Scrolling input arrangements using capacitive sensors on a flexible membrane

Information

  • Patent Grant
  • 7671837
  • Patent Number
    7,671,837
  • Date Filed
    Tuesday, February 14, 2006
    18 years ago
  • Date Issued
    Tuesday, March 2, 2010
    14 years ago
Abstract
Scrolling input arrangements are presented including: a flexible membrane; a number of capacitive sensors mechanically integrated with the flexible membrane, the capacitive sensors radially disposed with respect to a first axis that is perpendicular with respect to the flexible membrane; an integrated circuit mechanically coupled with the flexible membrane and electronically coupled with the capacitive sensors, the integrated circuit configured to process a number of electronic signals from the capacitive sensors to provide a scrolling function; and a connection region on the flexible membrane for electronically coupling the scrolling input arrangement with an electronic device. In some embodiments, the capacitive sensors are configured with a plate element having a first surface area and a trace element having a second surface area such that the first surface area and second surface area comprise a sensor surface area, wherein the sensor surface areas for the capacitive sensors is substantially equal in size.
Description
BACKGROUND

As modern electronic devices have continued to evolve, size reduction has become a preeminent design consideration. Indeed, shrinking device profiles have made pocket electronics possible while preserving robust processing capability. Much progress has been made in shrinking electronic components like integrated circuits. However, mechanical support systems have sometimes lagged behind electronic advances. At least one reason for this lag is that many mechanical structures are limited by strength to weight considerations. Thus, while a miniaturized circuit may consume ever shrinking profiles, a mechanical structure may be limited to a minimum size in order to achieve structural stability. In some examples, structural stability may include unwanted inefficiencies.


For example, FIG. 1 is an illustrative cross-sectional representation of a scrolling device portion 100. Embodiments of this device are described in detail in U.S. patent application Ser. No. 10/188,182 entitled, “TOUCH PAD HANDHELD DEVICE,” and in U.S. patent application Ser. No. 10/643,256 entitled, “MOVABLE TOUCH PAD WITH ADDED FUNCTIONALITY,” which are hereby incorporated by reference. Scrolling device portion 100 includes a cover 104 that provides a protection for the device. An adhesive layer 108 mechanically couples cover 104 with printed circuit board (PCB) 112. PCB 112 may provide structural support for electronic components like, for example, a capacitive sensor (not shown), an integrated circuit 128, a switch 120 and a connection pad 116. PCB's 112 structural rigidity provides at least some durability to the device, but its use is not without some inherent disadvantages.


For example, PCB's may be limited to a minimum thickness. Minimum thickness is due to structural requirements that may, in some examples, be unavoidable. Further, because a PCB is rigid, applications may, in some examples, require that features like integrated circuit 128, switch 120, and connection pad 116 be co-located with the PCB. Co-location requirements may add to the device stack height further limiting size reductions. Still further, co-location of associated electronic components, like a switch, for example, may ultimately lead to device failure due to cracked soldering or components as a result of stresses imparted on the PCB during switch cycling. Still further, PCB rigidity may result in some loss of tactile responsiveness of an electronic component like a switch, for example. Therefore scrolling input arrangements using capacitive sensors on a flexible membrane are presented herein.


As may also be appreciated, capacitive sensors such as those described above generally may respond undesirably in rapidly changing temperature conditions. For example, in a rapidly heating environment, both the environment as well as an input pointer such as a finger may cause an increase in capacitance signals on sensors. In current designs, if recalibration is conducted while a finger is present, the unit may “calibrate out” the finger. Thus, either the unit remains with an incorrect calibration or it does not respond to the finger. Thus, methods of calibrating a plurality of capacitive sensors in response to rapidly changing positive temperature gradients are presented herein.


SUMMARY

The following presents a simplified summary of some embodiments of the invention in order to provide a basic understanding of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some embodiments of the invention in a simplified form as a prelude to the more detailed description that is presented below.


Scrolling input arrangements are presented including: a flexible membrane; a number of capacitive sensors mechanically integrated with the flexible membrane, the capacitive sensors radially disposed with respect to a first axis that is perpendicular with respect to the flexible membrane; an integrated circuit mechanically coupled with the flexible membrane and electronically coupled with the capacitive sensors, the integrated circuit configured to process a number of electronic signals from the capacitive sensors to provide a scrolling function; and a connection region on the flexible membrane for electronically coupling the scrolling input arrangement with an electronic device. In some embodiments, the capacitive sensors are configured with a plate element having a first surface area and a trace element having a second surface area such that the first surface area and second surface area comprise a sensor surface area, wherein the sensor surface areas for the capacitive sensors is substantially equal in size. In some embodiments, the integrated circuit includes logic for calibrating the plurality of capacitive sensors in response to a changing positive temperature gradient. In some embodiments, the changing positive temperature gradient is approximately 4° C./ms within a range of approximately 0° C. to 60° C. In some embodiments, the arrangement further includes: a number of switches mechanically integrated with the flexible membrane, the switches configured for providing a number of selection functions wherein at least one of the switches is approximately co-located with the first axis.


In other embodiments, low-profile scrolling input assemblies are presented including: a scrolling input arrangement for providing a scrolling function, the scrolling input arrangement having a top surface and a bottom surface, the scrolling input arrangement including, a flexible membrane; a number of capacitive sensors mechanically integrated with the flexible membrane, the capacitive sensors radially disposed with respect to a first axis that is perpendicular with respect to the flexible membrane; an integrated circuit mechanically coupled with the flexible membrane, the integrated circuit electronically coupled with the capacitive sensors, the integrated circuit configured to process a plurality of electronic signals from the capacitive sensors to provide a scrolling function; a connection region on the flexible membrane for electronically coupling the integrated circuit with a device; a backing plate for providing mechanical support for the scrolling input arrangement, the backing plate mechanically coupled with the bottom surface; and a cover plate for providing protecting the top surface, the cover plate configured to provide a low-friction surface to receive a user input. In some embodiments, assemblies further include: a number of switches mechanically integrated with the flexible membrane, the switches configured for providing a number of selection functions. In some embodiments, the backing plate further includes a number of actuator nubs for actuating the switches. In some embodiments, assemblies further include a number of anti-rotation elements for securing the assembly against a rotational force.


