The present Application for patent is related to the following co-pending U.S. patent applications:
“A method and apparatus for bootstrapping information in a communication system” having Ser. No. 11/261,065, filed concurrently herewith, assigned to the assignee hereof, and expressly incorporated by reference herein; and
“Puncturing Signaling Channel For A Wireless Communication System” having Ser. No. 11/260,931, filed concurrently herewith, assigned to the assignee hereof, and expressly incorporated by reference herein.
“Systems And Methods For Control Channel Signaling” having Ser. No. 11/261,836, filed concurrently herewith, assigned to the assignee hereof, and expressly incorporated by reference herein; and
“Varied Transmission Time Intervals For Wireless Communication System” having Ser. No. 11/260,932, filed concurrently herewith, assigned to the assignee hereof, and expressly incorporated by reference herein.
“*Channel Sensitive Scheduling” having Ser. No. 11/260,924, filed concurrently herewith, assigned to the assignee hereof, and expressly incorporated by reference herein; and
“Shared Signaling Channel” having Ser. No. 11/261,158, filed concurrently herewith, assigned to the assignee hereof, and expressly incorporated by reference herein.
“Virtual Antenna” having Ser. No. 11/261,823, filed concurrently herewith, assigned to the assignee hereof, and expressly incorporated by reference herein; and
“Mobile Wireless Access System” having Ser. No. 11/261,832, filed concurrently herewith, assigned to the assignee hereof, and expressly incorporated by reference herein.
I. Field
The following description relates generally to wireless communications, and, amongst other things, to flexible communication schemes for wireless communications systems.
II. Background
To enable transmission of data to and from mobile devices, a robust communications network must be enabled. One particular technology utilized in today's mobile networks is Orthogonal Frequency Division Modulation or Orthogonal Frequency Division Multiplexing (OFDM). OFDM modulates digital information onto an analog carrier electromagnetic signal, and is utilized, for example, in the IEEE 802.11a/g WLAN standard. An OFDM baseband signal (e.g., a subband) constitutes a number of orthogonal subcarriers, where each subcarrier is independently modulated by its own data. Benefits of OFDM include ease of filtering noise, ability to vary upstream and downstream speeds (which can be accomplished by way of allocating more or fewer carriers for each purpose), ability to mitigate effects of frequency-selective fading, etc.
Conventional networks must also be able to adapt to new technologies to accommodate an ever-increasing number of users. Thus, it is important to increase a number of dimensions within sectors of a network without substantially affecting quality of data transmission in a negative manner. When utilizing OFDM, increasing dimensions can be problematic as there are a finite number of tones that can be utilized for data communication. Space Division Multiple Access (SDMA) enables an increase in the number of dimensions through sharing of time-frequency resources. For example, a first user and a second user can utilize a substantially similar frequency at a same instance in time in a single sector as long as they are separated by a sufficient spatial distance. Through employment of beams, SDMA can be utilized in an OFDM/OFDMA environment.
In one particular example, beamformed transmissions can be employed to enable SDMA in an OFDM/OFDMA environment. Multiple transmit antennas located at a base station can be used to form beamformed transmissions, which utilize “beams” that typically cover a narrower area than transmissions using a single transmit antenna. However, the signal to interference and noise ratio (SINR) is enhanced within the area covered by the beams. The portions of a sector not covered by a beam may be referred to as a null region. Mobile devices located within the null region will have will have an extremely low SINR, resulting in reduced performance and possible loss of data. Through use of such beams, users separated by sufficient spatial distance can communicate on substantially similar frequencies, thereby increasing a number of dimensions that can be employed within a sector. There may be instances, however, when it is not desirable for a user to employ SDMA. For example, when preceding is desired, or when channel diversity is desired, degraded performance may result with respect to some mobile devices within a particular region.
The following presents a simplified summary in order to provide a basic understanding of some aspects of the claimed subject matter. This summary is not an extensive overview, and is not intended to identify key/critical elements or to delineate the scope of the claimed subject matter. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
Described herein are systems, methods, apparatuses, and articles of manufacture that facilitate allocation of resources in a wireless communications environments on a forward link. A codebook can be maintained that indicates particular users or access terminals with respect to which SDMA can be employed. Based upon an analysis of the codebook, a first and second channel tree can be maintained, wherein access terminals that can employ SDMA are associated with hop-ports on disparate channel trees. This enables the disparate access terminals to share time-frequency resources. With respect to access terminals that are not candidates for employing SDMA, such access terminals can be associated with hop-ports that are assigned to the first channel tree and mapped to frequency ranges that are not mapped to hop-ports on the second channel tree.
For instance, a method for allocating resources in a wireless communications environment is described herein, wherein the method comprises receiving a mapping between a first set of hop-ports one tree and a frequency range and determining whether to assign a second access terminal to a second hop port that is mapped to at least the same frequency range during a substantially similar instance in time, the determination made as a function of characteristics relating to a first access terminal associated with the first hop-port. The method can further include determining that the first access terminal is a candidate for employing Space-Division Multiple Access (SDMA), and mapping the second-hop port to the same frequency range and mapping the second hop port and associating the second access terminal with the second hop port when the second access terminal is also a candidate for employing SDMA. A first channel tree can include multiple mappings between hop ports and frequency ranges according to a first hop permutation and a second channel tree can include multiple mappings between hop ports and the frequency ranges according to the first hop permutation. The method can additionally include determining that the first access terminal has a first spatial direction, determining that the second access terminal has second spatial direction, mapping the first access terminal to the first hop port for a first time period, and mapping the second access terminal to the second hop port for the first time period. Still further, the method can include receiving a quantized value indicative of the first direction from the first access terminal, and association the first access terminal to the first-hop hop port based upon the quantized value, wherein the quantized value can be selected from a codebook.
Moreover, a wireless communications apparatus is disclosed herein, where the apparatus comprises a memory that includes information relating to whether two access terminals are candidates for employing SDMA in an OFDM/OFDMA environment. The apparatus can further include a processor that assigns the two access terminal to the two hop ports that are mapped to substantially similar frequencies in a sector at substantially similar times if the two access terminals are candidates for employing SDMA. In one example, a first channel tree can include mappings between multiple hop ports and multiple frequency ranges according to a hop permutation, and the processor can define mappings associated with a second channel tree as a function of the hop permutation.
Furthermore, an apparatus for managing frequency resources in a wireless communications environment is described herein, where the apparatus comprises means for determining that a first access terminal and a second access terminal are candidates for employing SDMA. The apparatus can further include means for assigning the first access terminal to a first hop port and the second access terminal to the second hop-port, the first and second hop ports are mapped to substantially similar time-frequency resources. The apparatus can further include means for analyzing a first channel tree that includes the mapping between the first hop-port and the time-frequency resources as well as means for defining the mapping between the second hop-port and the time-frequency resources in a second channel tree.
Additionally, a computer-readable medium is disclosed herein, where such medium includes instructions for determining that a first access terminal is a candidate for employing SDMA, assigning the first access terminal to one or more hop-ports that are mapped to one or more frequency tones in a first channel tree, determining that a second access terminal is a candidate for employing SDMA, assigning the second access terminal to one or more hop-ports, and mapping the one or more hop-ports assigned to the second access terminal to the one or more frequency tones mapped to the one or more hop-ports assigned to the first access terminal in a second channel tree.
Further, a processor is disclosed and described herein, wherein the processor executes instructions for enhancing performance for a wireless communication environment, the instructions comprise associating a first access terminal to a first set of hop-ports, the first access terminal configured to operate in an OFDM/OFDMA environment, the first access terminal is a candidate for employment of SDMA, mapping the first set of hop-ports to a range of frequencies, associating a second access terminal to a second set of hop-ports, the second access terminal configured to operate in an OFDM/OFDMA environment, the second access terminal is a candidate for employment of SDMA, and mapping the second set of hop-ports to the range of frequencies so that the first set of hop-ports and the second set of hop-ports are mapped to the range of frequencies at a substantially similar time.
To the accomplishment of the foregoing and related ends, certain illustrative aspects are described herein in connection with the following description and the annexed drawings. These aspects are indicative, however, of but a few of the various ways in which the principles of the claimed subject matter may be employed and the claimed matter is intended to include all such aspects and their equivalents. Other advantages and novel features may become apparent from the following detailed description when considered in conjunction with the drawings.
The claimed subject matter is now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the claimed subject matter. It may be evident, however, that such subject matter may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the subject invention.
Furthermore, various embodiments are described herein in connection with a user device. A user device can also be called a system, a subscriber unit, subscriber station, mobile station, mobile device, remote station, access point, base station, remote terminal, access terminal, user terminal, terminal, user agent, or user equipment. A user device can be a cellular telephone, a cordless telephone, a Session Initiation Protocol (SIP) phone, a wireless local loop (WLL) station, a PDA, a handheld device having wireless connection capability, or other processing device connected to a wireless modem.
Moreover, aspects of the claimed subject matter may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer to implement various aspects of the claimed subject matter. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device, carrier, or media. For example, computer readable media can include but are not limited to magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips . . . ), optical disks (e.g., compact disk (CD), digital versatile disk (DVD) . . . ), smart cards, and flash memory devices (e.g., card, stick, key drive . . . ). Additionally it should be appreciated that a carrier wave can be employed to carry computer-readable electronic data such as those used in transmitting and receiving voice mail or in accessing a network such as a cellular network. Of course, those skilled in the art will recognize many modifications may be made to this configuration without departing from the scope or spirit of what is described herein.
Turning now to the drawings,
Utilizing the feedback, the codebook generator 102 can utilize, or update, a codebook 110 that can include multiple portions that allow user devices to be scheduled via SDMA. For instance, a first portion can include beamforming weights so that a first set of access terminals can be scheduled according to SDMA with respect to other access terminals scheduled on other beamforming weights in other portions of the codebook or other codebooks. In a particular example, an access terminal assigned to the first portion can share time-frequency resources with an access terminal assigned to the second portion, as such access terminals are a sufficient spatial distance apart from one another. In contrast, access terminals assigned within a same portion may not be able to share time-frequency resources without causing a substantial amount of cross talk therebetween. The codebook 110 can also include information relating to which beams to schedule access terminals within the plurality of access terminals 104-108 that are not candidates for SDMA, and thus are not to share time-frequency resources with other access terminals within the sector. For instance, access terminals or control channels that are not candidates for employment of SDMA may be configured for channel diversity, preceding, or to receive broadcast data, and thus should not share time-frequency resources with other access terminals in that portion of the codebook. In one particular example, the codebook generator 102 can update the codebook 110 as it receives packets from the access terminals 104-108 (e.g., the codebook 110 can be updated on a per-packet basis).
A scheduler 112 can receive the codebook 110 and allocate resources within the wireless communications environment. In more detail, the scheduler 112 can map the access terminals 104-108 to hop-ports and/or assign a hop permutation based upon an analysis of the codebook 110, and can also map the hop-ports to particular frequencies. In one particular example, each hop-port can be mapped to a sixteen-tone frequency region. To enable SDMA to be employed within a wireless communication system, the scheduler 112 can analyze two or more disparate channel trees, wherein a channel tree is a mapping of port space onto an available frequency region. The base nodes of a channel tree may correspond to non-overlapping contiguous tones, thereby guaranteeing orthogonality between access terminals associated with the channel tree. If two or more channel trees are associated with a same frequency region, access terminals associated with disparate trees can be scheduled in a manner so that they share time-frequency resources.
