The invention relates to a scroll-type compressor for a CO2 vehicle air conditioning system, and to a CO2 vehicle air conditioning system having a scroll-type compressor of said type.
For the air conditioning of motor vehicles, use is made of non-combustible refrigerants in order to avoid the risk of an explosion in the vehicle interior compartment in the event of an accident. The refrigerants that have hitherto been used have, however, either already been banned, or are at least regarded as problematic, owing to their high global warming potential. One possible environmentally compatible, non-combustible refrigerant is CO2 (R744), which has already partially replaced the previous refrigerants. CO2 air conditioning systems, however, operate with high operating pressures, which place particularly high demands on the strength and sealing action of the system components. The advantage associated with the high operating pressure consists in that, owing to the relatively high density of CO2, a lower volume flow rate is required to obtain a relatively high level of cooling power.
A scroll-type compressor for a CO2 vehicle air conditioning system having the features of the preamble of claim 1 is known from JP 2006/144635 A. In general, scroll-type compressors of said type have rotational-speed-regulated electric drives in order to control the refrigeration power of the compressor. In conjunction with vehicle air conditioning systems that operate with conventional, low-pressure refrigerants, scroll-type compressors of simple construction are also known in which power regulation is realized by virtue of the compressor being activated or deactivated.
Accordingly, U.S. Pat. No. 6,273,692 B1 discloses a scroll-type compressor having a mechanical drive which can be connected to the compressor unit by means of an electromagnetic clutch. Such clutches generally have a heavy steel disk. The mass moment of inertia is therefore high, which has a correspondingly adverse effect on fuel consumption. Furthermore, the clutch is an expensive component. US 2002/0081224 A1 discloses a variable low-pressure scroll-type compressor which can be activated and deactivated by means of a radial movement of one of the two scroll spirals. Here, the eccentricity between the two scroll spirals is eliminated, which scroll spirals accordingly pass out of engagement in the radial direction.
The invention is based on the object of specifying a scroll-type compressor for a CO2 vehicle air conditioning system, which scroll-type compressor is of simple construction and permits power regulation. The invention is furthermore based on the object of specifying a CO2 vehicle air conditioning system having a scroll-type compressor of said type.
According to the invention, the object is achieved by means of a scroll-type compressor for a CO2 vehicle air conditioning system having the features of claim 1. With regard to the CO2 vehicle air conditioning system, the object is achieved by means of the subject matter of claim 15.
The invention has numerous advantages.
The use of a mechanical drive or of an electric drive with a fixed rotational speed, that is to say a rotational speed that does not vary with time, permits a design which is inexpensive in relation to rotational-speed-regulated compressors. Power regulation is performed by means of the alternating movement of the counterpart spiral relative to the displacement spiral in the axial direction. By means of said movement, a pressure equalization gap is formed temporarily between the counterpart spiral and the displacement spiral, such that compressed gas can flow radially outward from those chambers of the compressor which are situated radially further to the inside. The pressure in the scroll-type compressor is depleted in this way. Here, the displacement spiral continues to rotate, such that a clutch for interrupting the power flow between the drive and the displacement spiral is not required. The scroll-type compressor according to the invention can therefore be implemented without a clutch.
The implementation of the scroll-type compressor as a clutchless compressor leads to a significant reduction in the mass moment of inertia. Since the displacement spiral co-rotates in the load-free state, the start-up torque is eliminated in the scroll-type compressor according to the invention. Furthermore, the loading of the rotating components is greatly reduced, and fuel consumption is lowered. The scroll-type compressor according to the invention exhibits very smooth running and low noise.
The alternating movement of the counterpart spiral is effected by way of an axial release force and a closing force that opposes said axial release force. According to the invention, the axial release force is produced by a spring which is arranged between the displacement spiral and the counterpart spiral. The release force lifts the counterpart spiral from the displacement spiral, such that the pressure equalization gap is formed in between and the scroll-type compressor is deactivated (open position). For the axial closing force, a piston is provided which engages on the counterpart spiral adjacent to the pressure chamber. The closing force places the counterpart spiral in contact with the displacement spiral. In the process, the pressure equalization gap is closed, and the scroll-type compressor is activated (closed position).