In other embodiments, methods of calibrating a number of capacitive sensors in response to a changing positive temperature gradient are presented including: establishing a baseline, the baseline comprising a first minimum function of a signal from each of the plurality of capacitive sensors; scanning the plurality capacitive sensors; and if more than eight of the plurality of capacitive sensors exceeds a threshold value, determining a thermal drift of the plurality of capacitive sensors, the thermal drift corresponding to a second minimum function of a signal from each of the capacitive sensors, and for each of the capacitive sensors, calculating an updated baseline based on the baseline and the thermal drift such that the capacitive sensors are calibrated. In some embodiments, the threshold value is selected to avoid a noise floor of the capacitive sensors. In some embodiments, scanning the capacitive sensors frequency is conducted at a frequency of approximately three megahertz.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:



FIG. 1 is an illustrative cross-sectional representation of a scrolling device portion;



FIG. 2 is an illustrative representation of a scrolling input arrangement in accordance with an embodiment of the present invention;



FIG. 3 is an illustrative representation in exploded as well as cross-section views of a scrolling input assembly in accordance with an embodiment of the present invention;



FIG. 4 is an illustrative representation of a scrolling input arrangement in accordance with an embodiment of the present invention;



FIG. 5 is an illustrative representation in exploded as well as cross-section views of a scrolling input assembly in accordance with an embodiment of the present invention; and



FIG. 6 is an illustrative flowchart of a method of calibrating a plurality of capacitive sensors in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION

The present invention will now be described in detail with reference to a few embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention.


Various embodiments are described hereinbelow, including methods and techniques. It should be kept in mind that the invention might also cover articles of manufacture that includes a computer readable medium on which computer-readable instructions for carrying out embodiments of the inventive technique are stored. The computer readable medium may include, for example, semiconductor, magnetic, opto-magnetic, optical, or other forms of computer readable medium for storing computer readable code. Further, the invention may also cover apparatuses for practicing embodiments of the invention. Such apparatus may include circuits, dedicated and/or programmable, to carry out tasks pertaining to embodiments of the invention. Examples of such apparatus include a general-purpose computer and/or a dedicated computing device when appropriately programmed and may include a combination of a computer/computing device and dedicated/programmable circuits adapted for the various tasks pertaining to embodiments of the invention.



FIG. 2 is an illustrative representation of a scrolling input arrangement 200 in accordance with an embodiment of the present invention. In particular, scrolling input arrangement 200 includes a flexible membrane 204. In some embodiments, flexible membrane 204 is a polyimide film. Flexible membrane 204 provides distinct advantages over prior solutions. For example, flexible membrane 204 provides a reduction in thickness over printed circuit boards (PCB) while still providing adequate structure for electronic components. In some embodiments, flexible membrane 204 may have a thickness of approximately 0.21 millimeters where typical PCB applications have a thickness of approximately 0.50 millimeters. Flexible membrane 204 provides further advantage by allowing associated electronic components and connectors to be disposed away from an arrangement stack comprised of capacitive elements. Allowing associated electronic components and connectors to be disposed away from an arrangement stack may thus provide a thinner cross-sectional profile of scrolling input arrangement 200 as well as provide mechanical shock insulation for associated electronic components. In this manner, a smaller, more durable arrangement may be realized.


In some instances, flexible membrane 204 may provide for increased tactile feedback efficiency. Tactile feedback efficiency is a measurement of a user's ability to discern a tactile change. Thus, when tactile feedback efficiency is high, a user is more readily able to discern a tactile change. In one example, a switch or plurality of switches may be co-located with flexible membrane 204. When those switches are actuated, a user may more readily discern a tactile change (e.g. a “click”) over prior art solutions because of flexible membrane's 204 physical properties. As a further advantage, tactile specificity may result because of flexible membrane's 204 physical properties. That is, because of flexible membrane's 204 elasticity, unintentional actuation of switches may be reduced or avoided altogether. This may allow for more switches to be placed closer together while avoiding inadvertent actuation of neighboring switches.


As can be appreciated, flexible membrane 204 may be cut or formed into any number of shapes in accordance with user preferences. The illustrated shape is provided for clarity and should not be construed as limiting. Mechanically integrated with flexible membrane 204 are a variety of electronic components. Mechanical integration of capacitive sensors, for example, may be accomplished by gluing, bonding, molding, or any other method known in the art without departing from the present invention. A number of capacitive sensors 208 may be radially disposed with respect to axis 202, which is perpendicular with respect to flexible membrane 204. Capacitive sensors 208 may also be mechanically integrated with top surface of flexible membrane 204. In some embodiments, 16 capacitive sensors are utilized. Capacitive sensors 208 may be mechanically integrated with flexible membrane 204 in any manner well-known in the art. Each capacitive sensor includes a plate element 210 and a trace element (not shown). A plate element is one plate in a capacitor and is mechanically integrated with flexible membrane 204. Trace elements (not shown) may also be mechanically integrated with flexible membrane 204. Trace elements provide for electronic communication between capacitive sensors 208 and integrated circuit (IC) region 212. An IC provides processing capability for capacitive sensors 208. IC processing will be discussed in further detail below for FIG. 6. Any number of IC's may be mechanically coupled with flexible membrane 204 without departing from the present invention. Mechanical coupling of integrated circuits, for example, may be accomplished by gluing, bonding, molding, or any other method known in the art without departing from the present invention.


As can be appreciated, for each capacitive sensor, the sum of the surface area of its corresponding plate element and the surface area of its corresponding trace element is the sensor surface area. In some embodiments, the sensor surface area for all capacitive sensors is substantially equal in size. Thus, where a longer trace element is required due to location constraints, a corresponding smaller surface area of the plate element results. Thus, plate elements may not match exactly in some embodiments. At least one reason for matching sensor surface areas is so that sensing will be uniform across the arrangement. As can be appreciated, where matching sensor surface areas is not practicable, adjustments for each sensor may be made algorithmically thus calibrating each sensor to its particular configuration.


Scrolling input arrangement 200 may further include ground pad 220 for electronically connecting with a ground source. Ground shielding 232 may be incorporated in some embodiments to provide for electronic isolation of capacitive sensors 208. Ground shielding may be mechanically integrated with flexible membrane 204 in any manner well-known in the art. A connection region 216 may be utilized for electronically coupling the arrangement 200 with an associated electronic device. In some examples, the electronic device is an IPOD™. Any number of connectors may be mechanically integrated with flexible membrane 204 without departing from the present invention.


