The present application claims priority from Japanese patent application JP2012-261858 filed on Nov. 30, 2012, the content of which is hereby incorporated by reference into this application.
The present invention relates to a scroll fluid machine.
JP-A-2000-120568 discloses a scroll fluid machine in which a cooling gas from a cooling fan is flowed in an introduction passage (a cooling wind passage) to cool a scroll body.
JP-A-2001-336488 discloses a scroll fluid machine that includes an upper side duct externally cooling an electric motor with a cooling wind from a cooling fan and a scroll duct connected to the upper side duct and cooling a fixed scroll.
In the scroll fluid machine disclosed in JP-A-2000-120568, when the introduction passage (cooling wind passage) is disposed left and the scroll body is disposed right, the dimension of the introduction passage in the left and right directions is constant. Therefore, when the cooling wind from the cooling fan is flowed in the introduction passage, the centrifugal force biases the cooling wind externally toward the fixed scroll, thereby reducing the cooling wind flow on the orbiting scroll side. Therefore, the orbiting scroll, which includes a driving portion and thus the cooling is important, has insufficient cooling efficiency.
In the scroll fluid machine disclosed in JP-A-2001-336488, the cooling wind after cooling the electric motor in the upper side duct is supplied to the fixed scroll, thereby providing insufficient cooling efficiency of the fixed scroll.
In view thereof, it is an object of the present invention to provide a scroll fluid machine that includes a cooling wind passage for flowing a cooling wind from a cooling fan in a compressor body and has a different dimension between the upstream side and the downstream side, thereby improving the cooling efficiency of the compressor body.
To solved the above issues, the present invention provides a scroll fluid machine including: a compressor body including a fixed scroll and an orbiting scroll opposed to the fixed scroll, the orbiting scroll orbiting; a drive shaft connected to the orbiting scroll; a cooling fan provided on the other side of the drive shaft opposite to the orbiting scroll, the cooling fan generating a cooling wind; and a cooling wind passage surrounded by walls in all directions, the cooling wind passage sending the cooling wind of the cooling fan to the compressor body, when the cooling wind passage being disposed left and the drive shaft being disposed right when seen from a direction in which the drive shaft extends, a dimension of the cooling wind passage in the left and right directions being smaller upstream than downstream of the cooling wind passage.
The present invention may provide a scroll fluid machine that has improved cooling efficiency of a compressor body.
Other objects, features and advantages of the invention will become apparent from the following description of the embodiments of the invention taken in conjunction with the accompanying drawings.
With reference to the accompanying drawings, the present invention will be described in more detail using an example of a scroll air compressor as a scroll fluid machine according to the embodiments of the present invention.
With reference to
A compressor body 1 includes an orbiting scroll 17 and a fixed scroll 18 opposite to each other. The opposite faces of the orbiting scroll 17 and the fixed scroll 18 have spiral wrap portions 19 and 20 vertically arranged thereon respectively. The wrap portions 19 and 20 form compression chambers 21. In addition, a drive shaft 4 has an eccentric portion (not shown) provided on the compressor body 1 side thereof. The drive shaft 4 is connected to the orbiting scroll 17 to rotationally drive the orbiting scroll 17. The orbiting scroll 17 includes a rotation-preventing mechanism (not shown). The drive shaft 4 provides an orbiting (eccentric) motion of the orbiting scroll 17 with respect to the fixed scroll 18, thereby compressing the air.
A motor drives the compressor body 1. The motor includes a motor casing 3, which accommodates a rotor 2a and a stator 2b. The drive shaft 4 passes through the rotor 2a and is attached thereto. The motor is coupled to the drive shaft 4. In addition, a cooling fan 5 for generating a cooling wind is attached on the side of the drive shaft 4 opposite to the orbiting scroll 17.
The cooling fan 5 is accommodated in a fan casing 6 attached to the motor casing 3. The motor 2 is driven to rotate the cooling fan 5, thereby sucking a cooling gas from the cooling wind inlet 7 to generate the cooling wind. After being generated by the cooling fan 5, the cooling wind is redirected by a bend 8 of the fan casing 6. The cooling wind is then flowed in a cooling wind passage (a fan duct) 12. The cooling wind passage 12 is surrounded by four walls (an outside wall 10, an inside wall 11, an upper side wall 27, and a lower side wall 28) provided to a connection 9. The cooling wind passage 12 is separated from the heat-producing motor 2 (the motor casing 3) by the inside wall 11. The cooling wind passage 12 may thus supply a low-temperature cooling wind to the compressor body 1 without being affected by the heat generation of the motor 2. After flowing in the cooling wind passage 12, the cooling wind flows from upstream to downstream of the arrow 2 in
With reference now to
The rotation of the cooling fan 5 sucks a cooling gas from the cooling wind inlet 7 and then pushes out the cooling gas toward the rotational direction (the hollow arrow direction 30 in
Then, when the cooling wind flows through the bend 8, the centrifugal force produces the mainstream on the outside of the cooling wind (the left side of the arrow 3). Thus, after having passed through the connection 9, the flow of the cooling wind tends to lean toward the outside wall 10.
Therefore, the cooling wind passage 12 in this embodiment is formed such that the dimension in the left and right directions (the arrow 3 directions in
Bringing the inside wall 11 closer to the outside wall 10 at the connection 9 upstream of the cooling wind passage 12 may reduce the flow velocity difference between the flow near the outside wall 26a and the flow near the inside wall 26b. This may reduce the vortex generated by the flow velocity difference and thus reduce the loss. In addition, the inside wall 11 is inclined toward the drive shaft 4 downstream of the cooling wind passage 12 to bring the inside at the outlet of the cooling wind passage 12 (the connection 13) closer to the drive shaft 4 than the inside at the inlet (the connection 9). A flow toward the right of the arrow 3 is thus generated, thereby preventing the cooling wind from being biased to the fixed scroll 18, and thus reducing the reduction of the cooling efficiency of the orbiting scroll 17.