The scheduler 112 can allocate time frequency resources through utilization of two or more channel trees in several disparate manners, which are described in more detail below. Briefly, the scheduler 112 can assign access terminals to hop-ports that are mapped to a frequency range on a first channel tree, and not assign access terminals to corresponding hop-ports (that map to a same frequency range) on a second channel tree. This can be done to aid in maintenance of orthogonality with respect to access terminals that are not candidates for use of SDMA, as these access terminals are not scheduled to share time-frequency resources. The scheduler 112 can also assign access terminals that are candidates for SDMA (within the first portion of the codebook 110) to one or more hop-ports, wherein the hop-ports are mapped to particular frequency ranges in the first channel tree. Thereafter, disparate access terminals that are candidates for utilization of SDMA (within the second portion of the codebook 110) can be associated with hop-ports that are mapped to substantially similar frequency ranges on the second channel tree.
In one example, mapping of hop-ports to frequencies within the two or more channel trees can be done in a random fashion during a scheduled permutation. This permutation can aid in creating interference diversity, but may negatively affect scalability. In another example, mapping of hop-ports to frequency ranges within the channel trees can correspond precisely. For instance, at a given permutation, if a first access terminal is assigned to a first set of hop-ports on a first channel tree, then a corresponding access terminal is assigned to a second set of hop-ports on the second channel tree, wherein the second set of hop-ports corresponds to the first set of hop-ports in terms of frequencies to which the hop-ports are mapped. Moreover, hop-ports within the corresponding sets can be mapped to corresponding frequencies. In other words, except for hop-ports associated with access terminals that are not candidates for SDMA mode, the channel trees can mirror one another. In still another example, mapping of hop-ports to frequency ranges between channel trees can be implemented as a combination of correspondence and randomness. For instance, if a first access terminal is assigned to a first set of hop-ports on a first channel tree, then a corresponding access terminal can be assigned to a second set of hop-ports on a second channel tree, wherein the second set of hop-ports corresponds to the first set of hop-ports in terms of frequencies to which the hop-ports are mapped. However, individual hop-ports within the sets of hop-ports can be mapped to frequencies in a random fashion. Thus, while sets of hop-ports correspond between channel trees, individual hop-ports within the sets may not correspond. Thus, the scheduler 112 can utilize various permutations of channel trees in connection with determining a schedule 114 of communications with respect to the access terminals 104-108.
Referring now to
Turning to
Now referring to
The representation 400 depicts base nodes of a first channel tree, wherein mapping between hop-ports and frequency ranges within an available frequency region with respect to one particular permutation is defined. The first channel tree can be a primary tree, where access terminals that are not candidates to operate in SDMA mode are scheduled/assigned together with access terminals within the first cluster of access terminals. Thus, for instance, a first access terminal (which is to operate in SDMA mode) can be assigned to first and second hop-ports (hp1 and hp2), which are randomly mapped to a third and first frequency range (fr3 and fr1), respectively, for the permutation. The term “randomly” as used herein is intended to encompass both truly random mapping as well as pseudo-random mapping of hop-ports to frequency ranges. A second access terminal (which is not a candidate to operate in SDMA mode) can be associated with third and fourth hop-ports (hp3 and hp4), which may be randomly mapped to a sixth and eighth frequency range (fr6 and fr8), respectively. A third access terminal (which is to operate in SDMA mode) can be associated with fifth, sixth, seventh, and eighth hop-ports (hp5, hp6, hp7, and hp8), which may be randomly mapped to second, seventh, fifth, and fourth frequency ranges (fr2, fr7, fr5, and fr4), respectively. Thus, the first channel tree can include hop-ports that are associated with access terminals that are to operate in SDMA mode as well as access terminals that are not to operate in SDMA mode, and the mapping of hop-ports to frequency ranges can be accomplished in a random or pseudo-random fashion. Further, disparate users can be assigned to different hop-ports over time, and same users can maintain an association with hop-ports as they are mapped to disparate frequencies after a hop permutation.
The representation 402 depicts base nodes of a second channel tree, which can be employed to schedule communications with respect to access terminals that are to operate in SDMA mode. More particularly, access terminals scheduled/assigned with respect to the second channel tree may share time-frequency resources with access terminals scheduled/assigned with respect to the first channel tree. For instance, a fourth access terminal that is to operate in SDMA mode can be assigned to tenth and eleventh hop-ports, which can be randomly assigned to any suitable frequency ranges within the available frequency region except for the sixth and eighth frequency range (fr6 and fr8), as such ranges are reserved on the first channel tree for access terminals that are not operating in SDMA mode. In the representation 402, the tenth and eleventh hop-ports (hp10 and hp11) are randomly mapped to the second and first frequency ranges (fr2 and fr1), respectively. A fifth access terminal that is to operate in SDMA mode can be assigned to a twelfth hop-port (hp12), which is randomly mapped to a seventh frequency range (fr7), and a sixth access terminal that is to operate in SDMA mode can be assigned to hop-ports 14-16, which are randomly mapped to the fifth, third, and fourth frequency ranges (fr5, fr3, and fr4), respectively. This random mapping between hop-ports and frequency ranges provides interference diversity on the forward link for access terminals operating in SDMA mode, as access terminals associated with disparate channel trees may not correspond. In summary, hop-ports associated with two channel trees can be randomly mapped to frequency ranges during hop permutations, thereby enhancing interference diversity.
Turning now to
As SDMA mode relates to sharing of time-frequency resources with respect to access terminals, a second channel tree (the base nodes of which are represented by the depiction 502) can be employed. The second channel tree can be utilized to schedule access terminals on overlapping frequencies during the hop permutation. For instance, access terminals on overlapping frequencies can utilize disparate beams for receipt and transmission of data, wherein such beams can aid in maintaining a threshold level of cross talk. A determination of an appropriate beam can be made based upon spatial signatures associated with one or more access terminals. As can be discerned from reviewing the depiction 502, sets of hop-ports and mappings correspond to sets of hop-ports and mappings within the depiction 500 (e.g., base level nodes of the two channel trees correspond except with respect to hop-ports assigned to access terminals that are not scheduled for SDMA mode). In more detail, a fourth set of hop-ports 510 corresponds to the first set of hop-ports 504. However, as the first set of hop-ports 504 is associated with an access terminal that is not to operate in SDMA mode, the fourth set of hop-ports is not mapped to a frequency range and thus is not assigned access terminals. A fifth set of hop-ports 512 corresponds to the second set of hop-ports 506. That is, the fifth set of hop-ports 512 includes eleventh, twelfth, and thirteenth hop-ports, which are mapped to frequency ranges that hop-ports within the second set of hop-ports 506 are mapped during the hop permutation (e.g., a fourth access terminal is associated with the fifth set of hop-ports 512 and shares time-frequency resources with the second access terminal). A sixth set of hop-ports 514, which includes fourteenth, fifteenth, and sixteenth hop-ports (hp14, hp 15, and hp16), corresponds to the third set of hop-ports (e.g., hop-ports within the sixth set of hop-ports 514 are mapped to frequencies that correspond to mappings associated with hop-ports within the third set of hop-ports 508). In more detail, hp14, hp15, and hp 16 are mapped to fr7, fr4, and fr5, respectively, during the permutation. Assigning users to correspondingly mapped hop-ports increases system scalability—however, interference diversity may be negatively affected.
Referring to
The mappings shown within the representation 602 of base nodes of the second channel tree, however, are generated in a disparate manner. Rather than mappings of hop-ports within sets associated with the second channel tree corresponding identically to mappings of hop-ports within sets associated with the first channel tree, hop-ports within sets of the associated with the second channel tree can be randomly mapped to frequency ranges associated with the corresponding sets within the first channel tree. In more detail, the representation 602 can include the fourth set of hop-ports 510, which corresponds to the first set of hop-ports 504 in the representation 600. As the first set of hop-ports 504 is associated with an access terminal that will not operate in SDMA mode, hop-ports within the fourth set 510 are not mapped, and frequency ranges fr1 and fr3 are utilized solely by the first access terminal. The fifth set of hop-ports 512 includes hp11-13, which correspond to hp3-5 in the second set of hop-ports 506. As hp3-5 are associated with fr6, fr8, and fr2, respectively, such frequencies will be mapped to hp11-13. However, hp11-13 can be randomly mapped to these frequency ranges—thus, for instance, hp11 can be mapped to fr8, hp12 can be mapped to fr2, and hp13 can be mapped to fr6. Thus, user assignments to sets of hop-ports can correspond between the first and second channel trees, but hop-ports within the sets can be randomly assigned to frequency ranges. The set of hop-ports 514 can include hp14-hp16, which are mapped to fr5, fr4, and fr7. This manner of allocating resources in a wireless environment, within which SDMA is desirably employed, provides scalability as well as interference diversity between hop-ports.
Now turning to
This information can be provided to a processor 704, which can then schedule communications in the wireless environment accordingly. In one example, the processor 704 can analyze a first channel tree and define mappings within a second channel tree based at least in part upon content of the first channel tree. For instance, content of the first channel tree can cause restriction with respect to frequency ranges in the second channel tree. Similarly, a hop permutation can be utilized to define multiple mappings between hop-ports and frequency ranges in a first channel tree as well as a second channel tree.
In another example, as alluded to above, access terminals can be scheduled over SDMA dimensions over substantially similar time-frequency resources on a packet-by-packet basis. The SDMA factor may be a function scheduling undertaken by the processor 704. More specifically, the processor 704 can assign one or more access terminal to a channel that corresponds to substantially similar time-frequency blocks in subsequent transmissions. A multiplexing order may be fully controlled by the processor 704 during scheduling, where well separated access terminals can be double or triple scheduled over one channel and other access terminals may not be spatially multiplexed. In yet another example, the processor 704 can be employed in connection with optimizing interference diversity by randomly overlapping SDMA-enabled access terminals across frequency and time. The processor 704 can partition overall time-frequency resources into segments of different multiplexing order. For segments with multiplexing order N, there may be N set of channels, where each set is orthogonal but overlapping between sets (See.
Referring to
Referring solely to
At 808, a determination is made regarding whether the access terminal is a candidate to employ SDMA. For example, if the access terminal is waiting for broadcast data or is operating in diversity mode, such access terminal will not be a candidate to employ SDMA. Similarly, if the access terminal is requesting preceding, such access terminal may not be a candidate for employment of SDMA on the forward link. If the access terminal is not a candidate for employment of SDMA, then at 810 other hop-ports will not be mapped to the frequency range to which the first hop-port is mapped. This ensures channel diversity and orthogonality with respect to the channel utilized by the access terminal. If the access terminal is a candidate for employment of SDMA, then at 812 a second hop-port is mapped to the frequency range to which the first hop-port is mapped. The methodology 800 completes at 814.
Now referring to
Turning to
Each cell includes several access terminals which are in communication with one or more sectors of each access point. For example, access terminals 1130 and 1132 are in communication with access point (or base station) 1142, access terminals 1134 and 1136 are in communication with access point 1144, and access terminals 1138 and 1140 are in communication with access point 1146.
As illustrated in
As used herein, an access point may be a fixed station used for communicating with the terminals and may also be referred to as, and include some or all the functionality of, a base station, a Node B, or some other terminology. An access terminal may also be referred to as, and include some or all the functionality of, a user equipment (UE), a wireless communication device, terminal, a mobile station, a access terminal, or some other terminology.
In one example, a set of known beams may be utilized at the base-station in order to provide SDMA, e.g. fixed or adaptive sectors. If the base station is aware of the best beam for every user, it can allocate the same channel for different users if they are to be receiving data on different beams. In another example, system 1100 may include an omni-directional beam that corresponds to no pre-coding. The base station would use this beam for broadcast or multicast transmissions. In still another example, the system 1100 may utilize pre-coding without SDMA if such channel information is reported to the user.