The arrangement according to the invention of the spring and of the piston leads to a compact and robust construction of the scroll-type compressor, the power of which can be regulated by means of the alternating movement of the counterpart spiral. The arrangement of the piston adjacent to the pressure chamber has the effect that the pressure chamber can be connected directly to the outlet for the compressed gas formed in the counterpart spiral. The pressure chamber can thus be implemented without internals, whereby problems with regard to the sealing action in the region of the pressure chamber can be avoided.
By comparison with the prior art, the invention makes it possible for scroll-type compressors for CO2 vehicle air conditioning systems to be constructed whose mass moment of inertia is lower, by an overall factor of 3, than that of known scroll-type compressors. In absolute numbers, the invention makes it possible for scroll-type compressors to be constructed which have a maximum mass moment of inertia of 500 kgmm2.
A particularly space-saving design can be realized by means of the preferred arrangement of the spring opposite the pressure chamber. If the piston additionally comprises an annular piston which is arranged so as to be displaceable coaxially with respect to the counterpart spiral, the overall result is a robust construction for the introduction of the release and closing forces into the counterpart spiral. The annular piston moreover has the advantage that the closing force is introduced over a relatively large surface area, whereby the surface pressure of the piston required for the closing force is distributed uniformly.
The pressure differences that exist in any case between the high-pressure side and the suction side of the scroll-type compressor are utilized for the actuation of the piston if the piston is mounted in a piston guide which can be connected to the high-pressure side and to the suction side of the scroll-type compressor in alternating fashion. To prevent compressed gas from flowing from the high-pressure side to the suction side, and the displacement spiral rotating backward, in the event of the counterpart spiral being lifted from the displacement spiral, a check valve is positioned downstream of the pressure chamber in the flow direction. In a further preferred embodiment, the pressure chamber has a dual function and serves firstly for the damping of gas pulsations and secondly as a guide for the counterpart spiral. For this purpose, a rear wall, arranged on the high-pressure side, of the counterpart spiral forms the base of the pressure chamber, wherein the counterpart spiral has a flange which bears in axially movable fashion against an inner wall of the pressure chamber. Said dual function contributes to the compact design of the scroll-type compressor.
The sealing action can be improved if an accommodating space, which is closed off with respect to the suction side, for the eccentric bearing is fluidically connected to the pressure chamber, and a rear wall of the displacement spiral can be acted on with a surface pressure.
It has been found that a relatively small eccentricity is sufficient for adequate compression of the refrigerant. For this purpose, the distance between the central point of the counterpart spiral and the central point of the displacement spiral may be at most 1.5 mm, in particular at most 1.2 mm, in particular at most 1.0 mm, in particular at most 0.8 mm, in particular at most 0.6 mm, in particular at most 0.4 mm, in particular at most 0.2 mm. The lower limit may be 0.1 mm. It is preferable for the counterpart spiral to have a winding angle of 660° to 720°, in particular of 680° to 700°, whereby adequate compression of the refrigerant is achieved.
In a further preferred embodiment, it is provided that the eccentric bearing is arranged in the displacement chamber between the displacement spiral and the counterpart spiral and has a bearing bushing which is formed integrally with the displacement spiral and the base of which is in alignment with the face side of the windings of the displacement spiral. Thus, the bearing bushing of the eccentric bearing is arranged so as to be recessed in the direction of the high-pressure side, wherein the eccentric bearing is situated at least partially at the level of the windings of the counterpart spiral. The eccentric bearing thus protrudes into the counterpart spiral. The innermost volume, which in the case of the known low-pressure scroll-type compressors is utilized for the final compression stage, between the displacement spiral and the counterpart spiral is, in this embodiment, at least partially utilized for forming the bearing bushing and thus for accommodating the eccentric bearing. In this way, any tilting moments are reduced, and running smoothness is improved. Furthermore, said embodiment has the further advantage that the bearing bushing, arranged in a recessed position, forms an abutment surface for the spring between the displacement spiral and the counterpart spiral. Said embodiment is therefore particularly advantageous in conjunction with the arrangement of the spring opposite the pressure chamber.
Any tilting moments are further reduced if the displacement spiral has a central recess in which there is at least partially accommodated a counterweight which is connected to the eccentric bearing. The volume of the pressure chamber is preferably greater by a factor of 5-7, in particular by a factor of 6, than the suction volume per revolution of the displacement spiral, whereby gas pulsations can be reduced in an effective manner.
