machine according to the invention;





FIG. 3

is a view showing a shaft/fan assembly in a third embodiment of the scroll fluid machine according to the invention;





FIG. 4

is a view showing a heat pipe;





FIG. 5

is a view showing a scroll fluid machine embodying the invention;





FIG. 6

is a view taken along line C—C in

FIG. 5

;





FIG. 7

is a view taken along line D—D in

FIG. 5

;





FIG. 8

is an enlarged-scale view showing a portion shown in

FIG. 1

;




FIGS.


9


(


a


) and


9


(


b


) are schematic views showing a scroll state at the commencement of gas ballast gas introduction;




FIGS.


10


(


a


) and


10


(


b


) are schematic views showing a scroll state during the gas ballast gas introduction;




FIGS.


11


(


a


) and


11


(


b


) are schematic views showing a scroll state immediately before the end of the gas ballast gas introduction;




FIGS.


12


(


a


) and


12


(


b


) are schematic views showing a scroll state when a gas ballast gas suction hole is closed;





FIG. 13

is a view showing a modification of the shaft/fan assembly in the first embodiment of the scroll fluid machine according to the invention;





FIG. 14

is a view showing a modification of the shaft/fan assembly in the second embodiment of the scroll fluid machine according to the invention;





FIG. 15

is a view showing a modification of the shaft/fan assembly in the third embodiment of the scroll fluid machine according to the invention;





FIG. 16

is a view showing a prior art non-driven part cooling system; and





FIG. 17

is a view showing a prior art driven part cooling system.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Preferred embodiments of the invention will now be described. It is to be construed that unless particularly noted the sizes, materials, shapes and relative dispositions shown in the embodiments have no sense of limiting the scope of the invention but are merely exemplary.




The basic scroll fluid machine construction adopting a shaft cooling system embodying the invention will now be described.





FIG. 5

shows a pump


1


having a shaft


11


, which is coupled at its right end to a drive shaft of a motor


2


for being rotated by the torque thereof.




The shaft


11


has a central eccentric portion


11




a


having some swelling part to rotating central axial line of outer peripheral, which the both edge side of a eccentric portion


11




a


are driven to be supported for rotation in bearings and packing sections in housing parts


4


and


5


.




The housing parts


4


and


5


are cap-like in shape and constitute respective stationary scrolls. Their peripheral walls are sealed together via an intervening seal member to define a sealed inner space.




The housing part


4


has a wrap sliding surface


4




b


perpendicular to its axis and also has a hole


4




i


(see FIG.


8


), which is formed in a central portion of the wrap sliding surface


4




b,


and in which the end portion of the shaft


11


, adjacent the eccentric portion


11




a


and not eccentric, is fitted for rotation. The housing part


4


has a wrap


7


embedded in it. The wrap


7


(see FIGS.


9


(


a


) and


9


(


b


)) is spiral clockwise when viewed in the direction of arrow


30


and has an end


7




a


located in the neighborhood of the hole


4




i.


The wrap


7


has a tip groove formed in its tip or outer edge. A tip seal


14


is fitted in the tip groove. The tip seal


14


is made of a fluorine type resin or the like and is self-lubricating to provide perfect seal with the associated rubbing surface in contact with it (see FIG.


8


).




The housing part


4


further has a discharge hole


4




c


(see

FIGS. 8

,


9


), which is open in the wrap rubbing-surface


4




b


in the neighborhood of the end


7




a


of the wrap


7


. Compressed gas is discharged through the discharge hole


4




c


through a discharge passage


4




d


from a discharge port


9


formed in the peripheral wall


4




a


of the housing part


4


to the outside.




The side of the housing part


4


opposite the wrap


7


constitutes a scroll body


4




f


which is provided with a suction pipe


10


for ballast gas introduction. Gas is sucked from the suction pipe


10


through a suction passage


4




g


(see

FIG. 8

) and suction hole


4




e


into a sealed space R.




Three revolving mechanism sets


17


are mounted on the peripheral wall


4




a


of the housing part


4


on 3 spots by 120° in the peripheral direction.




These revolving mechanism sets


17


are coupled to a revolving scroll to be described later.




A peripheral port


4




a


of housing


4


has a absorbing port


8


which are coupled to a vessel to be evacuated (not shown), at where the gas is sucked through the hole


8




a


from above vessel.