The SDMA index can be a parameter that may change relatively slowly. This may occur since the index(s) used to calculate the SDMA index captures the spatial statistics of a user which may be measured by a mobile device. This information can be used by the mobile device to compute the beam preferred by it and indicating this beam to the base station. Even without power allocation, knowing the channel at the transmitter improves capacity especially for those systems where the number of transmit antennas TM is greater than the number of receive antennas RM. The capacity improvement is obtained by transmitting along the directions of the channel Eigen vectors. Feeding back the channel requires overhead.
SDMA provides a sufficiently rich set of beams at the transmitter that allows full flexibility in scheduling. The users are scheduled on beams that are signaled to the base station through some feedback mechanism. For efficient scheduling, the transmitter should have the channel quality information over each user if a certain beam is used to schedule the user.
Each group of antennas and/or the area in which they are designated to communicate may be referred to as a sector of base station 1202. For instance, antenna groups each may be designed to communicate to mobile devices in a sector of the areas covered by base station 1202. A base station may be a fixed station used for communicating with the terminals and may also be referred to as an access point, a Node B, or some other terminology. A mobile device may also be called a mobile station, user equipment (UE), a wireless communication device, terminal, access terminal, user device, a handset, or some other terminology.
SDMA can be used with frequency division systems such as an orthogonal frequency division multiple access (OFDMA) system. An OFDMA system partitions the overall system bandwidth into multiple orthogonal subbands. These subbands are also referred to as tones, carriers, subcarriers, bins, and/or frequency channels. Each subband is associated with a subcarrier that can be modulated with data. An OFDMA system may use time and/or frequency division multiplexing to achieve orthogonality among multiple data transmissions for multiple user devices. Groups of user devices can be allocated separate subbands, and the data transmission for each user device may be sent on the subband(s) allocated to this user device.
Processor 1306 can be a processor dedicated to analyzing information received by receiver component 1302 and/or generating information for transmission by a transmitter 1314. Processor 1306 can be a processor that controls one or more portions of system 1300, and/or a processor that analyzes information received by receiver 1302, generates information for transmission by a transmitter 1314, and controls one or more portions of system 1300. System 1300 can include an optimization component 1308 that coordinates beam assignments. Optimization component 1308 may be incorporated into the processor 1306. It is to be appreciated that optimization component 1308 can include optimization code that performs utility based analysis in connection with assigning user devices to beams. The optimization code can utilize artificial intelligence based methods in connection with performing inference and/or probabilistic determinations and/or statistical-based determination in connection with optimizing user device beam assignments.
System (user device) 1300 can additionally comprise memory 1310 that is operatively coupled to processor 1306 and that stores information related to beam pattern information, lookup tables comprising information related thereto, and any other suitable information related to beam-forming as described herein. Memory 1310 can additionally store protocols associated with generating lookup tables, etc., such that system 1300 can employ stored protocols and/or algorithms to increase system capacity. It will be appreciated that the data store (e.g., memories) components described herein can be either volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory. By way of illustration, and not limitation, nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory. Volatile memory can include random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM). The memory 1310 of the subject systems and methods is intended to comprise, without being limited to, these and any other suitable types of memory. The processor 1306 is connected to a symbol modulator 1312 and transmitter 1314 that transmits the modulated signal.
Base station 1402 further comprises an assignment component 1422, which can be a processor distinct from or integral to processor 1414, and which can evaluate a pool of all user devices in a sector served by base station 1404 and can assign user devices to beams based at least in part upon the location of the individual user devices.
At transmitter system 1510 traffic data for a number of data streams is provided from a data source 1512 to a transmit (TX) data processor 1514. In one example, each data stream can be transmitted over a respective transmit antenna. TX data processor 1514 formats, codes, and interleaves the traffic data for each data stream based on a particular coding scheme selected for that data stream to provide coded data. For instance, TX data processor 1514 can apply beam-forming weights to the symbols of the data streams based upon the user to which the symbols are being transmitted and the antenna from which the symbol is being transmitted. In some embodiments, the beam-forming weights may be generated based upon channel response information that is indicative of the condition of the transmission paths between the access point and the access terminal. The channel response information may be generated utilizing CQI information or channel estimates provided by the user. Further, in those cases of scheduled transmissions, the TX data processor 1514 can select the packet format based upon rank information that is transmitted from the user.
The coded data for each data stream may be multiplexed with pilot data using OFDM techniques. The pilot data is typically a known data pattern that is processed in a known manner and may be used at the receiver system to estimate the channel response. The multiplexed pilot and coded data for each data stream is then modulated (e.g., symbol mapped) based on a particular modulation scheme (e.g., BPSK, QSPK, M-PSK, or M-QAM) selected for that data stream to provide modulation symbols. The data rate, coding, and modulation for each data stream may be determined by instructions performed on provided by processor 1530. In some embodiments, the number of parallel spatial streams may be varied according to the rank information that is transmitted from the user.
The modulation symbols for the data streams are provided to a TX MIMO processor 1520, which may further process the modulation symbols (e.g., for OFDM). TX MIMO processor 1520 provides NT symbol streams to NT transmitters (TMTR) 1522a through 1522t. For instance, TX MIMO processor 1520 can apply beam-forming weights to the symbols of the data streams based upon the user to which the symbols are being transmitted and the antenna from which the symbol is being transmitted from that user's channel response information.
Each transmitter 1522 receives and processes a respective symbol stream to provide one or more analog signals, and further conditions (e.g., amplifies, filters, and upconverts) the analog signals to provide a modulated signal suitable for transmission over the MIMO channel. NT modulated signals from transmitters 1522a through 1522t are transmitted from NT antennas 1524a through 1524t, respectively.
At receiver system 1550, the transmitted modulated signals are received by NR antennas 1552a through 1552r and the received signal from each antenna 1552 is provided to a respective receiver (RCVR) 1554. Each receiver 1554 conditions (e.g., filters, amplifies, and downconverts) a respective received signal, digitizes the conditioned signal to provide samples, and further processes the samples to provide a corresponding “received” symbol stream.
An RX data processor 1560 then receives and processes the NR received symbol streams from NR receivers 1554 based on a particular receiver processing technique to provide the rank number of “detected” symbol streams. The processing by RX data processor 1560 is described in further detail below. Each detected symbol stream includes symbols that are estimates of the modulation symbols transmitted for the corresponding data stream. RX data processor 1560 then demodulates, deinterleaves, and decodes each detected symbol stream to recover the traffic data for the data stream. The processing by RX data processor 1560 is complementary to that performed by TX MIMO processor 1520 and TX data processor 1514 at transmitter system 1510.
The channel response estimate generated by RX processor 1560 may be used to perform space, space/time processing at the receiver, adjust power levels, change modulation rates or schemes, or other actions. RX processor 1560 may further estimate the signal-to-noise-and-interference ratios (SNRs) of the detected symbol streams, and possibly other channel characteristics, and provides these quantities to a processor 1570. RX data processor 1560 or processor 1570 may further derive an estimate of the “effective” SNR for the system. Processor 1570 then provides estimated channel information (CSI), which may comprise various types of information regarding the communication link and/or the received data stream. For example, the CSI may comprise only the operating SNR. The CSI is then processed by a TX data processor 1538, which also receives traffic data for a number of data streams from a data source 1576, modulated by a modulator 1580, conditioned by transmitters 1554a through 1554r, and transmitted back to transmitter system 1510.
At transmitter system 1510, the modulated signals from receiver system 1550 are received by antennas 1524, conditioned by receivers 1522, demodulated by a demodulator 1540, and processed by a RX data processor 1542 to recover the CSI reported by the receiver system. The reported CSI is then provided to processor 1530 and used to (1) determine the data rates and coding and modulation schemes to be used for the data streams and (2) generate various controls for TX data processor 1514 and TX MIMO processor 1520.
At the receiver, various processing techniques may be used to process the NR received signals to detect the NT transmitted symbol streams. These receiver processing techniques may be grouped into two primary categories (i) spatial and space-time receiver processing techniques (which are also referred to as equalization techniques); and (ii) “successive nulling/equalization and interference cancellation” receiver processing technique (which is also referred to as “successive interference cancellation” or “successive cancellation” receiver processing technique).
A MIMO channel formed by the NT transmit and NR receive antennas may be decomposed into NS independent channels, with NS≦min {NT, NR}. Each of the Ns independent channels may also be referred to as a spatial subchannel (or a transmission channel) of the MIMO channel and corresponds to a dimension.
For a software implementation, the techniques described herein may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The software codes may be stored in memory units and executed by processors. The memory unit may be implemented within the processor or external to the processor, in which case it can be communicatively coupled to the processor via various means as is known in the art.
It is to be understood that the embodiments described herein may be implemented by hardware, software, firmware, middleware, microcode, or any combination thereof. For a hardware implementation, the processing units within an access point or an access terminal may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a combination thereof.
When the systems and/or methods are implemented in software, firmware, middleware or microcode, program code or code segments, they may be stored in a machine-readable medium, such as a storage component. A code segment may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a class, or any combination of instructions, data structures, or program statements. A code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory contents. Information, arguments, parameters, data, etc. may be passed, forwarded, or transmitted using any suitable means including memory sharing, message passing, token passing, network transmission, etc.
For a software implementation, the techniques described herein may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The software codes may be stored in memory units and executed by processors. The memory unit may be implemented within the processor or external to the processor, in which case it can be communicatively coupled to the processor through various means as is known in the art.