Still further, in some embodiments, flexible membrane 204 may be configured with anti-rotation elements 228. Anti-rotation elements provide rotational stability for flexible membrane 204. In this example, anti-rotation elements are embodied as cut-outs that mate with a matching surface. In other embodiments, through holes 224 may be provided to allow actuator nubs disposed on one side of scrolling input arrangement 200 to reach electronic elements disposed on an opposite side of scrolling input arrangement 200. As can be appreciated, anti-rotation elements and through holes may be configured in any manner in accordance with user preferences without departing from the present invention.



FIG. 3 is an illustrative representation in exploded as well as cross-section views of a scrolling input assembly 300 in accordance with an embodiment of the present invention. Scrolling input assembly 300 includes a scrolling input arrangement 312 such as those described above for FIG. 2. Scrolling input assembly 300 further includes cover plate 304. Cover plate 304 may provide protection for the top surface of scrolling input arrangement 312. Cover plate 304 may also provide a low-friction surface to receive user input from, for example, a finger or stylus. Referring to cross-sectional illustration, cover plate 304 may be configured with an actuator nub 316 for actuating a switch 318. Switch 318 may be electronically coupled with a processor or IC to provide selection functions individually or in combination. As can be appreciated, through holes 311 (see also FIG. 2) provide access for actuator nub 318. Cover plate 304 may be composed of any suitable material that does not interfere with capacitive sensing. In some embodiments thermoplastic is utilized to create a cover plate. It should be noted that the figures provided herein are for illustrative purposes only and should not be construed to provide precise dimensions.


In some embodiments, scrolling input assembly 300 may include a center button 308 that may actuate switch 310. Switch 310 may be electronically coupled with a processor or IC to provide selection functions. Backing plate 314 may be mechanically coupled with the bottom surface of scrolling input arrangement 312 to provide structural support. Backing plate 314 may also provide a grounding surface in some embodiments.



FIG. 4 is an illustrative representation of a scrolling input arrangement 400 in accordance with an embodiment of the present invention. In particular, scrolling input arrangement 400 includes a flexible membrane 404. In some embodiments, flexible membrane 404 is a polyimide film. Flexible membrane 404 provides distinct advantages over prior solutions. For example, flexible membrane 404 provides a reduction in thickness over printed circuit boards (PCB) while still providing adequate structure for electronic components. In some embodiments, flexible membrane 404 may have a thickness of approximately 0.21 millimeters where typical PCB applications have a thickness of approximately 0.50 millimeters. Flexible membrane 404 provides further advantage by allowing associated electronic components and connectors to be disposed away from an arrangement stack comprised of capacitive elements. Allowing associated electronic components and connectors to be disposed away from an arrangement stack may thus provide a thinner cross-sectional profile of scrolling input arrangement 400 as well as provide mechanical shock insulation for associated electronic components. In this manner, a smaller, more durable arrangement may be realized.


In some instances, flexible membrane 404 may provide for increased tactile feedback efficiency. Tactile feedback efficiency is a measurement of a user's ability to discern a tactile change. Thus, when tactile feedback efficiency is high, a user is more readily able to discern a tactile change. In one embodiment, switch 420 may be mechanically integrated with flexible membrane 404. When switch 420 actuated, a user may more readily discern a tactile change (e.g. a “click”) over prior art solutions because of flexible membrane's 404 physical properties. As a further advantage, tactile specificity may result because of flexible membrane's 404 physical properties. That is, because of flexible membrane's 404 elasticity, unintentional actuation of switches may be reduced or avoided altogether. This may allow for more switches to be placed closer together while avoiding inadvertent actuation of neighboring switches. In other embodiments, a flexible membrane 404 may include a center region 424 for mechanically integrating center switch 428 such that the center switch is approximately co-located with axis 402. As noted above for FIG. 2, electronic components (e.g. switches) need not be co-located with capacitive sensors. In some embodiments, however, some advantages may be realized by co-locating some electronic components with capacitive sensors such as ease of manufacture or assembly.


As can be appreciated, flexible membrane 404 may be cut or formed into any number of shapes in accordance with user preferences. The illustrated shape is provided for clarity and should not be construed as limiting. Mechanically integrated with flexible membrane 404 are a variety of electronic components. A number of capacitive sensors 408 may be radially disposed with respect to axis 402 and mechanically integrated with top surface of flexible membrane 404. In some embodiments, 16 capacitive sensors are utilized. Capacitive sensors 408 may be mechanically integrated with flexible membrane 404 in any manner well-known in the art. Each capacitive sensor includes a plate element 410 and a trace element (not shown). A plate element is one plate in a capacitor and is mechanically integrated with flexible membrane 404. Trace elements (not shown) may also be mechanically integrated with flexible membrane 404. Trace elements provide for electronic communication between capacitive sensors 408 and integrated circuit (IC) region 412. An IC provides processing capability for capacitive sensors 408. IC processing will be discussed in further detail below for FIG. 6. Any number of IC's may be mechanically integrated with flexible membrane 404 without departing from the present invention.


As can be appreciated, for each capacitive sensor, the sum of the surface area of its corresponding plate element and the surface area of its corresponding trace element is the sensor surface area. In some embodiments, the sensor surface area for all capacitive sensors is equivalent. Thus, where a longer trace element is required due to location constraints, a corresponding smaller surface area of the plate element results. Thus, plate elements may not match exactly in some embodiments. At least one reason for matching sensor surface areas is so that sensing will be uniform across the arrangement. As can be appreciated, where matching sensor surface areas is not practicable, adjustments for each sensor may be made algorithmically thus calibrating each sensor to its particular configuration.


Finally, a connection region 416 may be utilized for electronically coupling the arrangement 400 with an associated electronic device. In some examples, the electronic device is an IPOD™. Any number of connectors may be mechanically integrated with flexible membrane 404 without departing from the present invention.



FIG. 5 is an illustrative representation in exploded as well as cross-section views of a scrolling input assembly 500 in accordance with an embodiment of the present invention. Scrolling input assembly 500 includes a scrolling input arrangement 512 such as those described above for FIG. 4. Scrolling input assembly 500 further includes cover plate 504. Cover plate 504 may provide protection for the top surface of scrolling input arrangement 512. Cover plate 504 may also provide a low-friction surface to receive user input from, for example, a finger or stylus. Cover plate 504 may be composed of any suitable material that does not interfere with capacitive sensing. In some embodiments thermoplastic is utilized to create a cover plate. It should be noted that the figures provided herein are for illustrative purposes only and should not be construed to provide precise dimensions.


