The present invention relates to a scroll-type fluid machine.
As a background art of the present invention, in Patent Literature 1, a scroll fluid machine is described in which a crank type rotation prevention mechanism that prevents an orbiting scroll from rotating with respect to a stationary scroll is provided in an end plate of the orbiting scroll, and an elastic body is provided in a gap between the crank type rotation prevention mechanism and the end plate.
Also, in Patent Literature 2, a scroll-type fluid machine is described in which stays are provided which can be elatically deformed in the radial direction in bearing housings that retain orbiting side bearings of a support plate provided on the back surface side of an end plate of an orbiting scroll.
Further, in Patent Literature 3, an oil-free scroll fluid machine is described in which a connection plate is provided so as to oppose an end plate of an orbiting scroll, and communication ports that become flow passages of cooling air are provided in the connection plate.
Patent Literature 1: JP-A-S62-078494
Patent Literature 2: JP-A-H09-228966
Patent Literature 3: JP-A-2003-065267
In a scroll-type fluid machine, a rotation prevention mechanism preventing rotation of an orbiting scroll is provided between the orbiting scroll and a casing. The orbiting scroll thermally expands greatly by compression heat, whereas the casing does not thermally expand greatly as the orbiting scroll does. Therefore, an excessive load was applied to the rotation prevention mechanism because of the thermal expansion difference between the both.
In the scroll fluid machine described in Patent Literature 1, the crank type rotation prevention mechanism is attached directly to the end plate of the orbiting scroll. Therefore, the thermal expansion difference between the orbiting scroll and the casing was large, and it was not sufficient for reduction of the load applied to the rotation prevention mechanism only to arrange the elastic body in the gap between the crank type rotation prevention mechanism and the end plate.
In the scroll-type fluid machine described in Patent Literature 2, the rotation prevention mechanisms (auxiliary cranks) are not attached directly to the end plate of the orbiting scroll, but are arranged in the support plate that is separate from the orbiting scroll. Therefore, because the support plate thermally expands less than the orbiting scroll does, a load applied to the rotation prevention mechanisms (auxiliary cranks) is reduced compared with Patent Literature 1. However, even in that case, the thermal expansion difference between the support plate and the casing was not sufficiently small, and it was necessary to further reduce the load applied to the rotation prevention mechanisms (auxiliary cranks)
In the structure of Patent Literature 2, because the stays and the support plate contacted each other, the thermal expansion difference between the support plate and the casing could not be absorbed sufficiently by the friction resistance of the contact surface. Also, the center (a portion where the drive shaft is located) of the support plate and the rotation prevention mechanisms (auxiliary cranks) were connected to each other in the radial direction, and the support plate could not sufficiently absorb the thermal expansion difference between the orbiting scroll and the casing when the thermal expansion difference was generated between the support plate and the casing. Therefore, the load applied to the rotation prevention mechanisms could not be reduced.
Also in the oil-free scroll fluid machine described in Patent Literature 3, similarly to that of Patent Literature 2, the rotation prevention mechanisms are provided between the connection plate that is separate from the orbiting scroll and the casing. However, although the communication ports are provided in the connection plate, the center (a portion where the drive shaft is located) of the connection plate and the rotation prevention mechanism are connected to each other in the radial direction. Therefore, when the thermal expansion difference was generated between the connection plate and the casing, the portion of the connection plate where the rotation prevention mechanisms were located could not be elastically deformed to the center side, and the load applied to the rotation prevention mechanisms could not be reduced.
In view of the problems described above, the object of the present invention is to provide a scroll-type fluid machine capable of extending the service life by reducing the load applied to the rotation prevention mechanisms.
In order to solve the problems described above, the present invention provides a scroll-type fluid machine including a stationary scroll, an orbiting scroll that is provided opposing the stationary scroll and undergoes turning movement, a casing provided on the outside of the orbiting scroll, a drive shaft that drives and turns the orbiting scroll, a boss plate part that is provided separated from the orbiting scroll and is connected to the drive shaft, and multiple rotation prevention mechanisms provided between the boss plate part and the casing, in which the boss plate part includes multiple rotation prevention mechanism-side boss plate parts connected to the rotation prevention mechanisms and a drive shaft-side boss plate part connected to the drive shaft, and spaces are provided between the rotation prevention mechanism-side boss plate parts and the drive shaft-side boss plate part.