What has been described above includes examples of the claimed subject matter. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing such subject matter, but one of ordinary skill in the art may recognize that many further combinations and permutations are possible. Accordingly, the claimed subject matter is intended to embrace all such alterations, modifications, and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
Number | Name | Date | Kind |
---|---|---|---|
4393276 | Steele et al. | Jul 1983 | A |
4554668 | Deman et al. | Nov 1985 | A |
4747137 | Matsunaga | May 1988 | A |
4783779 | Takahata et al. | Nov 1988 | A |
4783780 | Alexis | Nov 1988 | A |
4975952 | Mabey et al. | Dec 1990 | A |
5008900 | Critchlow et al. | Apr 1991 | A |
5115248 | Roederer et al. | May 1992 | A |
5268694 | Jan et al. | Dec 1993 | A |
5282222 | Fattouche et al. | Jan 1994 | A |
5363408 | Paik et al. | Nov 1994 | A |
5371761 | Daffara et al. | Dec 1994 | A |
5384810 | Amrany et al. | Jan 1995 | A |
5406551 | Saito et al. | Apr 1995 | A |
5410538 | Roche et al. | Apr 1995 | A |
5455839 | Eyuboglu et al. | Oct 1995 | A |
5465253 | Rahnema | Nov 1995 | A |
5491727 | Petit et al. | Feb 1996 | A |
5513379 | Benveniste et al. | Apr 1996 | A |
5539748 | Raith et al. | Jul 1996 | A |
5548582 | Brajal et al. | Aug 1996 | A |
5583869 | Grube et al. | Dec 1996 | A |
5594738 | Crisler et al. | Jan 1997 | A |
5604744 | Andersson et al. | Feb 1997 | A |
5612978 | Blanchard et al. | Mar 1997 | A |
5625876 | Gilhousenn et al. | Apr 1997 | A |
5684491 | Newman et al. | Nov 1997 | A |
5726978 | Frodigh et al. | Mar 1998 | A |
5732113 | Schmidl et al. | Mar 1998 | A |
5745487 | Hamaki | Apr 1998 | A |
5768276 | Diachina et al. | Jun 1998 | A |
5790537 | Yoon et al. | Aug 1998 | A |
5812938 | Gilhousen et al. | Sep 1998 | A |
5815488 | Williams et al. | Sep 1998 | A |
5822368 | Wang et al. | Oct 1998 | A |
5838268 | Frenkel et al. | Nov 1998 | A |
5867478 | Baum et al. | Feb 1999 | A |
5870393 | Yano et al. | Feb 1999 | A |
5887023 | Mabuchi et al. | Mar 1999 | A |
5907585 | Suzuki et al. | May 1999 | A |
5920571 | Houck et al. | Jul 1999 | A |
5926470 | Tiedemann, Jr., et al. | Jul 1999 | A |
5933421 | Alamouti et al. | Aug 1999 | A |
5949814 | Odenwalder et al. | Sep 1999 | A |
5953325 | Willars et al. | Sep 1999 | A |
5955992 | Shattil et al. | Sep 1999 | A |
5956642 | Larsson et al. | Sep 1999 | A |
5995992 | Eckard et al. | Nov 1999 | A |
5999826 | Whinnett | Dec 1999 | A |
6002942 | Park et al. | Dec 1999 | A |
6016123 | Barton et al. | Jan 2000 | A |
6038150 | Yee et al. | Mar 2000 | A |
6038263 | Kotzin et al. | Mar 2000 | A |
6038450 | Brink et al. | Mar 2000 | A |
6052364 | Chalmers et al. | Apr 2000 | A |
6061337 | Light et al. | May 2000 | A |
6067315 | Sandin | May 2000 | A |
6075350 | Peng et al. | Jun 2000 | A |
6075797 | Thomas | Jun 2000 | A |
6076114 | Wesley et al. | Jun 2000 | A |
6088345 | Sakoda et al. | Jul 2000 | A |
6088592 | Doner et al. | Jul 2000 | A |
6108323 | Gray et al. | Aug 2000 | A |
6108550 | Wiorek et al. | Aug 2000 | A |
6112094 | Dent et al. | Aug 2000 | A |
6128776 | Kang et al. | Oct 2000 | A |
6138037 | Jaamies | Oct 2000 | A |
6141317 | Marchok et al. | Oct 2000 | A |
6154484 | Lee et al. | Nov 2000 | A |
6169910 | Tamil et al. | Jan 2001 | B1 |
6172993 | Kim et al. | Jan 2001 | B1 |
6175550 | Van Nee et al. | Jan 2001 | B1 |
6175650 | Sindhu et al. | Jan 2001 | B1 |
6176550 | Lamart et al. | Jan 2001 | B1 |
6198775 | Khayrallah et al. | Mar 2001 | B1 |
6215983 | Dogan et al. | Apr 2001 | B1 |
6226280 | Roark et al. | May 2001 | B1 |
6232918 | Wax et al. | May 2001 | B1 |
6240129 | Reusens et al. | May 2001 | B1 |
6249683 | Lundby et al. | Jun 2001 | B1 |
6256478 | Allen et al. | Jul 2001 | B1 |
6271946 | Chang et al. | Aug 2001 | B1 |
6272122 | Wee et al. | Aug 2001 | B1 |
6310704 | Dogan et al. | Oct 2001 | B1 |
6317435 | Tiedemann, Jr. et al. | Nov 2001 | B1 |
6335922 | Tiedemann, Jr. et al. | Jan 2002 | B1 |
6337659 | Kim et al. | Jan 2002 | B1 |
6337983 | Bonta et al. | Jan 2002 | B1 |
6353637 | Mansour et al. | Mar 2002 | B1 |
6363060 | Sarkar | Mar 2002 | B1 |
6374115 | Barnes et al. | Apr 2002 | B1 |
6377539 | Kang et al. | Apr 2002 | B1 |
6377809 | Rezaiifar et al. | Apr 2002 | B1 |
6388998 | Kasturia et al. | May 2002 | B1 |
6393008 | Cheng et al. | May 2002 | B1 |
6393012 | Pankaj | May 2002 | B1 |
6401062 | Murashima | Jun 2002 | B1 |
6438369 | Huang et al. | Aug 2002 | B1 |
6449246 | Barton et al. | Sep 2002 | B1 |
6466800 | Sydon et al. | Oct 2002 | B1 |
6473467 | Wallace et al. | Oct 2002 | B1 |
6477317 | Itokawa | Nov 2002 | B1 |
6478422 | Hansen | Nov 2002 | B1 |
6483820 | Davidson et al. | Nov 2002 | B1 |
6487243 | Hwang et al. | Nov 2002 | B1 |
6496790 | Kathavate et al. | Dec 2002 | B1 |
6501810 | Karim et al. | Dec 2002 | B1 |
6507601 | Parsa et al. | Jan 2003 | B2 |
6519462 | Lu et al. | Feb 2003 | B1 |
6529525 | Pecen et al. | Mar 2003 | B1 |
6535666 | Dogan et al. | Mar 2003 | B1 |
6539008 | Ahn et al. | Mar 2003 | B1 |
6539213 | Richards et al. | Mar 2003 | B1 |
6542485 | Mujtaba et al. | Apr 2003 | B1 |
6542743 | Soliman | Apr 2003 | B1 |
6563806 | Yano et al. | May 2003 | B1 |
6563881 | Sakoda et al. | May 2003 | B1 |
6577739 | Hurtig et al. | Jun 2003 | B1 |
6584140 | Lee et al. | Jun 2003 | B1 |
6590881 | Wallace et al. | Jul 2003 | B1 |
6597746 | Amrany et al. | Jul 2003 | B1 |
6601206 | Marvasti | Jul 2003 | B1 |
6614857 | Buehrer et al. | Sep 2003 | B1 |
6625172 | Odenwalder et al. | Sep 2003 | B2 |
6636568 | Kadous et al. | Oct 2003 | B2 |
6654339 | Böhnke et al. | Nov 2003 | B1 |
6654431 | Barton et al. | Nov 2003 | B1 |
6657949 | Jones, IV et al. | Dec 2003 | B1 |
6658258 | Chen et al. | Dec 2003 | B1 |
6674787 | Dick et al. | Jan 2004 | B1 |
6674810 | Cheng et al. | Jan 2004 | B1 |
6675012 | Gray et al. | Jan 2004 | B2 |
6678318 | Lai et al. | Jan 2004 | B1 |
6690951 | Cuffaro et al. | Feb 2004 | B1 |
6693952 | Chuah et al. | Feb 2004 | B1 |
6701165 | Ho et al. | Mar 2004 | B1 |
6704571 | Moon | Mar 2004 | B1 |
6711400 | Aura | Mar 2004 | B1 |
6717908 | Vijayan et al. | Apr 2004 | B2 |
6721568 | Gustavsson et al. | Apr 2004 | B1 |
6724719 | Tong et al. | Apr 2004 | B1 |
6731602 | Watanabe et al. | May 2004 | B1 |
6735244 | Hasegawa et al. | May 2004 | B1 |
6744743 | Walton et al. | Jun 2004 | B2 |
6748220 | Chow et al. | Jun 2004 | B1 |
6751444 | Meiyappan et al. | Jun 2004 | B1 |
6751456 | Bilgic et al. | Jun 2004 | B2 |
6754511 | Halford et al. | Jun 2004 | B1 |
6763009 | Bedekar et al. | Jul 2004 | B1 |
6765969 | Vook et al. | Jul 2004 | B1 |
6776165 | Jin et al. | Aug 2004 | B2 |
6776765 | Soukup et al. | Aug 2004 | B2 |
6778513 | Kasapi et al. | Aug 2004 | B2 |
6785341 | Walton et al. | Aug 2004 | B2 |
6798736 | Black et al. | Sep 2004 | B1 |
6799043 | Tiedemann, Jr. et al. | Sep 2004 | B2 |
6802035 | Catreux et al. | Oct 2004 | B2 |
6804307 | Popovic | Oct 2004 | B1 |
6813284 | Vayanos et al. | Nov 2004 | B2 |
6821535 | Nurmi et al. | Nov 2004 | B2 |
6828293 | Hazenkamp et al. | Dec 2004 | B1 |
6829293 | Jones et al. | Dec 2004 | B2 |
6831943 | Dabak et al. | Dec 2004 | B1 |
6842487 | Larsson | Jan 2005 | B1 |
6850481 | Wu et al. | Feb 2005 | B2 |
6850509 | Lee et al. | Feb 2005 | B2 |
6862271 | Medvedev et al. | Mar 2005 | B2 |
6870808 | Liu et al. | Mar 2005 | B1 |
6870826 | Ishizu et al. | Mar 2005 | B1 |
6904097 | Agami et al. | Jun 2005 | B2 |
6904283 | Li et al. | Jun 2005 | B2 |
6904550 | Sibecas et al. | Jun 2005 | B2 |
6907020 | Periyalwar et al. | Jun 2005 | B2 |
6907269 | Yamaguchi et al. | Jun 2005 | B2 |
6909707 | Rotstein et al. | Jun 2005 | B2 |
6909797 | Romsdahl et al. | Jun 2005 | B2 |
6917602 | Toskala et al. | Jul 2005 | B2 |
6917821 | Kadous et al. | Jul 2005 | B2 |
6927728 | Vook et al. | Aug 2005 | B2 |
6928047 | Xia et al. | Aug 2005 | B1 |
6934266 | Dulin et al. | Aug 2005 | B2 |
6934275 | Love et al. | Aug 2005 | B1 |
6934340 | Dollard et al. | Aug 2005 | B1 |
6940842 | Proctor, Jr. | Sep 2005 | B2 |