In some embodiments, scrolling input assembly 500 may include a center button 508 that may actuate switch 510 on scrolling arrangement 512. Switch 510 may be electronically coupled with a processor or IC to provide selection functions. Backing plate 514 may be mechanically coupled with the bottom surface of scrolling input arrangement 512 to provide structural support. Backing plate 514 may also provide a grounding surface in some embodiments. In still other embodiments, grounding plate 514 may be configured with actuator nub 516 for actuating switch 520 on scrolling input arrangement 512. In some embodiments, actuator nub 516 may be co-compression molded.



FIG. 6 is an illustrative flowchart of a method of calibrating a plurality of capacitive sensors in accordance with an embodiment of the present invention. As noted above, current designs may fail to properly calibrate in environments experiencing rapid temperatures changes. In one example, embodiments may be configured to respond to a temperature change of approximately 4° C./ms within a range of approximately 0° C. to 60° C. Thus, at a first step 604, a baseline is established. A baseline may be established by assuming a current baseline and then scanning a plurality of capacitive sensors and tracking a lower edge of that scan to find a current sample. A minimum function of the current sample and the current baseline will provide a new current baseline for use with methods described herein.


At a next step 608, capacitive sensors are scanned. As can be appreciated, responsiveness of a system is determined at least in part by the frequency with which samples are taken. For example, if a capacitive sensor is scanned more often, then the accuracy of the sample is likely to be much higher than if the capacitive sensor is scanned less often. Processing power and power consumption are two factors which account for a selection of sample frequency. In some embodiments described herein capacitive sensors are scanned at a frequency of approximately three megahertz. Once capacitive sensors are scanned at a step 608, the method determines whether more than eight capacitive sensors have a count change greater than two. The selection of number of capacitive sensors corresponds to a likely change in sensor not attributable to a finger. That is, it is assumed, in this example, that a finger generally covers no more than eight capacitive sensors at any one time. In this manner, the method is determining whether a change in sensor is attributable to a change in ambient. A change in counts corresponds to a change in temperature. The selection of how many counts (i.e. threshold value) corresponds to a count high enough to avoid the noise floor of the sensor while still providing a count responsive to rapid changes. As can be appreciated by one skilled in the art, a noise floor of a sensor is generally sensor dependent. That is, for any given sensor, a noise floor may be specified by the manufacturer in accordance with manufacturing parameters. Thus, when more than eight capacitive sensors are scanned that have a count change greater than two, the method then calculates thermal drift at a step 616.


Thermal drift corresponds to a change in baseline attributable to change in ambient temperature. In one embodiment, thermal drift is a minimum function of the signals of all capacitive sensors. Once thermal drift is found, that value is added to each capacitive sensor signal value at a step 620 thus creating a new baseline for each capacitive sensor signal value. The method continues to a step 624 continuing to a step 608 to scan all capacitive sensors. If the method, at a step 612 determines that eight or more capacitive sensors do not have a count change greater than two, the method continues to a step 624 continuing to a step 608 to scan all capacitive sensors.


While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. For example, although embodiments described herein provide for 16 capacitive sensors, more or fewer sensors may be utilized depending on user preferences and system requirements without departing from the present invention. Further, while scanning frequency has been described as approximately three megahertz, higher and lower frequencies may be employed without departing from the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.

Claims
  • 1. A scrolling input arrangement comprising: a flexible membrane; a plurality of capacitive sensors mechanically integrated with the flexible membrane, the plurality of capacitive sensors radially disposed with respect to a first axis that is perpendicular with respect to the flexible membrane;an integrated circuit mechanically coupled onto an integrated circuit region of the flexible membrane and electronically coupled with the plurality of capacitive sensors, the integrated circuit configured to process a plurality of electronic signals from the plurality of capacitive sensors to provide a scrolling function; anda connection region on the flexible membrane for electronically coupling the scrolling input arrangement with an electronic device.
  • 2. The arrangement of claim 1 wherein each of the plurality of capacitive sensors is configured with a plate element having a first surface area and a trace element having a second surface area such that the first surface area and second surface area comprise a sensor surface area, wherein the sensor surface areas for the plurality of capacitive sensors is substantially equal in size.
  • 3. The arrangement of claim 1 wherein the integrated circuit includes logic for calibrating the plurality of capacitive sensors in response to a changing positive temperature gradient.
  • 4. The arrangement of claim 3 wherein the changing positive temperature gradient is approximately 4.degree. C./ms within a range of approximately 0.degree. C. to 60.degree. C.
  • 5. The arrangement of claim 2 further comprising: a plurality of switches mechanically integrated with the flexible membrane, the plurality of switches configured for providing a plurality of selection functions wherein at least one of the plurality of switches is approximately co-located with the first axis.
  • 6. The arrangement of claim 1 wherein the flexible membrane is a polyimide film.
  • 7. The arrangement of claim 6 wherein the flexible membrane has a thickness of approximately 0.21 millimeters.
  • 8. The arrangement of claim 6 wherein the flexible membrane is further configured with a plurality of anti-rotation elements for securing the flexible membrane against a rotational force.
  • 9. The arrangement of claim 1 wherein the plurality of capacitive sensors includes at least 16 sensors.
  • 10. A low-profile scrolling input assembly comprising: a scrolling input arrangement for providing a scrolling function, the scrolling input arrangement having a top surface and a bottom surface, the scrolling input arrangement comprising, a flexible membrane;a plurality of capacitive sensors mechanically integrated with the flexible membrane, the plurality of capacitive sensors radially disposed with respect to a first axis that is perpendicular with respect to the flexible membrane;an integrated circuit mechanically coupled onto an integrated circuit region of the flexible membrane, the integrated circuit electronically coupled with the plurality of capacitive sensors, the integrated circuit configured to process a plurality of electronic signals from the plurality of capacitive sensors to provide a scrolling function;a connection region on the flexible membrane for electronically coupling the integrated circuit with a device;a backing plate for providing mechanical support for the scrolling input arrangement, the backing plate mechanically coupled with the bottom surface; anda cover plate for providing protecting the top surface, the cover plate configured to provide a low-friction surface to receive a user input.
  • 11. The assembly of claim 10 further comprising: a plurality of switches mechanically integrated with the flexible membrane, the plurality of switches configured for providing a plurality of selection functions.
  • 12. The assembly of claim 11 wherein at least one of the plurality of switches is approximately co-located with the first axis.
  • 13. The assembly of claim 11 wherein the backing plate further comprises a plurality of actuator nubs for actuating the plurality of switches.
  • 14. The assembly of claim 10 wherein the cover plate further comprises a plurality of actuator nubs for actuating a plurality of switches mechanically integrated with the flexible membrane.
  • 15. The assembly of claim 10 wherein the integrated circuit includes logic for calibrating the plurality of capacitive sensors in response to a changing positive temperature gradient.
  • 16. The assembly of claim 15 wherein the changing positive temperature gradient is approximately 4.degree. C./ms within a range of approximately 0.degree. C. to 60.degree. C.
  • 17. The assembly of claim 10 further comprising a plurality of anti-rotation elements for securing the assembly against a rotational force.
  • 18. A method of calibrating a plurality of capacitive sensors in response to a changing positive temperature gradient, comprising: establishing a baseline, the baseline comprising a first minimum function of a signal from each of the plurality of capacitive sensors;scanning the plurality capacitive sensors; andif more than eight of the plurality of capacitive sensors exceeds a threshold value, determining a thermal drift of the plurality of capacitive sensors, the thermal drift corresponding to a second minimum function of a signal from each of the plurality of capacitive sensors, and for each of the plurality of capacitive sensors, calculating an updated baseline based on the baseline and the thermal drift such that the plurality of capacitive sensors is calibrated.
  • 19. The method of claim 18 wherein the threshold value is selected to avoid a noise floor of the plurality of capacitive sensors.
  • 20. The method of claim 18 wherein the scanning the plurality of capacitive sensors frequency is conducted at a frequency of approximately three megahertz.
  • 21. The flexible membrane of claim 1, wherein the membrane comprises a polyimide film.
  • 22. The flexible membrane of claim 1, wherein the membrane has a thickness less than approximately 0.50 millimeters.
PRIORITY CLAIM TO PROVISIONAL APPLICATION