The other housing part


5


likewise has a wrap sliding surface


5




b


perpendicular to its axis, as well as a hole formed in a central portion of the wrap sliding surface


5




b


, the end portion of the shaft


11


adjacent the eccentric portion


11




a


and not eccentric being fitted for rotation in the hole. A wrap


6


which is spiral counterclockwise when viewed in the direction of arrow


31


, is also embedded in the housing part


5


, and has an end located in the neighborhood of the hole. The wrap


6


has a tip groove formed on its tip, and a tip seal


14


(

FIG. 8

) is fitted in the tip groove and provides a perfect seal with the associated rubbing surface in contact with it.




A revolving scroll


3


is disposed for revolving in the inner space defined in the housing parts


4


and


5


.




The revolving scroll


3


is disc-like in shape and has opposite side wrap rubbing surfaces


3




d


and


3




f


with wraps


26


and


27


embedded thereon for engaging with the stationary scroll wraps.




The wrap


26


is spiral clockwise when viewed in the direction of arrow


30


, and the opposite side wrap


27


is spiral counterclockwise when viewed in the direction of arrow


31


.




The revolving scroll


3


has a central hole


3




a,


in which the eccentric portion


11




a


of the shaft


11


is fitted for rotation. The central hole


3




a


is surrounded by ring-like wrap ends


26




a


and


27




a


of the wraps


26


and


27


over the entire length of the eccentric portion


11




a.






The wrap ends


26




a


and


26




b


communicate with a passage


3




b


leading to the discharge hole


4




c,


and a final compression space defined by the wraps


26


and


6


is communicated by a hole


3




g


with the passage


3




b.






A sealed space R which is defined by the stationary scroll wrap


7


and the revolving scroll wrap


27


for introducing ballast gas, and a sealed space L defined by the stationary scroll wrap


6


and the revolving scroll wrap


26


, are communicated with each other by a communicating hole


3




e


. Gas entering from the suction pipe


10


is led from the sealed space R through the communicating hole


3




e


so as to fill the sealed space L.




Fans


12


and


13


are provided outside of housing


5


and housing


4


on the shaft


11


to cool the vacuum pump and a cover


18


and


19


having a hole


18




a


in the central portion are mounted in housing


5


and


4


in order to protect those fans.




Between the housing part


5


and a cover


18


is mounted a shield


29


B (see

FIG. 7

) having numbers of holes


29


B


a


and


29


B


b,


and between the housing part


4


and a cover


19


is mounted a shield


29


A (see

FIG. 6

) having numbers of holes


29


A


a


and


29


A


b.






The three revolving mechanism sets


17


on 3 spots by 1200 in the peripheral direction are supported at one end by housing


4


and at the other end by outer periphery of the revolving scroll, and the revolving scrolls are revolved through above revolving mechanism


17


by an axis eccentric rotating centers with respect to the stationary scrolls.




The operation of the above basic construction according to the invention will now be described with reference to

FIGS. 9

to


12


. FIGS.


9


(


a


) to


12


(


a


) are taken along line A—A in

FIG. 8

, and FIGS.


9


(


b


) to


12


(


b


) are taken along line B—B.




Referring to

FIG. 5

, when the shaft


11


is rotated, the revolving scroll


3


is revolved to suck gas from a vessel (not shown). The sucked gas is led from the outer peripheries of the stationary scroll wraps by the revolving scroll wraps


26


and


27


into a sealed space defined by these stationary and revolving scroll wraps for compression in the space. While the gas is compressed in three or more sealed spaces, the sealed space is changed from one shown at R


0


in FIG.,


12


(


a


) to one shown at R


1


in FIG.


9


(


a


), whereupon the suction hole


4




e


of the gas ballast suction pipe


10


is opened.




When the pressure in the vessel to be evacuated is close to the atmospheric pressure, the pressure in the sealed space R


1


, into which gas is introduced form the suction hole


4




e,


is already higher than the atmospheric pressure. When the pressure of gas introduced from the suction pipe


10


is lower than the pressure in the sealed space R


1


, no gas is introduced through the suction hole


4




e.






With the revolving of the revolving scroll


3


the sealed spaces R and L are changed from the states R


1


and L


1


(

FIG. 9

) to states R


2


and L


2


(

FIG. 10

) , then states R


3


and L


3


(

FIG. 11

) and then states R


4


and L


4


(FIG.,


12


), whereby the compressed gas is discharged through the discharge hole


4




c.






When the gas in the vessel contains steam at the instant of the states R


1


and L


1


, the saturated vapor pressure is exceeded in the final seal space states R


4


and L


4


. The steam is thus condensed and liquified into water drops, which are attached to and accumulated on the wrap surfaces defining the final sealed spaces.