According to the present invention, it is possible to provide a scroll-type fluid machine capable of extending the service life by reducing the load applied to the rotation prevention mechanisms.
[
[
[
[
[
[
A scroll-type compressor as an embodiment of a scroll-type fluid machine of the present invention will be described based on
Compressor body 1 employs a scroll-type air compressor, and is formed of casing 2, stationary scroll 3, orbiting scroll 4, drive shaft 10, crank part 11, rotation prevention mechanisms 17, and the like described below.
Casing 2 forms an outer shell of compressor body 1, and is formed into bottomed cylindrical shape in which one side in the axial direction is closed and the other side in the axial direction is opened as shown in
Also, inside cylindrical part 2A of casing 2, orbiting scroll 4, crank part 11, rotation prevention mechanisms 17, and the like described below are stored.
Stationary scroll 3 as one scroll member is provided so as to be fixed on the open end side of casing 2 (cylindrical part 2A). Stationary scroll 3 is generally formed of end plate 3A formed into a disk shape, lap part 3B of a spiral shape erected on the surface of end plate 3A, support part 3C of a cylindrical shape provided on the outer peripheral side of end plate 3A so as to surround lap part 3B from the outside in the radial direction and fixed to the open end side of casing 2 (cylindrical part 2A) by multiple bolts (not illustrated) and the like, and cooling fins 3D disposed on the opposite side of lap part 3B with end plate 3A in between.
Orbiting scroll 4 forming the other scroll member is rotatably provided within casing 2 so as to oppose stationary scroll 3 in the axial direction. Also, as shown in
Motor 5 provided behind the compressor rotates drive shaft 10 that is rotatably supported by two bearings 5A, 5B.
Boss plate part 6 of orbiting scroll 4 is provided between orbiting scroll 4 and crank part 11 so as to be separate from orbiting scroll 4. The center of boss plate part 6 is disposed so as to be eccentric in the radial direction by a specific dimension (turning radius) determined beforehand with respect to the center of stationary scroll 3.
Multiple compression chambers 7 defined so as to overlap each other between lap part 3B of stationary scroll 3 and lap part 4B of orbiting scroll 4 are respectively formed between these lap parts 3B, 4B so as to be sandwiched by end plates 3A, 4A.
Suction port 8 provided on the outer peripheral side of stationary scroll 3 is for sucking air from the outside through intake filter 8A and the like for example. The air sucked by suction port 8 is continuously compressed within the respective compression chambers 7 accompanying the turning motion of orbiting scroll 4.
Discharge port 9 provided on the center side of stationary scroll 3 is for discharging compressed air toward the side of a storage tank (not illustrated) described below from compression chamber 7 located on the innermost diameter side out of the multiple compression chambers 7.
Drive shaft 10 rotatably provided through bearings 5A, 5B of motor 5 is rotatively driven by motor 5 that is detachably connected to casing 2. Also, to the distal end side (the other side in the axial direction) of drive shaft 10, boss part 4C of orbiting scroll 4 is turnably attached through crank part 11 and turning bearing 13 described below. On drive shaft 10, balance weight 12 is provided in order to stabilize the turning motion of orbiting scroll 4, and rotates integrally with drive shaft 10 at the time of operating the compressor.
Crank part 11 of drive shaft 10 arranged so as to be integral with the distal end side of drive shaft 10 is connected to boss plate part 6 of orbiting scroll 4 through turning bearing 13 that is stored in bearing boss 6A. Also, crank part 11 rotates integrally with drive shaft 10. Rotation of this time is converted to the turning motion of orbiting scroll 4 through turning bearing 13.
Orbiting scroll 4 is driven by motor 5 through drive shaft 10 and crank part 11, and performs a turning motion with respect to stationary scroll 3 in a state rotation is restricted by rotation prevention mechanisms 17 described below.
Thus, compression chamber 7 on the outside diameter side out of the multiple compression chambers 7 sucks air from suction port 8 of stationary scroll 3, and this air is compressed continuously within the respective compression chambers 7. Also, compression chamber 7 on the inside diameter side discharges compressed air toward the outside from the discharge port 9 located on the center side of end plate 3A.