A claim for priority is hereby made under the provisions of 35 U.S.C. § 119 for the present application based upon U.S. Provisional Application No. 60/714,609, filed on Sep. 6, 2005.

US Referenced Citations (350)
Number Name Date Kind
1061578 Wischhusen et al. May 1913 A
2798907 Schneider Jul 1957 A
2903229 Landge Sep 1959 A
2945111 McCormick Jul 1960 A
3005055 Mattke Oct 1961 A
3965399 Walker et al. Jun 1976 A
4103252 Bobick Jul 1978 A
4110749 Janko et al. Aug 1978 A
4115670 Chandler Sep 1978 A
4121204 Welch et al. Oct 1978 A
4129747 Pepper Dec 1978 A
4158216 Bigelow Jun 1979 A
4242676 Piguet et al. Dec 1980 A
4246452 Chandler Jan 1981 A
4264903 Bigelow Apr 1981 A
4293734 Pepper, Jr. Oct 1981 A
D264969 McGoutry Jun 1982 S
4380007 Steinegger Apr 1983 A
4380040 Posset Apr 1983 A
4475008 Doi et al. Oct 1984 A
4570149 Thornburg et al. Feb 1986 A
4587378 Moore May 1986 A
4644100 Brenner et al. Feb 1987 A
4719524 Morishima et al. Jan 1988 A
4734034 Maness et al. Mar 1988 A
4736191 Matzke et al. Apr 1988 A
4739191 Puar Apr 1988 A
4739299 Eventoff et al. Apr 1988 A
4752655 Tajiri et al. Jun 1988 A
4755765 Ferland Jul 1988 A
4764717 Tucker et al. Aug 1988 A
4798919 Miessler et al. Jan 1989 A
4810992 Eventoff Mar 1989 A
4831359 Newell May 1989 A
4849852 Mullins Jul 1989 A
4856993 Maness et al. Aug 1989 A
4866602 Hall Sep 1989 A
4876524 Jenkins Oct 1989 A
4897511 Itaya et al. Jan 1990 A
4914624 Dunthorn Apr 1990 A
4917516 Retter Apr 1990 A
4943889 Ohmatoi Jul 1990 A
4951036 Grueter et al. Aug 1990 A
4976435 Shatford et al. Dec 1990 A
4990900 Kikuchi Feb 1991 A
5008497 Asher Apr 1991 A
5036321 Leach et al. Jul 1991 A
5053757 Meadows Oct 1991 A
5125077 Hall Jun 1992 A
5159159 Asher Oct 1992 A
5179648 Hauck Jan 1993 A
5186646 Pederson Feb 1993 A
5192082 Inoue et al. Mar 1993 A
5231326 Echols Jul 1993 A
5237311 Mailey et al. Aug 1993 A
5278362 Ohashi Jan 1994 A
5305017 Gerpheide Apr 1994 A
5313027 Inoue et al. May 1994 A
D349280 Kaneko Aug 1994 S
5339213 O'Callaghan Aug 1994 A
5367199 Lefkowitz et al. Nov 1994 A
5374787 Miller et al. Dec 1994 A
5379057 Clough et al. Jan 1995 A
5404152 Nagai Apr 1995 A
5408621 Ben-Arie Apr 1995 A
5414445 Kaneko et al. May 1995 A
5416498 Grant May 1995 A
5424756 Ho et al. Jun 1995 A
5432531 Calder et al. Jul 1995 A
5438331 Gilligan et al. Aug 1995 A
D362431 Kaneko et al. Sep 1995 S
5450075 Waddington Sep 1995 A
5453761 Tanaka Sep 1995 A
5473343 Kimmich et al. Dec 1995 A
5473344 Bacon et al. Dec 1995 A
5479192 Carroll, Jr. et al. Dec 1995 A
5495566 Kwatinetz Feb 1996 A
5508703 Okamura et al. Apr 1996 A
5543588 Bisset et al. Aug 1996 A
5555004 Ono et al. Sep 1996 A
5559301 Bryan, Jr. et al. Sep 1996 A
5559943 Cyr et al. Sep 1996 A
5561445 Miwa et al. Oct 1996 A
5564112 Hayes et al. Oct 1996 A
5565887 McCambridge et al. Oct 1996 A
5578817 Bidiville et al. Nov 1996 A
5581670 Bler et al. Dec 1996 A
5585823 Duchon et al. Dec 1996 A
5589893 Gaughan et al. Dec 1996 A
5596347 Robertson et al. Jan 1997 A
5598183 Robertson et al. Jan 1997 A
5611040 Brewer et al. Mar 1997 A
5611060 Belfiore et al. Mar 1997 A
5613137 Bertram et al. Mar 1997 A
5617114 Bier et al. Apr 1997 A
5627531 Posso et al. May 1997 A
5632679 Tremmel May 1997 A
5640258 Kurashima et al. Jun 1997 A
D382550 Kaneko et al. Aug 1997 S
5657012 Tart Aug 1997 A
5661632 Register Aug 1997 A
D385542 Kaneko et al. Oct 1997 S
5675362 Clough et al. Oct 1997 A
5689285 Asher Nov 1997 A
5726687 Belfiore et al. Mar 1998 A
5729219 Armstrong et al. Mar 1998 A
5730165 Philipp Mar 1998 A
5748185 Stephan et al. May 1998 A
5751274 Davis May 1998 A
5754890 Holmdahl et al. May 1998 A
5777605 Yoshinobu et al. Jul 1998 A
5786818 Brewer et al. Jul 1998 A
5790769 Buxton et al. Aug 1998 A
5805144 Scholder et al. Sep 1998 A
5808602 Sellers Sep 1998 A
5812498 Terés Sep 1998 A
5825351 Tam Oct 1998 A
5825353 Will Oct 1998 A
5828364 Siddiqui Oct 1998 A
5838304 Hall Nov 1998 A