6940845 | Benveniste et al. | Sep 2005 | B2 |
6954448 | Farley et al. | Oct 2005 | B2 |
6954481 | Laroia et al. | Oct 2005 | B1 |
6954622 | Nelson et al. | Oct 2005 | B2 |
6961364 | Laroia et al. | Nov 2005 | B1 |
6963543 | Diep et al. | Nov 2005 | B2 |
6970682 | Crilly, Jr. et al. | Nov 2005 | B2 |
6975868 | Joshi et al. | Dec 2005 | B2 |
6980540 | Laroia et al. | Dec 2005 | B1 |
6985434 | Wu et al. | Jan 2006 | B2 |
6985453 | Lundby et al. | Jan 2006 | B2 |
6985466 | Yun et al. | Jan 2006 | B1 |
6985498 | Laroia et al. | Jan 2006 | B2 |
6987746 | Song | Jan 2006 | B1 |
6993342 | Kuchibhotla et al. | Jan 2006 | B2 |
7002900 | Walton et al. | Feb 2006 | B2 |
7006529 | Alastalo et al. | Feb 2006 | B2 |
7006557 | Subrahmanya et al. | Feb 2006 | B2 |
7006848 | Ling et al. | Feb 2006 | B2 |
7009500 | Rao et al. | Mar 2006 | B2 |
7010048 | Shattil et al. | Mar 2006 | B1 |
7013143 | Love et al. | Mar 2006 | B2 |
7016318 | Pankaj et al. | Mar 2006 | B2 |
7016319 | Baum et al. | Mar 2006 | B2 |
7016425 | Kraiem et al. | Mar 2006 | B1 |
7020110 | Walton et al. | Mar 2006 | B2 |
7023880 | El-Maleh et al. | Apr 2006 | B2 |
7039356 | Nguyen et al. | May 2006 | B2 |
7039370 | Laroia et al. | May 2006 | B2 |
7042856 | Walton et al. | May 2006 | B2 |
7042857 | Krishnan et al. | May 2006 | B2 |
7047006 | Classon et al. | May 2006 | B2 |
7050402 | Schmidl et al. | May 2006 | B2 |
7050405 | Attar et al. | May 2006 | B2 |
7054301 | Sousa et al. | May 2006 | B1 |
7061898 | Hashem et al. | Jun 2006 | B2 |
7069009 | Li et al. | Jun 2006 | B2 |
7072315 | Liu et al. | Jul 2006 | B1 |
7079867 | Chun et al. | Jul 2006 | B2 |
7085574 | Gaal et al. | Aug 2006 | B2 |
7095708 | Alamouti et al. | Aug 2006 | B1 |
7095709 | Walton et al. | Aug 2006 | B2 |
7099299 | Liang et al. | Aug 2006 | B2 |
7099630 | Brunner et al. | Aug 2006 | B2 |
7103384 | Chun et al. | Sep 2006 | B2 |
7106319 | Ishiyama | Sep 2006 | B2 |
7113808 | Hwang et al. | Sep 2006 | B2 |
7120134 | Tiedemann, Jr. et al. | Oct 2006 | B2 |
7120395 | Tong et al. | Oct 2006 | B2 |
7126928 | Tiedemann, Jr. et al. | Oct 2006 | B2 |
7131086 | Yamasaki et al. | Oct 2006 | B2 |
7133460 | Bae et al. | Nov 2006 | B2 |
7139328 | Thomas et al. | Nov 2006 | B2 |
7142864 | Laroia et al. | Nov 2006 | B2 |
7145940 | Gore et al. | Dec 2006 | B2 |
7145959 | Harel et al. | Dec 2006 | B2 |
7149199 | Sung et al. | Dec 2006 | B2 |
7149238 | Agee et al. | Dec 2006 | B2 |
7151761 | Palenius et al. | Dec 2006 | B1 |
7151936 | Wager et al. | Dec 2006 | B2 |
7154936 | Bjerke et al. | Dec 2006 | B2 |
7155236 | Chen et al. | Dec 2006 | B2 |
7157351 | Cheng et al. | Jan 2007 | B2 |
7161971 | Tiedemann, Jr. et al. | Jan 2007 | B2 |
7164649 | Walton et al. | Jan 2007 | B2 |
7164696 | Sano et al. | Jan 2007 | B2 |
7167916 | Willen et al. | Jan 2007 | B2 |
7170937 | Zhou | Jan 2007 | B2 |
7177297 | Agrawal et al. | Feb 2007 | B2 |
7177351 | Kadous | Feb 2007 | B2 |
7180627 | Moylan et al. | Feb 2007 | B2 |
7181170 | Love et al. | Feb 2007 | B2 |
7184426 | Padovani et al. | Feb 2007 | B2 |
7184713 | Kadous et al. | Feb 2007 | B2 |
7188300 | Eriksson et al. | Mar 2007 | B2 |
7197282 | Dent et al. | Mar 2007 | B2 |
7200177 | Miyoshi et al. | Apr 2007 | B2 |
7209712 | Holtzman et al. | Apr 2007 | B2 |
7215979 | Nakagawa et al. | May 2007 | B2 |
7230942 | Laroia et al. | Jun 2007 | B2 |
7233634 | Hassell Sweatman et al. | Jun 2007 | B1 |
7236747 | Meacham et al. | Jun 2007 | B1 |
7242722 | Krauss et al. | Jul 2007 | B2 |
7243150 | Sher et al. | Jul 2007 | B2 |
7248559 | Ma et al. | Jul 2007 | B2 |
7248841 | Agee et al. | Jul 2007 | B2 |
7254158 | Agrawal et al. | Aug 2007 | B2 |
7257167 | Lau | Aug 2007 | B2 |
7257406 | Ji et al. | Aug 2007 | B2 |
7257423 | Iochi et al. | Aug 2007 | B2 |
7260153 | Nissani et al. | Aug 2007 | B2 |
7280467 | Smee et al. | Oct 2007 | B2 |
7289570 | Schmidl et al. | Oct 2007 | B2 |
7289585 | Sandhu et al. | Oct 2007 | B2 |
7290195 | Guo et al. | Oct 2007 | B2 |
7292651 | Li | Nov 2007 | B2 |
7292863 | Chen et al. | Nov 2007 | B2 |
7295509 | Laroia et al. | Nov 2007 | B2 |
7313086 | Aizawa et al. | Dec 2007 | B2 |
7313126 | Yun et al. | Dec 2007 | B2 |
7313174 | Alard et al. | Dec 2007 | B2 |
7313407 | Shapira et al. | Dec 2007 | B2 |
7327812 | Auer et al. | Feb 2008 | B2 |
7330701 | Mukkavilli et al. | Feb 2008 | B2 |
7336727 | Mukkavilli et al. | Feb 2008 | B2 |
7349371 | Schein et al. | Mar 2008 | B2 |
7349667 | Magee et al. | Mar 2008 | B2 |
7356000 | Oprescu-Surcobe et al. | Apr 2008 | B2 |
7356005 | Derryberry et al. | Apr 2008 | B2 |
7356073 | Heikkila | Apr 2008 | B2 |
7359327 | Oshiba | Apr 2008 | B2 |
7363055 | Castrogiovanni et al. | Apr 2008 | B2 |
7366223 | Chen et al. | Apr 2008 | B1 |
7366253 | Kim et al. | Apr 2008 | B2 |
7366520 | Haustein et al. | Apr 2008 | B2 |
7369531 | Cho et al. | May 2008 | B2 |
7372911 | Lindskog et al. | May 2008 | B1 |
7372912 | Seo et al. | May 2008 | B2 |
7379489 | Zuniga et al. | May 2008 | B2 |
7382764 | Uehara et al. | Jun 2008 | B2 |
7392014 | Baker et al. | Jun 2008 | B2 |
7394865 | Borran et al. | Jul 2008 | B2 |
7403745 | Dominique et al. | Jul 2008 | B2 |
7403748 | Keskitalo et al. | Jul 2008 | B1 |
7406119 | Yamano et al. | Jul 2008 | B2 |
7406336 | Astely et al. | Jul 2008 | B2 |
7411898 | Erlich et al. | Aug 2008 | B2 |
7412212 | Hottinen et al. | Aug 2008 | B2 |
7418043 | Shattil et al. | Aug 2008 | B2 |
7418246 | Kim et al. | Aug 2008 | B2 |
7423991 | Cho et al. | Sep 2008 | B2 |
7426426 | Van Baren et al. | Sep 2008 | B2 |
7428426 | Kiran et al. | Sep 2008 | B2 |
7433661 | Kogiantis et al. | Oct 2008 | B2 |
7437164 | Agrawal et al. | Oct 2008 | B2 |
7443835 | Lakshmi Narayanan et al. | Oct 2008 | B2 |
7447270 | Hottinen et al. | Nov 2008 | B1 |
7450548 | Haustein et al. | Nov 2008 | B2 |
7460466 | Lee et al. | Dec 2008 | B2 |
7463698 | Fujii et al. | Dec 2008 | B2 |
7468943 | Gu et al. | Dec 2008 | B2 |
7469011 | Lin et al. | Dec 2008 | B2 |
7471963 | Kim et al. | Dec 2008 | B2 |
7483408 | Bevan et al. | Jan 2009 | B2 |
7483719 | Kim et al. | Jan 2009 | B2 |
7486408 | Van Der Schaar et al. | Feb 2009 | B2 |
7486735 | Dubuc et al. | Feb 2009 | B2 |
7492788 | Zhang et al. | Feb 2009 | B2 |
7499393 | Ozluturk et al. | Mar 2009 | B2 |
7508748 | Kadous | Mar 2009 | B2 |
7508842 | Baum et al. | Mar 2009 | B2 |
7545867 | Lou et al. | Jun 2009 | B1 |
7548506 | Ma et al. | Jun 2009 | B2 |
7551546 | Ma et al. | Jun 2009 | B2 |
7551564 | Mattina | Jun 2009 | B2 |
7558293 | Choi et al. | Jul 2009 | B2 |
7573900 | Kim et al. | Aug 2009 | B2 |
7599327 | Zhuang | Oct 2009 | B2 |
7616955 | Kim et al. | Nov 2009 | B2 |
7627051 | Shen et al. | Dec 2009 | B2 |
7664061 | Hottinen | Feb 2010 | B2 |
7676007 | Choi et al. | Mar 2010 | B1 |
7684507 | Levy | Mar 2010 | B2 |
7724777 | Sutivong et al. | May 2010 | B2 |
7768979 | Sutivong et al. | Aug 2010 | B2 |
7899497 | Kish et al. | Mar 2011 | B2 |
7916624 | Laroia et al. | Mar 2011 | B2 |
7924699 | Laroia et al. | Apr 2011 | B2 |
7990843 | Laroia et al. | Aug 2011 | B2 |
7990844 | Laroia et al. | Aug 2011 | B2 |
8095141 | Teague | Jan 2012 | B2 |
8098568 | Laroia et al. | Jan 2012 | B2 |
8098569 | Laroia et al. | Jan 2012 | B2 |
8462859 | Sampath et al. | Jun 2013 | B2 |
8582509 | Khandekar et al. | Nov 2013 | B2 |
8582548 | Gore et al. | Nov 2013 | B2 |
20010021650 | Bilgic et al. | Sep 2001 | A1 |
20010024427 | Suzuki | Sep 2001 | A1 |
20010030948 | Tiedemann, Jr. | Oct 2001 | A1 |
20010047424 | Alastalo et al. | Nov 2001 | A1 |
20010053140 | Choi et al. | Dec 2001 | A1 |
20010055294 | Motoyoshi et al. | Dec 2001 | A1 |
20010055297 | Benveniste et al. | Dec 2001 | A1 |
20020000948 | Chun et al. | Jan 2002 | A1 |
20020015405 | Sepponen et al. | Feb 2002 | A1 |
20020018157 | Zhang et al. | Feb 2002 | A1 |
20020039912 | Yamaguchi et al. | Apr 2002 | A1 |
20020044524 | Laroia et al. | Apr 2002 | A1 |
20020058525 | Kasapi et al. | May 2002 | A1 |
20020061742 | Lapaille et al. | May 2002 | A1 |
20020077152 | Johnson et al. | Jun 2002 | A1 |
20020085521 | Tripathi et al. | Jul 2002 | A1 |