When steam is liquified before the states R


1


and L


1


are reached, slight water drops are caused to flow reversely through the suction hole


4




e


in the stationary scroll


4


into the suction pipe


10


. However, since the suction hole


4




e


is narrow and gas ballast gas is present therein, only very slight water drops are introduced into the suction pipe


10


.




As the pressure in the vessel to be evacuated is reduced, liquefaction of steam in the vessel proceeds, but even with compression of the sucked gas before the reaching of the sealed spaces R


1


and L


1


, into which gas is introduced from the gas ballast suction hole


4




e,


the pressure in the sealed spaces R


1


and L


1


becomes lower than the pressure of the gas to be introduced through the suction hole


4




e.


The gas is thus introduced through the suction hole


4




e.






At this time, the steam content in the introduced gas or fluid is reduced. The fluid containing the steam is compressed through the states R


2


and L


2


(

FIG. 10

) up to the states R


3


and L


3


(FIG.


11


).




The pressure of the compressed fluid in the sealed spaces R


3


and L


3


at this moment is higher than the gas ballast gas pressure. However, since the stationary scroll suction hole


49


is small in diameter while the revolving scroll is driven at a high speed and gas ballast gas is present in the suction hole, only slight compressed gas flows reversely through the suction hole


4




e


. Besides, the suction hole


4




e


is closed by the wrap end


27




a


of the revolving scroll


3


right before the sealed spaces R


4


and L


4


(

FIG. 12

) are communicated with the discharge hole


4




c.






When the sealed spaces R


4


and L


4


are communicated to the discharge hole


4




c


(FIG.


12


), the partial pressure of steam is reduced and becomes lower than the saturation vapor pressure in the scroll fluid machine. The steam thus is not liquified while liquefying water drops having been attached to the wrap surfaces after the condensation and liquefaction of steam noted above, and the overall steam is discharged through the discharge hole


4




c.






With rotation of the shaft


11


by 90° spaces S


0


(


a


) and T


0


(


b


) shown in FIGS.


12


(


a


) and


12


(


b


) are compressed to states S


1


(


a


) and T


1


(


b


) as shown in FIGS.


9


(


a


) and


9


(


b


). The spaces S


1


(


a


) and T


1


(


b


) are not communicated with the gas ballast suction hole. These spaces are changed to states S


2


and T


2


as shown in FIGS.


10


(


a


) and


10


(


b


) and then to states S


3


and T


3


as shown in FIGS.


11


(


a


) and


11


(


b


), which are communicated with the discharge hole


4




c,


whereupon the compressed gas is discharged to the outside. In this stroke, the saturation vapor pressure may be exceeded, resulting in condensation and liquefaction of steam, and water drops produced are attached to and accumulated on the wrap inner surfaces defining the final sealed spaces.




In this case, subsequent to the discharging of the compressed fluid from the sealed spaces S


3


and T


3


through the discharge hole


4




c,


the spaces R


4


and L


4


(as shown

FIG. 12

) which are in communication with the gas ballast suction pipe are communicated with the discharge hole


4




c.


Thus, compressed gas containing steam under a low partial pressure, lower than the saturation vapor pressure in the scroll fluid machine, is discharged through the discharge hole


4




e


while liquefying water drops produced as a result of condensation and liquefaction in the spaces S


3


and T


3


.




The scroll fluid machine operating as described above, continuously compresses fluid sucked from its periphery as the fluid is led toward its central part. That is, the fluid is compressed utmost in the central part, which is thus elevated to the highest temperature.




Cooling means for cooling the central part of the apparatus will now be described.





FIG. 1

shows cooling means, i.e., a shaft/fan assembly, in a first embodiment of the scroll fluid machine according to the invention. Referring to the figure, a drive shaft


11


A has a cooling passage


11


A


d


formed in it along its axis of rotation for introducing outer gas from a left open end


11


A


g


. The right end of the cooling passage


11


A


d


is shielded by a shield


23


.




The drive shaft


11


A has a plurality of radially spaced-apart holes


11


A


c


formed adjacent its right end


11


A


b


and communicating the cooling passage


11


A


d


and its outside. A fan


13


is provided on the drive shaft


11


A, that is, its boss


20


A is fitted on and secured to the right end


11


A


b


of the drive shaft


11


A. The boss


20


A has holes


13




a


in communication with the holes


11


A


c.