5841423 Carroll, Jr. et al. Nov 1998 A
D402281 Ledbetter et al. Dec 1998 S
5850213 Imai et al. Dec 1998 A
5856822 Du et al. Jan 1999 A
5859629 Tognazzini Jan 1999 A
5869791 Young Feb 1999 A
5875311 Bertram et al. Feb 1999 A
5883619 Ho et al. Mar 1999 A
5889236 Gillespie et al. Mar 1999 A
5889511 Ong et al. Mar 1999 A
5894117 Kamishima Apr 1999 A
5903229 Kishi May 1999 A
5907152 Dandiliker et al. May 1999 A
5907318 Medina May 1999 A
5909211 Combs et al. Jun 1999 A
5914706 Kono Jun 1999 A
5923388 Kurashima et al. Jul 1999 A
D412940 Kato et al. Aug 1999 S
5943044 Martinelli et al. Aug 1999 A
5956019 Bang et al. Sep 1999 A
5959611 Smailagic et al. Sep 1999 A
5964661 Dodge Oct 1999 A
5973668 Watanabe Oct 1999 A
6000000 Hawkins et al. Dec 1999 A
6002389 Kasser et al. Dec 1999 A
6005299 Hengst Dec 1999 A
6025832 Sudo et al. Feb 2000 A
6031518 Adams et al. Feb 2000 A
6034672 Gaultiet et al. Mar 2000 A
6057829 Silfvast May 2000 A
6075533 Chang Jun 2000 A
6084574 Bidiville Jul 2000 A
D430169 Scibora Aug 2000 S
6097372 Suzuki Aug 2000 A
6122526 Parulski et al. Sep 2000 A
6124587 Bidiville et al. Sep 2000 A
6128006 Rosenberg et al. Oct 2000 A
6131048 Sudo et al. Oct 2000 A
6163312 Furuya Dec 2000 A
6166721 Kuroiwa et al. Dec 2000 A
6179496 Chou Jan 2001 B1
6181322 Nanavati Jan 2001 B1
D437860 Suzuki et al. Feb 2001 S
6188393 Shu Feb 2001 B1
6191774 Schena et al. Feb 2001 B1
6198054 Janniere Mar 2001 B1
6198473 Armstrong Mar 2001 B1
6211861 Rosenberg et al. Apr 2001 B1
6219038 Cho Apr 2001 B1
D442592 Ledbetter et al. May 2001 S
6225976 Yates et al. May 2001 B1
6225980 Weiss et al. May 2001 B1
6226534 Aizawa May 2001 B1
6227966 Yokoi May 2001 B1
D443616 Fisher et al. Jun 2001 S
6243078 Rosenberg Jun 2001 B1
6243080 Molne Jun 2001 B1
6248017 Roach Jun 2001 B1
6254477 Sasaki et al. Jul 2001 B1
6256011 Culver Jul 2001 B1
6262717 Donohue et al. Jul 2001 B1
6262785 Kim Jul 2001 B1
6266050 Oh et al. Jul 2001 B1
D448810 Goto Oct 2001 S
6297795 Kato et al. Oct 2001 B1
6297811 Kent et al. Oct 2001 B1
D450713 Masamitsu et al. Nov 2001 S
6314483 Goto et al. Nov 2001 B1
6323845 Robbins Nov 2001 B1
D452250 Chan Dec 2001 S
6340800 Zhai et al. Jan 2002 B1
D454568 Andre et al. Mar 2002 S
6357887 Novak Mar 2002 B1
D455793 Lin Apr 2002 S
6373265 Morimoto et al. Apr 2002 B1
6373470 Andre et al. Apr 2002 B1
6377530 Burrows Apr 2002 B1
6396523 Segal et al. May 2002 B1
6424338 Anderson Jul 2002 B1
6429846 Rosenberg et al. Aug 2002 B2
6429852 Adams et al. Aug 2002 B1
6473069 Gerphelde Oct 2002 B1
6492979 Kent et al. Dec 2002 B1
6496181 Bomer et al. Dec 2002 B1
6497412 Bramm Dec 2002 B1
D468365 Bransky et al. Jan 2003 S
D469109 Andre et al. Jan 2003 S
D472245 Andre et al. Mar 2003 S
6546231 Someya et al. Apr 2003 B1
6587091 Serpa Jul 2003 B2
6606244 Liu et al. Aug 2003 B1
6636197 Goldenberg et al. Oct 2003 B1
6639584 Li Oct 2003 B1
6640250 Chang et al. Oct 2003 B1
6650975 Ruffner Nov 2003 B2
D483809 Lim Dec 2003 S
6664951 Fujii et al. Dec 2003 B1
6677927 Bruck et al. Jan 2004 B1
6686904 Sherman et al. Feb 2004 B1
6703550 Chu Mar 2004 B2
6724817 Simpson et al. Apr 2004 B1
6727889 Shaw Apr 2004 B2
D489731 Huang May 2004 S
6738045 Hinckley et al. May 2004 B2
6750803 Yates et al. Jun 2004 B2
6781576 Tamura Aug 2004 B2
6788288 Ano Sep 2004 B2
6791533 Su Sep 2004 B2
6795057 Gordon Sep 2004 B2
D497618 Andre et al. Oct 2004 S
6844872 Farag et al. Jan 2005 B1
6865718 Levi Montalcini Mar 2005 B2
6886842 Vey et al. May 2005 B2
6894916 Reohr et al. May 2005 B2
D506476 Andre et al. Jun 2005 S
6922189 Fujiyoshi Jul 2005 B2
6930494 Tesdahl et al. Aug 2005 B2
6977808 Lam et al. Dec 2005 B2
6978127 Bulthuis et al. Dec 2005 B1
7006077 Uusimäki Feb 2006 B1
7046230 Zadeski et al. May 2006 B2
7069044 Okada et al. Jun 2006 B2
7084856 Huppi Aug 2006 B2
7113196 Kerr Sep 2006 B2
7113520 Meenan Sep 2006 B1
7119792 Andre et al. Oct 2006 B1
7215319 Kamijo et al. May 2007 B2
7233318 Farag et al. Jun 2007 B1