The invention will be explained in more detail with reference to the appended schematic drawings and on the basis of exemplary embodiments.
The scroll-type compressor described in detail below is designed for use in a CO2 vehicle air conditioning system which typically comprises a gas cooler, an internal heat exchanger, a throttle, an evaporator and a compressor. Such systems are designed for maximum pressures of over 100 bar. The compressor is a scroll-type compressor, also referred to as a spiral-type compressor. As illustrated in
The scroll-type compressor furthermore comprises a housing 30 with a housing cover 31 which closes off the high-pressure side of the compressor and which is screwed to the housing 30. In the housing 30 there is arranged a housing intermediate wall 32 which delimits a suction chamber 33. In the housing base 34 there is formed a passage opening through which a drive shaft 11 extends. That shaft end which is arranged outside the housing 30 is connected rotationally conjointly to a driver 35 which engages into the belt pulley rotatably mounted on the housing 30, such that a torque can be transmitted from the belt pulley to the drive shaft 11. The drive shaft 11 is rotatably mounted at one side in the housing base 34 and at the other side in the housing intermediate wall 32. The drive shaft 11 is sealed with respect to the housing base 34 by means of a first shaft seal 36 and with respect to the housing intermediate wall 32 by means of a second shaft seal 37.
The drive shaft 11 transmits the torque to a compressor unit, which is constructed as follows.
The compressor unit comprises a movable displacement spiral 13 and a counterpart spiral 14. The displacement spiral 13 and the counterpart spiral 14 engage into one another. The counterpart spiral 14 is fixed in the circumferential direction and in the radial direction. The movable displacement spiral 13, which is coupled to the drive shaft 11, describes a circular path, such that, in a known way, said movement causes multiple gas pockets or gas chambers to be generated which travel radially inward between the displacement spiral 13 and the counterpart spiral 14. By means of said orbiting movement, refrigerant vapor is drawn into the open gas chamber at the outside and is compressed by way of the further spiral movement and the associated reduction in size of the gas chamber. The refrigerant vapor is compressed in linearly progressive fashion from radially outside to radially inside, and is discharged, at the center of the counterpart spiral 14, into a pressure chamber 15.
For the orbiting movement of the displacement spiral 13, there is provided an eccentric bearing 12 which is connected to the drive shaft by means of an eccentric pin 38 (see
A rotational movement of the displacement spiral is prevented by means of multiple guide pins 39 which, as illustrated in
The scroll-type compressor illustrated in
The axial guidance required for the axial mobility of the counterpart spiral 14 is realized by means of the pressure chamber 15, which furthermore dampens gas pulsations. The pressure chamber 15 thus has a dual function:
It is positioned downstream of the counterpart spiral in the flow direction and is fluidically connected to said counterpart spiral by the outlet (not illustrated) of the counterpart spiral 14. The outlet is not arranged exactly at the central point of the counterpart spiral 14 but rather is situated eccentrically in the region of the innermost chamber between the displacement spiral 13 and the counterpart spiral 14. It is achieved in this way that the outlet is not covered by the bearing bushing 26 of the eccentric bearing 12, and the fully compressed vapor can be discharged into the pressure chamber 15.
For the axial guidance of the counterpart spiral 14, the pressure chamber 15 forms, on the axial end facing toward the counterpart spiral 14, an inner sliding surface 42. The sliding surface 42 is machined and seals against the counterpart spiral 14. The rear wall 21 of the counterpart spiral 14 forms the base of the pressure chamber 15. The counterpart spiral 14 thus terminates directly at the pressure chamber 15. The rear wall 21 furthermore has a flange 22, in particular an annular flange 22, which bears against the sliding surface 42 of the pressure chamber 15. The flange 22 serves as an axial guide for the counterpart spiral 14 in the pressure chamber 15. On the outer circumference of the flange 22 there is formed a groove with a sealing means, for example a sealing ring 43. The pressure chamber 15 is delimited by a circumferential wall 44 which forms a stop 45 and which limits the axial movement of the counterpart spiral 14.
The pressure chamber 15 is provided in the housing cover 31. This facilitates the installation of the axially movable counterpart spiral 14. Furthermore, said pressure chamber has a rotationally symmetrical cross section.