The fan


13


thus can exhaust cooling gas having cooled the cooling passage


11


A


d


through the holes


13




a


to the outside as shown by arrows


34


.




Another fan


12


is provided on the left end


11


A


e


of the drive shaft


11


A with its boss


20


B secured thereto by a nut


22


screwed on a threaded end portion


11


A


f


of the drive shaft


11


A. The fan


12


can exhaust cooling gas, which has been led through holes


29


B


a


in a shield


29


B (

FIG. 7

) and cooled the housing part


5


(

FIG. 5

) on the side thereof opposite the wrap, to the outside as shown by arrows


39


.




With this construction, a central part of the revolving scroll


3


is cooled by cooling gas


32


passing through the cooling passage


11


A


d,


and the gas having contributed to the cooling is exhausted by the fan


13


through the communication holes


11


A


c


and the holes


29


A


b


in the shield


29


A (FIG.


6


).





FIG. 2

is a view showing a shaft/fan assembly in a second embodiment of the scroll fluid machine according to the invention.




Referring to the figure, a drive shaft


11


B has a cooling passage


11


B


d


formed in it along its axis of rotation for introducing external gas from a left open end


11


B


g.


A helical groove


11


B


b


is formed in the inner surface of the passage


11


B


d.


The right end of the passage


11


B


d


is shielded by a shield


23


.




The drive shaft


11


B has a plurality of radially spaced-apart holes


11


B


c


formed adjacent its right end


11


B


b


and communicating the cooling passage


11


B


d


and its outside. A fan


13


is provided on the drive shaft


11


on the drive shaft


11


B with its boss


20


A fitted on and secured to the right end


11


B


b


of the drive shaft


11


B, the boss


20


A having a plurality of radially spaced-apart holes


13




a.


Cooling gas having cooled the cooling passage


11


B


d


is exhausted by the fan


13


through the holes


13




a


to the outside as shown by arrows


34


.




Another fan


12


is provided an the left end


11


B


e


of the drive shaft


11


B with its boss


20


B secured thereto by a nut


22


screwed on a threaded end portion


11


B


f


of the drive shaft


11


B. The fan


12


exhausts cooling gas having cooled the housing part (

FIG. 5

) on the side thereof opposite the wrap through holes


29


B


a


formed in a shield


29


B (

FIG. 7

) to the outside as shown by arrows


39


.




With this construction, a central part of the revolving scroll


3


is cooled by cooling gas


32


passing through the cooling passage


11


B


d.


At this time, the helical groove


11


B


h


functions as turbulent flow forming means to stir the introduced cooling gas, thus quickly reducing the gas temperature difference between an edge part of the cooling passage adjacent the surface thereof and a central part of the passage. Thus, efficient cooling can be obtained.




It is possible to form the turbulent flow forming means by inserting a helical coil spring in the cooling passage


11


B


d


as well.




It is further possible to insert a mixing pipe, which has an outer diameter equal to the inner diameter of the cooling passage


11


B


d


and mixes together two fluids, in the cooling passage


11


B


d.







FIG. 3

is a view showing a shaft/fan assembly in a third embodiment of the scroll fluid machine according to the invention. Referring to the figure, a drive shaft


11


C has a passage formed in it along its axis of rotation, and heat pipes


24


A and


24


B are disposed in the passage


11


C


d.






A fan


13


is provided on the drive shaft


11


C with its boss


21


A fitted on and secured to the right end


11


C


b


of the drive shaft


11


C. The fan


13


can exhaust cooling gas having cooled heat radiating zones


25




c


of the heat pipes


24


A and


24


B to the outside as shown by arrows


36


.




Another fan


12


is provided on the left end


11


C


e


of the drive shaft


11




e


with its boss


21


B secured thereto by a nut


22


screwed on a threaded end portion lICb of the drive shaft


11


C. The fan


12


exhausts cooling gas having cooled heat radiating zone


25




c


of the heat pipe


24


B to the outside as shown by arrows


36


.





FIG. 4

shows either heat pipe


24


A or


24


B in detail. As shown, the heat pipe has a sealed pipe-like vessel


25


made of copper, stainless steel, nickel, tungsten, molybdenum or like material, a wick structure


28


disposed in the vessel


25


, an inner space


25




d


defined in the wick structure


28


and operating fluid re-circulated between the wick structure


28


and the inner space


25




d


while being gasified and liquified by being heated and cooled. in an evaporating zone


25




a,


the operating fluid is gasified by receiving heat from a central part of the revolving scroll


3


. The gasified operating fluid moves to a condensing zone (or heat radiating zone)


25




c


as shown by arrows


37


, and in the condensing zone


25




c


it is liquified again by radiating heat to return to the wick structure


28


.