Turning bearing 13 disposed between boss plate part 6 of orbiting scroll 4 and crank part 11 supports boss part 4C of orbiting scroll 4 so as to be turnable with respect to crank part 11. Turning bearing 13 compensates the turning motion of orbiting scroll 4 with respect to the axis of drive shaft 10 with a predetermined turning radius.
On the outside diameter side of boss plate part 6, rotation prevention mechanisms 17 (only one piece is illustrated in
Cooling fan 22 attached to the rear end of drive shaft 10 generates a cooling wind by rotation along with drive shaft 10. The cooling wind is guided to cooling fins 3D, 4C of each of stationary scroll 3 and orbiting scroll 4 by wind guide duct 23, passes through the gap between the fins and casing 2 side of boss plate part 6, and cools each portion whose temperature becomes high by the compression heat.
According to the present embodiment, spaces 24 are formed on straight lines that connect the center part of boss plate part 6 (drive shaft side boss plate part 6F) and rotation prevention mechanism side boss plate parts 6E to each other. Therefore, even when boss plate part 6 thermally expands greatly with respect to casing 2 due to the effect of the heat generated in compression chambers 7, rotation prevention mechanism side boss plate parts 6E moves inward in the radial direction relatively to drive shaft side boss plate part 6F. Thus, the dimension difference between the distance of bearing boss 6A from the center of end plate 3A and the distance of bearing boss 2D from the center of casing 2 reduces, and an excessive load applied to rotation prevention mechanisms 17 and auxiliary crank bearings 20, 21 can be reduced.
The cross section of support part 24A is configured that the width in the axial direction parallel to drive shaft 10 is longer than the width in the radial direction as shown in
Here, cooling of the scroll-type compressor in the present embodiment will be explained using
The stationary scroll side cooling wind is discharged to the outside of the compressor body while cooling stationary scroll 3 while passing through the gaps of the cooing fins 3D.
The orbiting scroll side cooling wind is roughly divided into “fin gap flow” that passes between the multiple cooling fins 4C provided between end plate 4A and boss plate part 6 and provided so as to be parallel to the direction of the flow of the cooling wind and cools orbiting scroll 4, and “boss plate flow” that passes between casing 2 and boss plate part 6 and cools boss plate part 6.
Here, spaces 24 become ventilation holes for circulating the cooling wind, and “fin gap flow” that is the cooling wind on the orbiting scroll side and “boss plate flow” cross each other there. Thus, the cooling wind can be effectively introduced to bearing boss part 6A and bearing boss parts 6B shown in
Also, according to the present embodiment, cooling fins 4C of orbiting scroll 4 and boss plate part 6 were made to be separated from each other. Thus, the thermal conduction from compression chambers 7 to boss plate part 6 can be suppressed, and the thermal expansion of boss plate part 6 can be reduced further.
Also, according to the present embodiment, as shown in
From the above, according to the present embodiment, by providing spaces 24 between drive shaft side boss plate part 6F where bearing boss part 6A of boss plate part 6 is located and rotation prevention mechanism side boss plate parts 6E where bearing boss parts 6B are located, even when boss plate part 6 thermally expands, the dimension difference between the distance of bearing boss 6A from the center of end plate 3A and the distance of bearing boss 2D from the center of casing 2 reduces, and the load applied to rotation prevention mechanisms 17 and auxiliary crank bearings 20, 21 can be reduced.
Also, by making the spaces the ventilation holes, the cooling efficiency of each portion of boss plate part 6 is improved and the temperature of boss plate part 6 is lowered, thereby the thermal expansion itself of boss plate part 6 can be suppressed, and the load applied to rotation prevention mechanisms 17 and auxiliary crank bearings 20, 21 can be reduced further. Also, the temperature of turning bearing 13 and the auxiliary crank bearing 21 stored in the respective bearing bosses is lowered, and reliability of the bearings can be improved without extremely accelerating deterioration of the lubricant.
Any of the embodiments described so far only shows an example of materialization in implementing the present invention, and the technical range of the present invention is not to be interpreted determinatively by them. To be more specific, the present invention can be implemented in various forms without departing from the technical thought thereof or the main characteristics thereof.
Number | Date | Country | Kind |
---|---|---|---|
2013-036583 | Feb 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/083546 | 12/16/2013 | WO | 00 |