7236154 Kerr et al. Jun 2007 B1
7253643 Seguine Aug 2007 B1
7279647 Philipp Oct 2007 B2
7395081 Bonnelykke Kristensen et al. Jul 2008 B2
7466307 Trent, Jr. et al. Dec 2008 B2
20010011991 Wang et al. Aug 2001 A1
20010033270 Osawa et al. Oct 2001 A1
20010043545 Aratani Nov 2001 A1
20010050673 Davenport Dec 2001 A1
20010051046 Watanabe et al. Dec 2001 A1
20020027547 Kamijo Mar 2002 A1
20020030665 Ano Mar 2002 A1
20020033848 Sciammarella et al. Mar 2002 A1
20020045960 Phillips et al. Apr 2002 A1
20020071550 Pletikosa Jun 2002 A1
20020089545 Montalcini Jul 2002 A1
20020118131 Yates et al. Aug 2002 A1
20020118169 Hinckley et al. Aug 2002 A1
20020154090 Lin Oct 2002 A1
20020158844 McLoone et al. Oct 2002 A1
20020164156 Bilbrey Nov 2002 A1
20020180701 Hayama et al. Dec 2002 A1
20030002246 Kerr Jan 2003 A1
20030025679 Taylor et al. Feb 2003 A1
20030028346 Sinclair et al. Feb 2003 A1
20030043121 Chen Mar 2003 A1
20030043174 Hinckley et al. Mar 2003 A1
20030050092 Yun Mar 2003 A1
20030076301 Tsuk et al. Apr 2003 A1
20030076303 Huppi Apr 2003 A1
20030091377 Hsu et al. May 2003 A1
20030095095 Pihlaja May 2003 A1
20030095096 Robbin et al. May 2003 A1
20030098851 Brink May 2003 A1
20030103043 Mulligan et al. Jun 2003 A1
20030184517 Senzui et al. Oct 2003 A1
20030206202 Moriya Nov 2003 A1
20040080682 Dalton Apr 2004 A1
20040156192 Kerr et al. Aug 2004 A1
20040215986 Shakkarwar Oct 2004 A1
20040224638 Fadell et al. Nov 2004 A1
20040239622 Proctor et al. Dec 2004 A1
20040252109 Trent, Jr. et al. Dec 2004 A1
20040253989 Tupler et al. Dec 2004 A1
20040263388 Krumm et al. Dec 2004 A1
20040267874 Westberg et al. Dec 2004 A1
20050030048 Bolender Feb 2005 A1
20050052425 Zadeski et al. Mar 2005 A1
20050052429 Philipp Mar 2005 A1
20050083299 Nagasaka Apr 2005 A1
20050083307 Aufderheide Apr 2005 A1
20050104867 Westerman et al. May 2005 A1
20050110768 Marriott et al. May 2005 A1
20050204309 Szeto Sep 2005 A1
20060026521 Hotelling et al. Feb 2006 A1
20060032680 Elias et al. Feb 2006 A1
20060097991 Hotelling et al. May 2006 A1
20060181517 Zadesky et al. Aug 2006 A1
20060197750 Kerr et al. Sep 2006 A1
20060232557 Fallot-Burghardt Oct 2006 A1
20060250377 Zadesky et al. Nov 2006 A1
20060274905 Lindahl et al. Dec 2006 A1
20060284836 Philipp Dec 2006 A1
20070013671 Zadesky et al. Jan 2007 A1
20070052691 Zadesky et al. Mar 2007 A1
20070080936 Tsuk et al. Apr 2007 A1
20070080938 Robbin et al. Apr 2007 A1
20070083822 Robbin et al. Apr 2007 A1
20070085841 Tsuk et al. Apr 2007 A1
20070152975 Ogihara Jul 2007 A1
20070152977 Ng et al. Jul 2007 A1
20070152983 McKillop et al. Jul 2007 A1
20070242057 Zadesky et al. Oct 2007 A1
20070247421 Orsley et al. Oct 2007 A1
20070273671 Zadesky et al. Nov 2007 A1
20070276525 Zadesky et al. Nov 2007 A1
20070279394 Lampell Dec 2007 A1
20070290990 Robbin et al. Dec 2007 A1
20070296709 GuangHai Dec 2007 A1
20080006453 Hotelling Jan 2008 A1
20080006454 Hotelling Jan 2008 A1
20080007533 Hotelling Jan 2008 A1
20080007539 Hotelling Jan 2008 A1
20080012837 Marriott et al. Jan 2008 A1
20080018615 Zadesky et al. Jan 2008 A1
20080018616 Lampell et al. Jan 2008 A1
20080018617 Ng et al. Jan 2008 A1
20080036734 Forsblad et al. Feb 2008 A1
20080087476 Prest Apr 2008 A1
20080088582 Prest Apr 2008 A1
20080088596 Prest Apr 2008 A1
20080088597 Prest Apr 2008 A1
20080088600 Prest Apr 2008 A1
20080094352 Tsuk et al. Apr 2008 A1
20080098330 Tsuk et al. Apr 2008 A1
20080111795 Bollinger May 2008 A1
20080284742 Prest et al. Nov 2008 A1
20090179854 Weber et al. Jan 2009 A1
20090058687 Rothkopf et al. Mar 2009 A1
20090058801 Bull Mar 2009 A1
20090073130 Weber et al. Mar 2009 A1
20090141046 Rathnam et al. Jun 2009 A1
Foreign Referenced Citations (178)
Number Date Country
1139235 Jan 1997 CN
1455615 Nov 2003 CN
1499356 May 2004 CN
3615742 Nov 1987 DE
19722636 Dec 1998 DE
10022537 Nov 2000 DE
20019074 Feb 2001 DE
0178157 Apr 1986 EP
0419145 Mar 1991 EP