Referring back to

FIG. 3

, with the above construction of the drive shaft


11


C in the third embodiment having the heat pipes


24


A and


24


B disposed in the passage


11


C


d,


the heating zones (or evaporating zones)


25




a


in the vessels


25


of the heat pipes


24


A and


24


B absorb heat generated in the revolving scroll


3


to cause evaporation and liquefaction of the operating fluid in the heat pipes, and the gasified fluid is cooled and liquified in the condensing zones


25




c


by external gas sucked by the fans


12


and


13


as shown by arrows


35


.




The gas having contributed to the cooling is exhausted through the holes


29


A


b


and


29


B


b


in the shields


29


A and


29


B (

FIGS. 6 and 7

) to the outside as shown by arrows


36


.




The gas having cooled the housing parts


4


and


5


on the side thereof opposite the stationary scroll wraps is exhausted through the holes


29


A


a


and


29


B


a


in the shields


29


A and


29


B (

FIGS. 6 and 7

) and together with gas having cooled the central part of the revolving scroll


3


to the outside as shown by arrows


39


and


40


(FIG.


8


).




The heat pipes


24


A and


24


B can transfer heat a great deal, specifically several hundred times compared to such good heat conductor metals as copper and aluminum. It is thus possible to cool the central part of the revolving scroll efficiently.




Besides, the heat pipes are light in weight because they each are hollow only have the wick structure defining the inner space filled with the operating fluid, while permitting very quick transfer of heat from locality remote from the source of heat and even with a small temperature difference. Efficient cooling of revolving scroll central part thus can be obtained.




It is further possible to easily set the heat transfer capacity by adequately designing the heat insulating zone


25




b


and appropriately designing the size and shape of the evaporating and condensing zones


25




a


and


25




c.







FIG. 13

is a view showing a modification of the shaft/fan assembly in the first embodiment of the scroll fluid machine of FIG. I according to the invention. In this case, a drive shaft


11


D into which cooling gas is introduced, comprises a small diameter cylindrical part


11


D


k,


a large diameter eccentric cylindrical part


11


D


a,


and a medium diameter cylindrical part


11


D


b.


The small and medium diameter parts


11


D


k


and


11


D


b


each have a cooling passage


11


D


d


of an equal diameter, and the large diameter eccentric part


11


D


a


has a cooling passage


11


D


j


of a greater diameter and is provided between two cooling passages


11


D


d


of left and right side. These parts


11


D


k,


left side


11


D


d,




11


D


j


and right side


11


D


d


are interconnected to one another in the mentioned order along line M—M on the inner peripheral surface of


11


D


a


and


11


D


j


by solders


4


cones having


40




a,




40




b


,


40




c


and


40




d


provided between adjacent ends of them.




With this construction, when the drive shaft


11


D, i.e., the passage


11


D


j


in the eccentric part


11


D


a,


is rotated, cooling gas introduced into the cooling passage


11


D


d


is spread in the passage


11


D


j


in the eccentric part


11


D


a


and is pushed by the inner peripheral surface of the passage


11


D


j,


thus generating a turbulent flow. Thus, efficient heat exchange can be obtained.





FIG. 14

is a view showing a modification of the shaft/fan assembly in the second embodiment of the scroll fluid machine according to the invention. In this case, a drive shaft


11


E into which cooling gas is introduced, comprises a small diameter cylindrical part


11


E


k,


a large diameter eccentric cylindrical part


11


E


a,


and a medium diameter cylindrical part


11


E


b,


these parts


11


E


k,




11


E


a


and


11


E


b


being interconnected along line N—N by solders


40




a


to


40




d


provided between adjacent ends of them. The small and medium diameter parts


11


E


k


and


11


E


b


each have a cooling passage


11


E


d


of an equal diameter, and the large diameter eccentric part


11


E


a


has a passage


11


E


j


of a greater diameter. A helical groove


11


E


h


is formed in the inner surfaces of the passages


11


E


d.






With this construction, when the drive shaft


11


E is rotated, the helical groove


11


E


d


forms a turbulent flow of cooling gas introduced into the cooling passage


11


E


d.


Further, with the rotation of the passage


11


E


j


of the eccentric part


11


E


a


the cooling gas is spread therein and pushed by the inner peripheral surface of this passage


11


E


j


, thus promoting the turbulent flow and permitting more efficient heat exchange.