20020090004 | Rinchiuso | Jul 2002 | A1 |
20020090024 | Tan et al. | Jul 2002 | A1 |
20020101839 | Farley et al. | Aug 2002 | A1 |
20020122381 | Wu et al. | Sep 2002 | A1 |
20020122403 | Hashem et al. | Sep 2002 | A1 |
20020128035 | Jokinen et al. | Sep 2002 | A1 |
20020147953 | Catreux et al. | Oct 2002 | A1 |
20020159422 | Li et al. | Oct 2002 | A1 |
20020160769 | Gray et al. | Oct 2002 | A1 |
20020160781 | Bark et al. | Oct 2002 | A1 |
20020168946 | Aizawa et al. | Nov 2002 | A1 |
20020172293 | Kuchi et al. | Nov 2002 | A1 |
20020176398 | Nidda | Nov 2002 | A1 |
20020181571 | Yamano et al. | Dec 2002 | A1 |
20020193146 | Wallace et al. | Dec 2002 | A1 |
20030002464 | Rezaiifar et al. | Jan 2003 | A1 |
20030020651 | Crilly, Jr. et al. | Jan 2003 | A1 |
20030036359 | Dent et al. | Feb 2003 | A1 |
20030040283 | Kawai et al. | Feb 2003 | A1 |
20030043732 | Walton et al. | Mar 2003 | A1 |
20030043764 | Kim et al. | Mar 2003 | A1 |
20030063579 | Lee | Apr 2003 | A1 |
20030068983 | Kim et al. | Apr 2003 | A1 |
20030072254 | Ma et al. | Apr 2003 | A1 |
20030072255 | Ma et al. | Apr 2003 | A1 |
20030072280 | McFarland et al. | Apr 2003 | A1 |
20030072395 | Jia et al. | Apr 2003 | A1 |
20030073409 | Nobukiyo et al. | Apr 2003 | A1 |
20030073464 | Giannakis et al. | Apr 2003 | A1 |
20030076890 | Hochwald et al. | Apr 2003 | A1 |
20030086371 | Walton et al. | May 2003 | A1 |
20030086393 | Vasudevan et al. | May 2003 | A1 |
20030096579 | Ito et al. | May 2003 | A1 |
20030103520 | Chen et al. | Jun 2003 | A1 |
20030109266 | Rafiah et al. | Jun 2003 | A1 |
20030112745 | Zhuang et al. | Jun 2003 | A1 |
20030123414 | Tong et al. | Jul 2003 | A1 |
20030125040 | Walton et al. | Jul 2003 | A1 |
20030128658 | Walton et al. | Jul 2003 | A1 |
20030133426 | Schein et al. | Jul 2003 | A1 |
20030142648 | Semper | Jul 2003 | A1 |
20030142729 | Subrahmanya et al. | Jul 2003 | A1 |
20030147371 | Choi et al. | Aug 2003 | A1 |
20030157900 | Gaal et al. | Aug 2003 | A1 |
20030161281 | Dulin et al. | Aug 2003 | A1 |
20030161282 | Medvedev et al. | Aug 2003 | A1 |
20030165189 | Kadous et al. | Sep 2003 | A1 |
20030181170 | Sim | Sep 2003 | A1 |
20030185310 | Ketchum et al. | Oct 2003 | A1 |
20030190897 | Lei et al. | Oct 2003 | A1 |
20030193915 | Lee et al. | Oct 2003 | A1 |
20030202491 | Tiedemann, Jr. et al. | Oct 2003 | A1 |
20030202560 | Tiedemann, Jr. et al. | Oct 2003 | A1 |
20030216156 | Chun et al. | Nov 2003 | A1 |
20030228850 | Hwang | Dec 2003 | A1 |
20030235255 | Ketchum et al. | Dec 2003 | A1 |
20040001429 | Ma et al. | Jan 2004 | A1 |
20040001460 | Bevan et al. | Jan 2004 | A1 |
20040002364 | Trikkonen et al. | Jan 2004 | A1 |
20040009783 | Miyoshi et al. | Jan 2004 | A1 |
20040010623 | Sher et al. | Jan 2004 | A1 |
20040015692 | Green et al. | Jan 2004 | A1 |
20040017785 | Zelst et al. | Jan 2004 | A1 |
20040032443 | Moylan et al. | Feb 2004 | A1 |
20040042558 | Hwang et al. | Mar 2004 | A1 |
20040048609 | Kosaka et al. | Mar 2004 | A1 |
20040048630 | Shapira et al. | Mar 2004 | A1 |
20040054999 | Willen et al. | Mar 2004 | A1 |
20040057394 | Holtzman et al. | Mar 2004 | A1 |
20040058687 | Kim et al. | Mar 2004 | A1 |
20040066754 | Hottinen et al. | Apr 2004 | A1 |
20040066761 | Giannakis et al. | Apr 2004 | A1 |
20040067756 | Wager et al. | Apr 2004 | A1 |
20040072565 | Nobukiyo et al. | Apr 2004 | A1 |
20040076185 | Kim et al. | Apr 2004 | A1 |
20040077345 | Turner et al. | Apr 2004 | A1 |
20040077379 | Smith et al. | Apr 2004 | A1 |
20040081073 | Walton et al. | Apr 2004 | A1 |
20040087325 | Cheng et al. | May 2004 | A1 |
20040095907 | Agee et al. | May 2004 | A1 |
20040097215 | Abe et al. | May 2004 | A1 |
20040097240 | Chen et al. | May 2004 | A1 |
20040098505 | Clemmensen | May 2004 | A1 |
20040105489 | Kim et al. | Jun 2004 | A1 |
20040114618 | Tong et al. | Jun 2004 | A1 |
20040120411 | Walton et al. | Jun 2004 | A1 |
20040125792 | Bradbury et al. | Jul 2004 | A1 |
20040128605 | Sibecas et al. | Jul 2004 | A1 |
20040131007 | Smee et al. | Jul 2004 | A1 |
20040131008 | Zuniga et al. | Jul 2004 | A1 |
20040131038 | Kim et al. | Jul 2004 | A1 |
20040131110 | Alard et al. | Jul 2004 | A1 |
20040136344 | Kim et al. | Jul 2004 | A1 |
20040156328 | Walton et al. | Aug 2004 | A1 |
20040160914 | Sarkar et al. | Aug 2004 | A1 |
20040160933 | Odenwalder et al. | Aug 2004 | A1 |
20040162083 | Chen et al. | Aug 2004 | A1 |
20040165564 | Kim et al. | Aug 2004 | A1 |
20040166867 | Hawe et al. | Aug 2004 | A1 |
20040166887 | Laroia et al. | Aug 2004 | A1 |
20040170152 | Nagao et al. | Sep 2004 | A1 |
20040170157 | Kim et al. | Sep 2004 | A1 |
20040171384 | Holma et al. | Sep 2004 | A1 |
20040171385 | Haustein et al. | Sep 2004 | A1 |
20040178954 | Vook et al. | Sep 2004 | A1 |
20040179506 | Padovani et al. | Sep 2004 | A1 |
20040179627 | Ketchum et al. | Sep 2004 | A1 |
20040185792 | Alexiou et al. | Sep 2004 | A1 |
20040190640 | Dubuc et al. | Sep 2004 | A1 |
20040202257 | Mehta et al. | Oct 2004 | A1 |
20040208138 | Hayashi et al. | Oct 2004 | A1 |
20040218520 | Aizawa et al. | Nov 2004 | A1 |
20040219819 | Di Mascio et al. | Nov 2004 | A1 |
20040219919 | Whinnett et al. | Nov 2004 | A1 |
20040224711 | Panchal et al. | Nov 2004 | A1 |
20040228267 | Agrawal et al. | Nov 2004 | A1 |
20040228313 | Cheng et al. | Nov 2004 | A1 |
20040229615 | Agrawal et al. | Nov 2004 | A1 |
20040240419 | Abrishamkar et al. | Dec 2004 | A1 |
20040240572 | Brutel et al. | Dec 2004 | A1 |
20040248604 | Vaidyanathan et al. | Dec 2004 | A1 |
20040252529 | Huber et al. | Dec 2004 | A1 |
20040252629 | Hasegawa et al. | Dec 2004 | A1 |
20040252655 | Lim et al. | Dec 2004 | A1 |
20040252662 | Cho | Dec 2004 | A1 |
20040257979 | Ro et al. | Dec 2004 | A1 |
20040264507 | Cho et al. | Dec 2004 | A1 |
20040264585 | Borran et al. | Dec 2004 | A1 |
20050002412 | Sagfors et al. | Jan 2005 | A1 |
20050002440 | Alamouti et al. | Jan 2005 | A1 |
20050002467 | Seo et al. | Jan 2005 | A1 |
20050002468 | Walton et al. | Jan 2005 | A1 |
20050003782 | Wintzell | Jan 2005 | A1 |
20050008091 | Boutros et al. | Jan 2005 | A1 |
20050009486 | Al-Dhahir et al. | Jan 2005 | A1 |
20050013263 | Kim et al. | Jan 2005 | A1 |
20050025093 | Yun et al. | Feb 2005 | A1 |
20050030886 | Wu et al. | Feb 2005 | A1 |
20050030964 | Tiedemann et al. | Feb 2005 | A1 |
20050034079 | Gunasekar et al. | Feb 2005 | A1 |
20050041611 | Sandhu et al. | Feb 2005 | A1 |
20050041618 | Wei et al. | Feb 2005 | A1 |
20050041750 | Lau et al. | Feb 2005 | A1 |
20050041775 | Batzinger et al. | Feb 2005 | A1 |
20050044206 | Johansson et al. | Feb 2005 | A1 |
20050047517 | Georgios et al. | Mar 2005 | A1 |
20050052991 | Kadous et al. | Mar 2005 | A1 |
20050053081 | Andersson et al. | Mar 2005 | A1 |
20050053151 | Lin et al. | Mar 2005 | A1 |
20050063298 | Ling et al. | Mar 2005 | A1 |
20050068921 | Liu | Mar 2005 | A1 |
20050073976 | Fujii et al. | Apr 2005 | A1 |
20050085195 | Tong et al. | Apr 2005 | A1 |
20050085197 | Laroia et al. | Apr 2005 | A1 |
20050085236 | Gerlach et al. | Apr 2005 | A1 |
20050111397 | Attar et al. | May 2005 | A1 |
20050113100 | Oprescu-Surcobe et al. | May 2005 | A1 |
20050122898 | Jang et al. | Jun 2005 | A1 |
20050128683 | Watanabe et al. | Jun 2005 | A1 |
20050128983 | Kim et al. | Jun 2005 | A1 |
20050135324 | Kim et al. | Jun 2005 | A1 |
20050135498 | Yee | Jun 2005 | A1 |
20050141624 | Lakshmipathi et al. | Jun 2005 | A1 |
20050147024 | Jung et al. | Jul 2005 | A1 |
20050147025 | Auer et al. | Jul 2005 | A1 |
20050152484 | Sandhu et al. | Jul 2005 | A1 |
20050157807 | Shim et al. | Jul 2005 | A1 |
20050159162 | Park | Jul 2005 | A1 |
20050164709 | Balasubramanian et al. | Jul 2005 | A1 |
20050165949 | Teague | Jul 2005 | A1 |
20050174981 | Heath et al. | Aug 2005 | A1 |
20050175070 | Grob et al. | Aug 2005 | A1 |
20050180311 | Wang et al. | Aug 2005 | A1 |
20050180313 | Kim et al. | Aug 2005 | A1 |
20050181799 | Laroia et al. | Aug 2005 | A1 |
20050192011 | Hong et al. | Sep 2005 | A1 |
20050195733 | Walton et al. | Sep 2005 | A1 |
20050195852 | Vayanos et al. | Sep 2005 | A1 |