0498540 Aug 1992 EP
0521683 Jan 1993 EP
0674288 Sep 1995 EP
0 731 407 Sep 1996 EP
0 551 778 Jan 1997 EP
0551778 Jan 1997 EP
0880091 Nov 1998 EP
1 026 713 Aug 2000 EP
1081922 Mar 2001 EP
1098241 May 2001 EP
1 133 057 Sep 2001 EP
1162826 Dec 2001 EP
1 168 396 Jan 2002 EP
1205836 May 2002 EP
1 244 053 Sep 2002 EP
1251455 Oct 2002 EP
1 467 392 Oct 2004 EP
1482401 Dec 2004 EP
1 496 467 Jan 2005 EP
1542437 Jun 2005 EP
1 589 407 Oct 2005 EP
2 686 440 Jul 1993 FR
2015167 Sep 1979 GB
2072389 Sep 1981 GB
2315186 Jan 1998 GB
2333215 Jul 1999 GB
2391060 Jan 2004 GB
2402105 Dec 2004 GB
57-95722 Jun 1982 JP
57-097626 Jun 1982 JP
61-117619 Jun 1986 JP
61-124009 Jun 1986 JP
61-164547 Jan 1988 JP
63-106826 May 1988 JP
63-181022 Jul 1988 JP
63-298518 Dec 1988 JP
03-57617 Jun 1991 JP
3-192418 Aug 1991 JP
04-32920 Feb 1992 JP
5-041135 Feb 1993 JP
5-080938 Apr 1993 JP
5-101741 Apr 1993 JP
05-36623 May 1993 JP
5-189110 Jul 1993 JP
5-205565 Aug 1993 JP
5-211021 Aug 1993 JP
5-217464 Aug 1993 JP
05-233141 Sep 1993 JP
05-262276 Oct 1993 JP
5-265656 Oct 1993 JP
5-274956 Oct 1993 JP
05-289811 Nov 1993 JP
5-298955 Nov 1993 JP
5-325723 Dec 1993 JP
06-20570 Jan 1994 JP
6-084428 Mar 1994 JP
6-089636 Mar 1994 JP
06-096639 Apr 1994 JP
6-96639 Apr 1994 JP
06-111685 Apr 1994 JP
06-111695 Apr 1994 JP
6-111695 Apr 1994 JP
6-139879 May 1994 JP
06-187078 Jul 1994 JP
06-208433 Jul 1994 JP
6-267382 Sep 1994 JP
06-283993 Oct 1994 JP
6-333459 Dec 1994 JP
07-107574 Apr 1995 JP
7-107574 Apr 1995 JP
07-41882 Jul 1995 JP
7-41882 Jul 1995 JP
7-201249 Aug 1995 JP
07-201256 Aug 1995 JP
07-253838 Oct 1995 JP
07-261899 Oct 1995 JP
7-261899 Oct 1995 JP
7-261922 Oct 1995 JP
07-296670 Nov 1995 JP
7-319001 Dec 1995 JP
08-016292 Jan 1996 JP
8-115158 May 1996 JP
08-115158 May 1996 JP
8-203387 Aug 1996 JP
8-293226 Nov 1996 JP
8-298045 Nov 1996 JP
08-299541 Nov 1996 JP
8-316664 Nov 1996 JP
09-044289 Feb 1997 JP
09-069023 Mar 1997 JP
09-128148 May 1997 JP
9-134248 May 1997 JP
9-218747 Aug 1997 JP
09-230993 Sep 1997 JP
9-230993 Sep 1997 JP
9-231858 Sep 1997 JP
09-233161 Sep 1997 JP
9-251347 Sep 1997 JP
9-258895 Oct 1997 JP
9-288926 Nov 1997 JP
9-512979 Dec 1997 JP
10-74127 Mar 1998 JP
10-074429 Mar 1998 JP
10-198507 Jul 1998 JP
10-227878 Aug 1998 JP
10-240693 Sep 1998 JP
10-320322 Dec 1998 JP
10-326149 Dec 1998 JP
11-24834 Jan 1999 JP
11-184607 Jul 1999 JP
11-203045 Jul 1999 JP
A 10-012010 Jul 1999 JP
A 10-012025 Jul 1999 JP
A 10-012026 Jul 1999 JP
A 10-012027 Jul 1999 JP
A 10-012028 Jul 1999 JP
A 10-012029 Jul 1999 JP
11-212725 Aug 1999 JP
A 10-089535 Oct 1999 JP
2000-215549 Aug 2000 JP
2000-267786 Sep 2000 JP
2000-267797 Sep 2000 JP
2000-353045 Dec 2000 JP
2001-11769 Jan 2001 JP
2001-22508 Jan 2001 JP
2001-184158 Jul 2001 JP
3085481 Feb 2002 JP
2002-215311 Aug 2002 JP
2003-517674 May 2003 JP
2003-280807 Oct 2003 JP
A 2005-99635 Sep 2005 JP
A 2005-133824 Oct 2005 JP
A 2005-134953 Oct 2005 JP
A 2005-235579 Jan 2006 JP
A 2005-358970 Jul 2006 JP
3852854 Sep 2006 JP
3852854 Dec 2006 JP
A 2005-312433 May 2007 JP
1998-71394 Oct 1998 KR
1999-50198 Jul 1999 KR
2000-08579 Feb 2000 KR
2001-0052016 Jun 2001 KR
2002-65059 Aug 2002 KR
431607 Apr 2001 TW
00470193 Dec 2001 TW
547716 Aug 2003 TW
1220491 Aug 2004 TW
WO-9417494 Aug 1994 WO
WO 9500897 Jan 1995 WO
WO-9627968 Sep 1996 WO
WO-9814863 Apr 1998 WO
WO-9949443 Sep 1999 WO
WO-01044912 Jun 2001 WO
WO-03044645 May 2003 WO
WO 03044956 May 2003 WO
WO 03088176 Oct 2003 WO
WO 03090008 Oct 2003 WO
WO 2004040606 May 2004 WO
WO-2005055620 Jun 2005 WO
WO 2005076117 Aug 2005 WO
WO-2005124526 Dec 2005 WO
WO-2006021211 Mar 2006 WO
WO 2006037545 Apr 2006 WO
WO 2006104745 Oct 2006 WO
WO-2006135127 Dec 2006 WO
WO 2007025858 Mar 2007 WO
WO-2007078477 Jul 2007 WO
WO-2007084467 Jul 2007 WO
WO-2008045414 Apr 2008 WO
Related Publications (1)
Number Date Country
20070052044 A1 Mar 2007 US
Provisional Applications (1)
Number Date Country
60714609 Sep 2005 US