As described before in connection with the second embodiment, it is possible to replace this turbulent flow forming means with a helical coil spring inserted in the passages


11


E


d


and


11


E


j.


As a further alternative, a mixing pipe having an outer diameter equal to the inner diameter of the cooling passages


11


E


d


for mixing two different fluids may be inserted in the passages


11


E


d.







FIG. 15

shows a modification of the shaft/fan assembly in the third embodiment of the scroll fluid machine according to the invention. In this case, a drive shaft


11


F has passages


11


F


r


and


11


F


l


formed in it at an angle α inclination with respect to its axis P of rotation from its opposite ends toward its eccentric portion


11


F


a.


Heat pipes


24


A and


24


B are disposed in the passages


11


F


r


and


11


F


l.


A fan


13


is provided on the drive shaft


11


F with its boss


21


A fitted on and secured to the right end


11


F


b


of the drive shaft


11


F. The fan


13


can exhaust cooling gas having cooled a heat radiating zone


25




c


of the heat pipe


24


A to the outside as shown by arrows


36


.




Another fan


12


is provided on the left end


11


F


e


of the drive shaft


11


F with its boss


21


B secured in position by screwing a nut


22


on a threaded end portion


11


F


f


of the drive shaft


11


F. The fan


12


can exhaust cooling gas having cooled a heat radiating zone


25




c


of the heat pipe


24


B as shown by arrows


36


.




With this modified construction, heat exchange is obtained by the operation as described above in connection with the third embodiment.




Specifically, the heat pipes


24


A and


24


B evaporate and gasify operating fluid in them by absorbing heat generated in the revolving scroll


3


from their heating zones (or evaporating zones)


25




a


in the vessels


25


, and in their condensing zones


25




c


the gasified fluid is cooled and liquified by external gas sucked by the fans


12


and


13


as shown by arrows


35


.




The external gas having contributed to the cooling is exhausted through the holes


29


A


b


and


29


B


b


in the shields


29


A and


29


B (

FIGS. 6 and 7

) to the outside as shown by arrow


36


.




Gas which has cooled the housing parts


4


and


5


on the side thereof opposite the stationary scroll wraps is exhausted through the holes


29


A


a


and


29


B


a


of the shields


29


A and


29


B (

FIGS. 6 and 7

) together with the gas having cooled the central part of the revolving scroll to the outside as shown by arrows


39


and


40


(FIG.


8


).




Since in this modification the passages


11


F


r


and


11


F


l


are inclined with respect to the drive shaft axis P, in the above heat exchange process the heating zones


25




a


revolve about the axis P to generate centrifugal forces forcing the operating fluid that is liquified in the condensing zones


25




c


to the heating zones


25




a,


thus promoting the re-circulation of the operating fluid and improving the cooling effect.




It will be seen that according to the invention it is possible to use heat pipes of rotary type utilizing centrifugal forces as well as heat pipes based on the operating fluid re-circulating system having capillary tube action type. Thus, a very wide range of heat pipes can be used.




The invention has so far been described in conjunction with the construction comprising the double-side revolving scroll with wraps embedded in the opposite side surfaces of the scroll body and the stationary scrolls as shown in FIG.


5


. However, this is by no means limitative, and the invention is also applicable to a construction comprising a single wrap revolving scroll with a single wrap embedded in only one side surface of a scroll body and a single stationary scroll. In this case, either the stationary scroll or the revolving scroll is located near the fan noted above. The fan can of course exhaust gas having cooled the heat pipes and also the stationary or revolving scroll on the side thereof opposite the wrap.




In the above embodiments of the invention, the fan is provided at one end of the drive shaft, which has the radial communication holes formed adjacent the other end of the cooling passage for communication thereof toward the outer periphery of axis. The fan serves to compulsively exhaust gas having contributed to the cooling of the cooling passage through the communication holes, thus cooling the revolving scroll central part while also cooling other parts of the scroll fluid machine with gas not passing through the cooling passage.




Specifically, the central part of the revolving scroll


3


is cooled by cooling gas


32


passing through the cooling passage


11


A


d


(

FIG. 1

) or


11


B


d


(FIG.


2


), while the gas having contributed to the cooling is compulsively exhausted by the fan


13


through the communication holes


11


A


c


(

FIG. 1

) Or


11


B


c


(FIG.


2


).




The fan


13


further exhausts gas having cooled the rear side of the housing part


4


as the stationary scroll opposite the wrap side thereof as shown by arrows


40


.