20050195886 | Lampinen et al. | Sep 2005 | A1 |
20050201296 | Vannithamby et al. | Sep 2005 | A1 |
20050204247 | Guo et al. | Sep 2005 | A1 |
20050207367 | Onggosanusi et al. | Sep 2005 | A1 |
20050215251 | Krishnan et al. | Sep 2005 | A1 |
20050226204 | Uehara et al. | Oct 2005 | A1 |
20050239465 | Lee et al. | Oct 2005 | A1 |
20050243791 | Park et al. | Nov 2005 | A1 |
20050246548 | Laitinen | Nov 2005 | A1 |
20050249266 | Brown et al. | Nov 2005 | A1 |
20050254416 | Laroia et al. | Nov 2005 | A1 |
20050254467 | Li et al. | Nov 2005 | A1 |
20050254477 | Lee et al. | Nov 2005 | A1 |
20050254556 | Fujii et al. | Nov 2005 | A1 |
20050259005 | Chiang et al. | Nov 2005 | A1 |
20050259723 | Blanchard et al. | Nov 2005 | A1 |
20050259757 | Wu et al. | Nov 2005 | A1 |
20050265220 | Erlich et al. | Dec 2005 | A1 |
20050265293 | Ro et al. | Dec 2005 | A1 |
20050265470 | Kishigami et al. | Dec 2005 | A1 |
20050271012 | Agrawal et al. | Dec 2005 | A1 |
20050276347 | Mujtaba et al. | Dec 2005 | A1 |
20050276348 | Vandenameele | Dec 2005 | A1 |
20050277423 | Sandhu et al. | Dec 2005 | A1 |
20050281029 | Inamoto et al. | Dec 2005 | A1 |
20050281290 | Khandekar et al. | Dec 2005 | A1 |
20050282500 | Wang et al. | Dec 2005 | A1 |
20050286408 | Jin et al. | Dec 2005 | A1 |
20050289256 | Cudak et al. | Dec 2005 | A1 |
20060002451 | Fukuta et al. | Jan 2006 | A1 |
20060013285 | Kobayashi et al. | Jan 2006 | A1 |
20060018336 | Sutivong et al. | Jan 2006 | A1 |
20060018347 | Agrawal et al. | Jan 2006 | A1 |
20060018397 | Sampath et al. | Jan 2006 | A1 |
20060026344 | Sun Hsu et al. | Feb 2006 | A1 |
20060029289 | Yamaguchi et al. | Feb 2006 | A1 |
20060034164 | Ozluturk et al. | Feb 2006 | A1 |
20060034173 | Teague et al. | Feb 2006 | A1 |
20060039332 | Kotzin | Feb 2006 | A1 |
20060039344 | Khan | Feb 2006 | A1 |
20060039500 | Yun et al. | Feb 2006 | A1 |
20060040655 | Kim et al. | Feb 2006 | A1 |
20060045003 | Choi et al. | Mar 2006 | A1 |
20060050770 | Wallace et al. | Mar 2006 | A1 |
20060056340 | Hottinen et al. | Mar 2006 | A1 |
20060057958 | Ngo et al. | Mar 2006 | A1 |
20060067421 | Walton et al. | Mar 2006 | A1 |
20060078075 | Stamoulis et al. | Apr 2006 | A1 |
20060083159 | Laroia et al. | Apr 2006 | A1 |
20060083183 | Teague et al. | Apr 2006 | A1 |
20060092054 | Li et al. | May 2006 | A1 |
20060093065 | Thomas et al. | May 2006 | A1 |
20060104333 | Rainbolt et al. | May 2006 | A1 |
20060104381 | Menon et al. | May 2006 | A1 |
20060109814 | Kuzminskiy et al. | May 2006 | A1 |
20060111054 | Pan et al. | May 2006 | A1 |
20060111148 | Mukkavilli et al. | May 2006 | A1 |
20060114858 | Walton et al. | Jun 2006 | A1 |
20060120469 | Maltsev et al. | Jun 2006 | A1 |
20060120471 | Learned et al. | Jun 2006 | A1 |
20060126491 | Ro et al. | Jun 2006 | A1 |
20060133269 | Prakash et al. | Jun 2006 | A1 |
20060133455 | Agrawal et al. | Jun 2006 | A1 |
20060133521 | Sampath et al. | Jun 2006 | A1 |
20060140289 | Mandyam et al. | Jun 2006 | A1 |
20060146867 | Lee et al. | Jul 2006 | A1 |
20060153239 | Julian et al. | Jul 2006 | A1 |
20060155534 | Lin et al. | Jul 2006 | A1 |
20060156199 | Palanki et al. | Jul 2006 | A1 |
20060172704 | Nishio et al. | Aug 2006 | A1 |
20060189321 | Oh et al. | Aug 2006 | A1 |
20060193294 | Jorswieck et al. | Aug 2006 | A1 |
20060203708 | Sampath et al. | Sep 2006 | A1 |
20060203794 | Sampath et al. | Sep 2006 | A1 |
20060203891 | Sampath et al. | Sep 2006 | A1 |
20060203932 | Palanki et al. | Sep 2006 | A1 |
20060209670 | Gorokhov et al. | Sep 2006 | A1 |
20060209732 | Gorokhov et al. | Sep 2006 | A1 |
20060209754 | Ji et al. | Sep 2006 | A1 |
20060209764 | Kim et al. | Sep 2006 | A1 |
20060209973 | Gorokhov et al. | Sep 2006 | A1 |
20060215777 | Krishnamoorthi | Sep 2006 | A1 |
20060218459 | Hedberg | Sep 2006 | A1 |
20060223449 | Sampath et al. | Oct 2006 | A1 |
20060233124 | Palanki et al. | Oct 2006 | A1 |
20060233131 | Gore et al. | Oct 2006 | A1 |
20060262754 | Andersson et al. | Nov 2006 | A1 |
20060270427 | Shida et al. | Nov 2006 | A1 |
20060274836 | Sampath et al. | Dec 2006 | A1 |
20060285485 | Agrawal et al. | Dec 2006 | A1 |
20060285515 | Julian et al. | Dec 2006 | A1 |
20060286974 | Gore et al. | Dec 2006 | A1 |
20060286982 | Prakash et al. | Dec 2006 | A1 |
20060286995 | Onggosanusi et al. | Dec 2006 | A1 |
20060291371 | Sutivong et al. | Dec 2006 | A1 |
20060292989 | Gerlach et al. | Dec 2006 | A1 |
20070004430 | Hyun et al. | Jan 2007 | A1 |
20070005749 | Sampath | Jan 2007 | A1 |
20070009011 | Coulsonn et al. | Jan 2007 | A1 |
20070019596 | Barriac et al. | Jan 2007 | A1 |
20070025345 | Bachl et al. | Feb 2007 | A1 |
20070041311 | Baum et al. | Feb 2007 | A1 |
20070041404 | Palanki et al. | Feb 2007 | A1 |
20070041457 | Kadous et al. | Feb 2007 | A1 |
20070047485 | Gorokhov et al. | Mar 2007 | A1 |
20070047495 | Ji et al. | Mar 2007 | A1 |
20070049218 | Gorokhov et al. | Mar 2007 | A1 |
20070053282 | Tong et al. | Mar 2007 | A1 |
20070053383 | Choi et al. | Mar 2007 | A1 |
20070060178 | Gorokhov et al. | Mar 2007 | A1 |
20070064669 | Classon et al. | Mar 2007 | A1 |
20070071147 | Sampath et al. | Mar 2007 | A1 |
20070097853 | Khandekar et al. | May 2007 | A1 |
20070097889 | Wang et al. | May 2007 | A1 |
20070097897 | Teague et al. | May 2007 | A1 |
20070097908 | Khandekar et al. | May 2007 | A1 |
20070097909 | Khandekar et al. | May 2007 | A1 |
20070097922 | Parekh et al. | May 2007 | A1 |
20070097927 | Gorokhov et al. | May 2007 | A1 |
20070097942 | Gorokhov et al. | May 2007 | A1 |
20070097981 | Papasakellariou et al. | May 2007 | A1 |
20070098050 | Khandekar et al. | May 2007 | A1 |
20070098120 | Wang et al. | May 2007 | A1 |
20070099666 | Astely et al. | May 2007 | A1 |
20070110172 | Faulkner et al. | May 2007 | A1 |
20070115795 | Gore et al. | May 2007 | A1 |
20070149194 | Das et al. | Jun 2007 | A1 |
20070149228 | Das | Jun 2007 | A1 |
20070159969 | Das et al. | Jul 2007 | A1 |
20070160115 | Palanki et al. | Jul 2007 | A1 |
20070165738 | Barriac et al. | Jul 2007 | A1 |
20070177631 | Popovic et al. | Aug 2007 | A1 |
20070177681 | Choi et al. | Aug 2007 | A1 |
20070183303 | Pi et al. | Aug 2007 | A1 |
20070183386 | Muharemovicc et al. | Aug 2007 | A1 |
20070207812 | Borran et al. | Sep 2007 | A1 |
20070211616 | Khandekar et al. | Sep 2007 | A1 |
20070211667 | Agrawal et al. | Sep 2007 | A1 |
20070230324 | Li et al. | Oct 2007 | A1 |
20070242653 | Yang et al. | Oct 2007 | A1 |
20070263743 | Lee et al. | Nov 2007 | A1 |
20070280336 | Zhangg et al. | Dec 2007 | A1 |
20070281702 | Lim et al. | Dec 2007 | A1 |
20080039129 | Li et al. | Feb 2008 | A1 |
20080063099 | Laroia et al. | Mar 2008 | A1 |
20080095223 | Tong et al. | Apr 2008 | A1 |
20080095262 | Hoo et al. | Apr 2008 | A1 |
20080151829 | Khandekar et al. | Jun 2008 | A1 |
20080181139 | Rangarajan et al. | Jul 2008 | A1 |
20080214222 | Atarashi et al. | Sep 2008 | A1 |
20080253279 | Ma et al. | Oct 2008 | A1 |
20080267157 | Lee et al. | Oct 2008 | A1 |
20080299983 | Kwak et al. | Dec 2008 | A1 |
20090003466 | Taherzadehboroujeni et al. | Jan 2009 | A1 |
20090010351 | Laroia et al. | Jan 2009 | A1 |
20090022098 | Novak et al. | Jan 2009 | A1 |
20090041150 | Tsai et al. | Feb 2009 | A1 |
20090110103 | Maltsev et al. | Apr 2009 | A1 |
20090180459 | Orlikk et al. | Jul 2009 | A1 |
20090197646 | Tamura et al. | Aug 2009 | A1 |
20090201826 | Gorokhov et al. | Aug 2009 | A1 |
20090201872 | Gorokhov et al. | Aug 2009 | A1 |
20090213750 | Gorokhov et al. | Aug 2009 | A1 |
20090213950 | Gorokhov et al. | Aug 2009 | A1 |
20090262641 | Laroia et al. | Oct 2009 | A1 |
20090262699 | Wengerterr et al. | Oct 2009 | A1 |
20090285163 | Zhang et al. | Nov 2009 | A1 |
20090287977 | Chang et al. | Nov 2009 | A1 |
20100002570 | Walton et al. | Jan 2010 | A9 |
20100135242 | Nam et al. | Jun 2010 | A1 |
20100220800 | Erell et al. | Sep 2010 | A1 |
20100232384 | Farajidana et al. | Sep 2010 | A1 |
20100238902 | Ji et al. | Sep 2010 | A1 |
20100254263 | Chen et al. | Oct 2010 | A1 |
20110064070 | Gore et al. | Mar 2011 | A1 |