Further, the inside wall 11 is inclined toward the drive shaft 4 downstream of the cooling wind passage 12, and thus the inside wall 11 may be smoothly connected to the cooling wind inlet 15 on the orbiting scroll 17 side of the compressor body 1. This may decrease the curvature of the bend section 31 that connects the flow passage connection 13 to the cooling wind inlet 15 on the orbiting scroll side, thereby reducing the effect of the centrifugal force, reducing the vortex generation at the bend section 31 connected to the introduction duct 14, and reducing the flow passage loss.
Here, JP-A-2000-120568 discloses a configuration in which, unlike this embodiment, the outside wall and the inside wall are disposed in parallel with the drive shaft and thus a flow is generated that is biased to the outside of the cooling wind passage by the centrifugal force. Further, the protrusion generates the vortex, which increases the loss.
In this embodiment, after reaching the passage connection 13, the cooling wind is supplied to the compressor body 1 via the introduction duct 14. The introduction wall 14a of the introduction duct 14 is formed as a straight line inclined toward the cooling wind inlet 16 on the fixed scroll side. This may smoothly connect the cooling wind passage 12 and the cooling wind inlet 16 on the fixed scroll side, thereby reducing the flow passage loss due to the vortex generation. In addition, the connection 13 makes the flow velocity uniform, and thus the cooling wind may be flowed to the orbiting scroll 17 and the fixed scroll 18 in a proper balance. In addition, the introduction wall 14b may cause the cooling wind to collide with the introduction wall 14b, thereby generating a flow toward the cooling fin bottom 23 of the fixed scroll 18 to be cooled. The orbiting scroll 17 and the fixed scroll 18 may thus be cooled efficiently. Note that the introduction wall 14b may be inclined toward the cooling fin bottom 23 to provide the same effect.
Thus, according to this embodiment, the dimension in the left and right directions upstream of the cooling wind passage 12 is formed smaller than the dimension in the left and right directions on the downstream side. This may reduce the flow passage difference between the outside and the inside of the cooling wind passage 12, thereby reducing the flow passage loss due to the vortex generation and thus improving the cooling efficiency of the compressor body 1. In addition, the inside wall 11 is inclined toward the drive shaft 4 downstream of the cooling wind passage 12. This may reduce the flow passage loss due to the vortex generation in the introduction duct 14, thereby improving the cooling efficiency of the compressor body 1. In addition, the introduction wall 14a of the introduction duct 14 is inclined toward the cooling wind inlet 16 on the fixed scroll side. This may reduce the flow passage loss duo to the vortex generation in the introduction duct 14, thereby improving the cooling efficiency of the compressor body 1.
With reference to
Therefore, in this embodiment, the dimension in the upper and lower directions (of the arrow 4 in
Here, the flow of the cooling wind in this embodiment will be described. The cooling wind is pushed out toward the rotational direction of the cooling fan 5. The cooling wind then collides with the bend 8 and thus is divided into flows toward the upper side wall 27 and the lower side wall 28 directions, like the cooling wind flows 29a and 29b shown in
In addition, although in this embodiment in
Thus, according to this embodiment, the dimension in the upper and lower directions upstream of the cooling wind passage 12 is larger than the dimension in the upper and lower directions on the downward side. This may reduce the flow passage loss upstream of the cooling wind passage 12, thereby improving the cooling efficiency of the compressor body 1.
Although Embodiments 1 and 2 have been described with respect to a scroll air compressor as a scroll fluid machine, the present invention is not limited to a scroll fluid machine. The present invention is also applicable to any fluid machine (fluid compressor) that is driven by a motor and needs to improve the cooling efficiency, such as a reciprocating compressor or a screw compressor. Meanwhile, the present invention may be applied to a scroll fluid machine in which it is important to balance the cooling of the fixed scroll and the orbiting scroll, thereby improving the cooling efficiency even more.
The embodiments described so far only show examples of the implementation to practice the present invention, and they do not construe the scope of the invention in a limited manner. In other words, the present invention may be implemented in various forms without departing from the technical idea and the main features thereof.
Number | Date | Country | Kind |
---|---|---|---|
2012-261858 | Nov 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4129405 | McCullough | Dec 1978 | A |
5417554 | Kietzman et al. | May 1995 | A |
6190145 | Fujioka et al. | Feb 2001 | B1 |
20050169788 | Komai et al. | Aug 2005 | A1 |
20090087331 | Komai et al. | Apr 2009 | A1 |
20100028185 | Kobayashi et al. | Feb 2010 | A1 |
20110300012 | Fujioka et al. | Dec 2011 | A1 |
20120189480 | Yamazaki et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
2224136 | Sep 2010 | EP |
2000-120568 | Apr 2000 | JP |
2000291574 | Oct 2000 | JP |
2001-336488 | Dec 2001 | JP |
2001336488 | Dec 2001 | JP |
2005-139976 | Jun 2005 | JP |
2010007644 | Jan 2010 | JP |
Entry |
---|
“Engineers hand-book of tables, charts and data on the application of centrifugal fans and fan system . . . ”, 1914, The Buffalo Forge Company, p. 120-126. |
Korean Office Action dated Oct. 8, 2014 (Three (3) pages). |
Number | Date | Country | |
---|---|---|---|
20140154122 A1 | Jun 2014 | US |