Thus, not only the revolving scroll central part but other scroll fluid machine parts can be cooled, thus improving the cooling efficiency.




As has been described in the foregoing, according to the invention the scroll fluid machine drive shaft, on which the central part of the revolving scroll is mounted, and which is coupled to the drive, can be cooled directly, that is, heat generated in the process, in which fluid sucked from the edge of the revolving scroll is fed to the central part thereof while being progressively compressed, can be removed at the central part which is elevated to the highest temperature. It is thus possible to efficiently cool bearings and seal members provided near the revolving scroll central part and the drive shaft.




In addition, the thermal expansion difference between the stationary and revolving scrolls can be eliminated to provide a uniform temperature distribution, prevent scoring of the wraps and extend the grease maintenance cycle, thus improving the durability.




Since heat generation can be reduced the clearance between adjacent scrolls can be reduced. Also, the high speed operation can be increased to increase the attainable pressure.




In the above embodiments, the wrap sliding surface of the revolving scroll is formed with the gas ballast suction hole, which has a smaller diameter than the thickness of the revolving scroll wraps so that it can be opened and closed by driving of above revolving scroll wrap, that is, closed above suction hole in synchronism to the instant when the final sealed spaces formed by the stationary and revolving scrolls are communicated with the discharge passage to the outside. More specifically, the gas ballast suction hole is closed while the final sealed spaces are communicated with the discharge passage. Thus, compressed fluid can be discharged through the discharge passage to the outside without possibility of its back flow through the suction hole.




Since the back flow of compressed fluid can be eliminated by a simple arrangement of setting the diameter of the suction hole to be smaller than the wrap thickness, it is not necessary to provide any particular check valve in the gas ballast suction hole.




In the above embodiments, which comprise the double side wrap revolving scroll with the wraps provided on the opposite sides and the first and second stationary wraps with the wraps thereof engaging with the respective revolving scroll wraps, the gas ballast suction hole is formed in one of the stationary scrolls, the communication hole is formed in the scroll body of the revolving scroll to lead gas to the sealed space formed by the wrap of the other stationary scroll and the associated revolving scroll wrap, and the discharge hole is formed in the afore-mentioned one stationary scroll, thereby discharging compressed gas from both the sealed spaces through the discharge hole to the outside. That is, the suction hole and the discharge hole are both formed in one of the stationary scrolls. In other words, those above two holes are provided concentrated on the side of the afore-mentioned one stationary scroll opposite the wrap side thereof. This construction is simple and ready to manufacture compared to the case of forming the holes distributed in the two stationary scrolls.




Moreover, since the communication hole formed in the scroll body of the revolving scroll leads gas, which is introduced through the gas ballast suction hole into the sealed space formed by one of the revolving scroll wraps and the wrap of one stationary scroll, to the sealed space formed by the other revolving scroll wrap and the wrap of the other stationary scroll, both the stationary scrolls need not be formed with a gas ballast suction hole. Only a single stationary scroll may be formed with a suction hole, thus simplifying the construction and manufacture.




The above embodiments can further be modified variously.




Introducing gas into the spaces R and L through the gas ballast suction hole as shown above is by no means limitative; it is possible to introduce gas ballast gas into the spaces S and T.




The suction pipe


10


and the discharge passage


4




c


,


4




d


may be provided on the side of the housing part


5


instead of providing them on the side of the housing part


4


(FIG.


8


).




It is possible to provide ballast gas suction holes in both the housing parts


4


and


5


to introduce gas ballast gas into the spaces R and L formed by the revolving and stationary scrolls from both sides. With this case, it is not necessary to arrange a suction hole


3




e


which connects the space R with L. Thus, ballast gas can be introduced quickly from both sides, and the cooling efficiency is improved.




It is of course possible to provide a discharge passage on the side of the housing part


5


as well as the discharge passage


4




c


,


4




d


on the side of the housing


4


.




As the gas ballast gas, atmospheric gas may be introduced through the suction pipe


10


. It is desirable to heat dry gas air, N


2


gas, etc. to be introduced. In this case, it is possible to hasten the drying of vapor or fluid in the scroll wrap and prevent deterioration.




Moreover, in the above embodiments it is possible to introduce N


2


gas or like diluting gas through the suction pipe to dilute any harmful gas sucked from a vessel to be evacuated in order to meet safety standards.




As has been shown, according to the invention cooling means having high cooling efficiency is used to prevent scoring of the wraps and extend the grease maintenance cycle for providing improved durability.




