Claims
- 1. In a scroll type fluid displacement compressor including a pair of scrolls each having a circular end plate and a spiral wrap extending from an axial end surface of said circular end plate, said pair of scrolls being maintained at an angular and radial offset so that said spiral wraps interfit to form a plurality of line contacts between their spiral curved surfaces to thereby seal off and define at least one pair of fluid pockets, a driving mechanism operatively connected to one of said scrolls to effect relative orbital motion with respect to the other of said scrolls to thereby change the volume of the fluid pockets, and an involute plate disposed on an axial end surface of the circular end plate of both said scrolls to cover the area on which contact is made by an axial end surface of the opposing spiral wrap, the improvement comprising a depressed portion formed at the entire center high pressure portion only of said end plates of both said scrolls to increase volumetric efficiency by compensating for thermal expansion, said depressed portion and said involute plate defining an axial air gap between an inner end surface of said involute plate and a bottom surface of said depressed portion on both said scrolls.
- 2. The scroll type fluid displacement compressor of claim 1 wherein each of said spiral wraps is provided with a groove at an axial end surface thereof and a seal element is disposed in said groove.
- 3. In a scroll-type fluid displacment compressor including a housing having a fluid inlet port and fluid outlet port, a fixed scroll fixedly disposed within said housing and having a circular end plate from which a first spiral wrap extends, an orbiting scroll having a circular end plate from which a second spiral wrap extends, said first and second spiral wraps interfitting at an angular and radial offset to form a plurality of line contacts to define at least one pair of sealed off fluid pockets, a driving mechanism operatively connected to said orbiting scroll to effect the orbital motion of said orbiting scroll and a rotation preventing means for preventing the rotating motion of said orbiting scroll during the orbital motion of said orbiting scroll to thereby change the volume of the fluid pockets, the improvement comprising an involute plate disposed on both of said end plates of said fixed and orbiting scrolls to cover the area on which contact is made by an axial end surface of the opposing spiral wrap, and a depressed portion formed at the entire center high pressure portion only of said end plates of both said scrolls to increase volumetric efficiency by compensating for thermal expansion, said depressed portion and said involute plate defining an axial air gap between an inner end surface of said involute plate and the opposing surface of said end plate on both said scrolls.
Parent Case Info
This application is a continuation, of application Ser. No. 697,746, filed Feb. 4, 1985, abandoned.
US Referenced Citations (7)
Foreign Referenced Citations (2)
Number |
Date |
Country |
12615 |
Jun 1980 |
EPX |
55-35155 |
Mar 1980 |
JPX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
697746 |
Feb 1985 |
|