Oppositely directed axial forces are required for the alternating movement of the counterpart spiral 14 between the open position (
As can be clearly seen in
To move the counterpart spiral 14 from the open position illustrated in
As can be seen in
The annular piston 17 has a pressure ring 47 that is connected to a base 48 of the piston. The piston base 48 is mounted in an axially displaceable and pressure-tight manner in an axial guide 18. The axial guide 18 is in the form of an annular chamber. For the actuation of the annular piston 17, the annular chamber is connected to a supply port 20c. As illustrated in
Power regulation of the scroll-type compressor is realized by activation and deactivation of the compressor power, specifically by changing the frequency of the cyclic or alternating movement of the counterpart spiral 14.
The compressed gas that is collected in the pressure chamber 15 flows out of the pressure chamber 15 through an outlet 49 into an oil separator 29, which in the present case is in the form of a cyclone separator. The compressed gas flows through the oil separator 29 and a check valve 19 into the circuit of the air conditioning system. The check valve 19, which prevents a back flow of the compressed gas into the deactivated scroll-type compressor, is designed for example for pressure differences from 0.5 to 1 bar.
The sealing of the displacement spiral 13 against the counterpart spiral 14 in the axial direction is assisted by virtue of a rear wall 25 of the displacement spiral being acted on with high pressure. For this purpose, an accommodating space 24, also referred to as backpressure space (
The accommodating space 24 is fluidically separated from the suction space 33 by the second shaft seal 37 described in the introduction. A sealing and slide ring 52 is arranged between the displacement spiral 13 and the housing intermediate wall 32 and seals off the accommodating space 24 with respect to the high-pressure side. The sealing and slide ring 52 is seated in an annular groove in the housing intermediate wall 32. A gap (not illustrated) is formed between the housing intermediate wall 32 and the displacement spiral 13. The displacement spiral 13 is thus supported in the axial direction not directly on the housing intermediate wall 32 but rather on the sealing and slide ring 52, and slides on the latter. For this purpose, the sealing and slide ring 52 projects out of the annular groove and seals off the gap. The gap may be approximately 0.2 mm to 0.5 mm wide.
For the connection to the high-pressure side, a line 50 connects the oil separator 29 to the accommodating space 24. Said line extends through the housing cover 31, through the counterpart spiral 14 and through the intermediate wall 32. Between the oil separator 29 and the accommodating space 24, specifically between the counterpart spiral 14 and the housing cover 31, there is arranged a pressure reducer 53 which ensures that a pressure difference of approximately 10%-20% prevails between the high-pressure side and the accommodating space 24. It is achieved in this way that, in the closed position, the axial surface pressure between the displacement spiral 13 and the counterpart spiral 14, and thus the axial sealing action, is increased.
From a thermal aspect, the scroll-type compressor illustrated in
In this way, it is possible for the housing cover 31 to be manufactured for example from aluminum, without there being the risk of excessive heat transfer from the high-pressure side to the suction side.
The only difference between the scroll-type compressor as per
The advantages of the scroll-type compressor according to the invention are illustrated in
10 Drive
11 Drive shaft
12 Eccentric position
13 Displacement spiral
14 Counterpart spiral
15 Pressure chamber
16 Spring
17 Piston/annular piston
18 Piston guide
19 Check valve
20
a High-pressure port
20
b Suction pressure port
20
c Supply port
21 Rear wall of counterpart spiral
22 Flange
23 Inner wall
24 Accommodating space
25 Rear wall of displacement spiral
26 Bearing bushing
27 Recess
28 Counterweight
29 Oil separator
30 Weight
31 Housing cover
32 Housing intermediate wall
33 Suction chamber
34 Housing base
35 Driver
36 First shaft seal
37 Second shaft seal
38 Eccentric pin
39 Guide pins
40 Guide bores
41 Pressure equalization gap
42 Sliding surface
43 Sealing ring
44 Wall
45 Stop
46 Central recess
47 Pressure ring
48 Piston base
49 Outlet
50 Line
51 Internal jacket
52 Slide and sealing ring
53 Pressure reducer
Number | Date | Country | Kind |
---|---|---|---|
13168737.8 | May 2013 | EP | regional |
This Application claims priority to EP Patent Application No. EP 13168737.8 filed on May 22, 2013, the disclosure of which is incorporated in its entirety by reference herein.