Also, by reducing the heat generation the clearance between adjacent scrolls can be reduced. Furthermore, the high speed operation can be increased to increase the attainable pressure.



Claims
  • 1. A scroll fluid machine comprising:a stationary scroll provided with a spiral wrap extending from a central part of a plate of the stationary scroll toward a perimeter thereof; a revolving scroll with a spiral wrap provided on a plate of the revolving scroll, said spiral wrap engaging said spiral wrap of said stationary scroll; and a drive shaft, said revolving scroll supported on an offset portion of the drive shaft so as to be revolved with rotation of said drive shaft, wherein the drive shaft is hollow and is provided with at least one heat pipe as a heat transfer means composed of a heat absorbing portion and a heat dissipating portion, said heat absorbing portion being disposed in a hollow part of an offset portion of said drive shaft and said heat dissipating portion being disposed in an end part toward the stationary scroll in the hollow drive shaft.
  • 2. The scroll fluid machine according to claim 1, wherein a hollow in the drive shaft in which each heat pipe is provided is inclined with regard to the rotational axis of said drive shaft in such a way that the center of said hollow is offset from a rotational axis of said drive shaft at a place corresponding to a remote end of the offset portion from a stationary scroll side end of said drive shaft and coincides with the rotational axis of said drive shaft at or near an end of said drive shaft at a stationary scroll side.
  • 3. The scroll fluid machine according to claim 1, wherein the heat transfer means further comprises a cooling fan provided at at least one end part of the drive shaft so as to cool the heat dissipating portion of each heat pipe, each heat pipe being composed of a heat absorbing portion and a heat dissipating portion.
  • 4. A scroll fluid machine comprising:first and second stationary scrolls, each of said scrolls being provided with a spiral wrap extending from a central portion of a plate thereof toward a perimeter thereof; a revolving scroll, said revolving scroll including a spiral wrap provided on each side of a plate of the revolving scroll, each spiral wrap engaging with the spiral wrap of one of said stationary scrolls; and a drive shaft, said revolving scroll supported on an offset portion of the drive shaft so as to be revolved with rotation of said drive shaft, wherein said drive shaft is hollow and has at least one heat pipe therein as a heat transfer means, each heat pipe being composed of a heat absorbing portion and a heat dissipating portion, said heat absorbing portion being disposed in a middle part and said heat dissipating portion being disposed in an end part of said hollow drive shaft.
  • 5. The scroll fluid machine according to claim 4, and further comprising two cooling fans provided at ends of the drive shaft, wherein said fans introduce air from the perimeters of the plates of the stationary scrolls and said air flows radially inwardly to central portions of said plates, cooling the rear surfaces of the scrolls and also cooling heat dissipation portions of each heat pipe and flows out through said cooling fans, and each heat absorbing portion cools a center portion of the revolving scroll.
  • 6. The scroll fluid machine according to claim 4, wherein the heat transfer means further comprises a cooling fan provided at end parts of the drive shaft so as to cool the heat dissipating portion of each heat pipe, each heat pipe being composed of a heat absorbing portion and a heat dissipating portion.
  • 7. The scroll fluid machine according to claim 4, wherein a hollow in the drive shaft in which the at least one heat pipe is inserted is inclined with regard to a rotational axis of said drive shaft in such a way that the center of said hollow is offset from the rotational axis of said drive shaft at the middle of said hollow and coincide with the rotational axis of said drive shaft at ends of said hollow.
  • 8. The scroll fluid machine according to claim 7, and further comprising two cooling fans provided at ends of the drive shaft, wherein said fans introduce air from the perimeters of the plates of the stationary scrolls and said air flows radially inwardly to central portions of said plates, cooling the rear surfaces of the scrolls and also cooling heat dissipation portions of each heat pipe and flows out through said cooling fans, and each heat absorbing portion cools a center portion of the revolving scroll.
Priority Claims (1)
Number Date Country Kind
7-334342 Nov 1995 JP
CROSS REFERENCE TO RELATED APPLICATION

This application is a division of application No. 09/161,387, filed Sep. 28, 1998, now U.S. Pat. No. 6,109,897, which in turn is a division of application No. 08/757,683, filed Nov. 29, 1996, now U.S. Pat. No. 5,842,843.

US Referenced Citations (3)
Number Name Date Kind
3842596 Gray Oct 1974
5101888 Sprouse et al. Apr 1992
5258046 Haga et al. Nov 1993