20110235733 | Laroia et al. | Sep 2011 | A1 |
20110235745 | Laroia et al. | Sep 2011 | A1 |
20110235746 | Laroia et al. | Sep 2011 | A1 |
20110235747 | Laroia et al. | Sep 2011 | A1 |
20110306291 | Ma et al. | Dec 2011 | A1 |
20120002623 | Khandekar et al. | Jan 2012 | A1 |
20120063441 | Palanki | Mar 2012 | A1 |
20120120925 | Kadous et al. | May 2012 | A1 |
20120140798 | Kadous et al. | Jun 2012 | A1 |
20120140838 | Kadous et al. | Jun 2012 | A1 |
20130016678 | Laroia et al. | Jan 2013 | A1 |
20130208681 | GORE; Dhananjay Ashok et al. | Aug 2013 | A1 |
20130315200 | Gorokhov et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
2005319084 | Apr 2010 | AU |
2348137 | Nov 2001 | CA |
2477536 | Sep 2003 | CA |
2540688 | May 2005 | CA |
2577369 | Mar 2006 | CA |
19931400 | Dec 1994 | CL |
009531997 | Jan 1998 | CL |
19997846 | Jan 1998 | CL |
27102004 | Aug 2005 | CL |
22892004 | Sep 2005 | CL |
30862004 | Oct 2005 | CL |
29932005 | May 2006 | CL |
15202006 | Dec 2006 | CL |
22032006 | Feb 2007 | CL |
15212006 | Mar 2007 | CL |
14922006 | Apr 2007 | CL |
14892006 | May 2007 | CL |
29032006 | May 2007 | CL |
29042006 | Jun 2007 | CL |
29022006 | Jul 2007 | CL |
29082006 | Oct 2007 | CL |
46151 | Dec 2009 | CL |
29012006 | Jan 2010 | CL |
29072006 | Jan 2010 | CL |
1252919 | May 2000 | CN |
1267437 | Sep 2000 | CN |
1284795 | Feb 2001 | CN |
1296682 | May 2001 | CN |
1344451 | Apr 2002 | CN |
1346221 | Apr 2002 | CN |
1383631 | Dec 2002 | CN |
1386344 | Dec 2002 | CN |
1402916 | Mar 2003 | CN |
1424835 | Jun 2003 | CN |
1132474 | Dec 2003 | CN |
1467938 | Jan 2004 | CN |
1487755 | Apr 2004 | CN |
1520220 | Aug 2004 | CN |
1525678 | Sep 2004 | CN |
1636346 | Jul 2005 | CN |
1642051 | Jul 2005 | CN |
1642335 | Jul 2005 | CN |
1647436 | Jul 2005 | CN |
19800653 | Jul 1999 | DE |
19800953 | Jul 1999 | DE |
19957288 | May 2001 | DE |
10240138 | Aug 2003 | DE |
10254384 | Jun 2004 | DE |
0488976 | Jun 1992 | EP |
0568291 | Nov 1993 | EP |
0786889 | Jul 1997 | EP |
0805576 | Nov 1997 | EP |
0807989 | Nov 1997 | EP |
0844796 | May 1998 | EP |
0981222 | Feb 2000 | EP |
1001570 | May 2000 | EP |
1047209 | Oct 2000 | EP |
1061687 | Dec 2000 | EP |
1091516 | Apr 2001 | EP |
1093241 | Apr 2001 | EP |
1148673 | Oct 2001 | EP |
1180907 | Feb 2002 | EP |
1187506 | Mar 2002 | EP |
1204217 | May 2002 | EP |
1255369 | Nov 2002 | EP |
1267513 | Dec 2002 | EP |
1074099 | Feb 2003 | EP |
1286490 | Feb 2003 | EP |
1335504 | Aug 2003 | EP |
1376920 | Jan 2004 | EP |
1392073 | Feb 2004 | EP |
1434365 | Jun 2004 | EP |
1441469 | Jul 2004 | EP |
1445873 | Aug 2004 | EP |
1465449 | Oct 2004 | EP |
1478204 | Nov 2004 | EP |
1507421 | Feb 2005 | EP |
1513356 | Mar 2005 | EP |
1531575 | May 2005 | EP |
1533950 | May 2005 | EP |
1538863 | Jun 2005 | EP |
1542488 | Jun 2005 | EP |
1601149 | Nov 2005 | EP |
1643669 | Apr 2006 | EP |
1898542 | Mar 2008 | EP |
1941693 | Jul 2011 | EP |
2584884 | Jan 1987 | FR |
2279540 | Jan 1995 | GB |
2348776 | Oct 2000 | GB |
2412541 | Sep 2005 | GB |
167573 | Feb 2011 | IL |
201872 | May 2012 | IL |
H04111544 | Apr 1992 | JP |
4301931 | Oct 1992 | JP |
7336323 | Dec 1995 | JP |
8116329 | May 1996 | JP |
08288927 | Nov 1996 | JP |
9008725 | Jan 1997 | JP |
H09501548 | Feb 1997 | JP |
9131342 | May 1997 | JP |
1997182148 | Jul 1997 | JP |
09214404 | Aug 1997 | JP |
9284200 | Oct 1997 | JP |
10117162 | May 1998 | JP |
H10210000 | Aug 1998 | JP |
10322304 | Dec 1998 | JP |
H11168453 | Jun 1999 | JP |
11191756 | Jul 1999 | JP |
11196109 | Jul 1999 | JP |
11508417 | Jul 1999 | JP |
11239155 | Aug 1999 | JP |
11298954 | Oct 1999 | JP |
11331927 | Nov 1999 | JP |
2000102065 | May 2000 | JP |
2000184425 | Jun 2000 | JP |
2000511750 | Sep 2000 | JP |
2000332724 | Nov 2000 | JP |
2001016644 | Jan 2001 | JP |
2001045573 | Feb 2001 | JP |
2001057545 | Feb 2001 | JP |
2001156732 | Jun 2001 | JP |
2001238269 | Aug 2001 | JP |
2001245355 | Sep 2001 | JP |
2001249802 | Sep 2001 | JP |
2001285927 | Oct 2001 | JP |
2001521698 | Nov 2001 | JP |
2001526012 | Dec 2001 | JP |
2002026790 | Jan 2002 | JP |
2002515203 | May 2002 | JP |
2002290148 | Oct 2002 | JP |
2002534925 | Oct 2002 | JP |
2002534941 | Oct 2002 | JP |
2003032218 | Jan 2003 | JP |
2003500909 | Jan 2003 | JP |
200369472 | Mar 2003 | JP |
2003101515 | Apr 2003 | JP |
2003169367 | Jun 2003 | JP |
2003174426 | Jun 2003 | JP |
2003199173 | Jul 2003 | JP |
2003520523 | Jul 2003 | JP |
2003249907 | Sep 2003 | JP |
2003292667 | Oct 2003 | JP |
2003318857 | Nov 2003 | JP |
2003347985 | Dec 2003 | JP |
2003348047 | Dec 2003 | JP |
2004007643 | Jan 2004 | JP |
2004023716 | Jan 2004 | JP |
2004048716 | Feb 2004 | JP |
200472457 | Mar 2004 | JP |
2004072157 | Mar 2004 | JP |
2004096142 | Mar 2004 | JP |
2004507950 | Mar 2004 | JP |
2004153676 | May 2004 | JP |
2004158901 | Jun 2004 | JP |
2004162388 | Jun 2004 | JP |
2004194262 | Jul 2004 | JP |
2004201296 | Jul 2004 | JP |
2004215022 | Jul 2004 | JP |
2004221972 | Aug 2004 | JP |
2004266818 | Sep 2004 | JP |
2004529524 | Sep 2004 | JP |
2004297276 | Oct 2004 | JP |
2004297370 | Oct 2004 | JP |
2004534456 | Nov 2004 | JP |
2004535106 | Nov 2004 | JP |
2005006337 | Jan 2005 | JP |
2005020530 | Jan 2005 | JP |
2005502218 | Jan 2005 | JP |
2005506757 | Mar 2005 | JP |
2005130491 | May 2005 | JP |
2005197772 | Jul 2005 | JP |
2005203961 | Jul 2005 | JP |
2005521327 | Jul 2005 | JP |
2005521358 | Jul 2005 | JP |
2006505172 | Feb 2006 | JP |
2006506860 | Feb 2006 | JP |
2007503790 | Feb 2007 | JP |
2007519281 | Jul 2007 | JP |
2007520309 | Jul 2007 | JP |
2007525043 | Aug 2007 | JP |
2007527127 | Sep 2007 | JP |
2008505587 | Feb 2008 | JP |
2006211537 | Aug 2008 | JP |
2008535398 | Aug 2008 | JP |
4188372 | Nov 2008 | JP |
2008546314 | Dec 2008 | JP |
04694628 | Jun 2011 | JP |
0150275 | Nov 1998 | KR |
20000060428 | Oct 2000 | KR |
100291476 | Mar 2001 | KR |
20010056333 | Apr 2001 | KR |
20010087715 | Sep 2001 | KR |
20030007965 | Jan 2003 | KR |
20030035969 | May 2003 | KR |
20040063057 | Jul 2004 | KR |
200471652 | Aug 2004 | KR |
20040103441 | Dec 2004 | KR |
20050061559 | Jun 2005 | KR |
20050063826 | Jun 2005 | KR |
100606099 | Jul 2006 | KR |
95121152 | Dec 1997 | RU |
2141168 | Nov 1999 | RU |
2141706 | Nov 1999 | RU |
2159007 | Nov 2000 | RU |
2162275 | Jan 2001 | RU |
2192094 | Oct 2002 | RU |
2162275 | Jan 2003 | RU |
2201033 | Mar 2003 | RU |
2207723 | Jun 2003 | RU |
2208913 | Jul 2003 | RU |
2210866 | Aug 2003 | RU |
2216101 | Nov 2003 | RU |
2216103 | Nov 2003 | RU |
2216105 | Nov 2003 | RU |
2225080 | Feb 2004 | RU |
2235429 | Aug 2004 | RU |
2235432 | Aug 2004 | RU |
2237379 | Sep 2004 | RU |
2238611 | Oct 2004 | RU |
2242091 | Dec 2004 | RU |
2003125268 | Feb 2005 | RU |
2285388 | Mar 2005 | RU |
2250564 | Apr 2005 | RU |
2257008 | Jul 2005 | RU |
2267224 | Dec 2005 | RU |
2005129079 | Feb 2006 | RU |
2285338 | Oct 2006 | RU |
2285351 | Oct 2006 | RU |
2292655 | Jan 2007 | RU |
2335864 | Oct 2008 | RU |
2349043 | Mar 2009 | RU |
1320883 | Jun 1987 | SU |
508960 | Nov 2002 | TW |
510132 | Nov 2002 | TW |
200302642 | Aug 2003 | TW |
200718128 | Aug 2003 | TW |
200401572 | Jan 2004 | TW |
1232040 | May 2005 | TW |
248266 | Jan 2006 | TW |
WO9408432 | Apr 1994 | WO |
WO-9521494 | Aug 1995 | WO |
WO9613920 | May 1996 | WO |
WO9701256 | Jan 1997 | WO |
WO9737456 | Oct 1997 | WO |
WO-9746033 | Dec 1997 | WO |
WO-9800946 | Jan 1998 | WO |
WO-9814026 | Apr 1998 | WO |
WO9837706 | Aug 1998 | WO |
WO 9848581 | Oct 1998 | WO |
WO9853561 | Nov 1998 | WO |
WO9854919 | Dec 1998 | WO |
WO-9941871 | Aug 1999 | WO |
WO-9944313 | Sep 1999 | WO |
WO-9944383 | Sep 1999 | WO |
WO-9952250 | Oct 1999 | WO |
WO9953713 | Oct 1999 | WO |
9960729 | Nov 1999 | WO |
WO-9959265 | Nov 1999 | WO |
WO00002397 | Jan 2000 | WO |
WO0033503 | Jun 2000 | WO |
WO2007000897 | Nov 2000 | WO |
WO01001596 | Jan 2001 | WO |
WO0117125 | Mar 2001 | WO |
WO0126269 | Apr 2001 | WO |
WO-0139523 | May 2001 | WO |
WO01045300 | Jun 2001 | WO |
WO-0148969 | Jul 2001 | WO |
WO-0158054 | Aug 2001 | WO |
WO-0160106 | Aug 2001 | WO |
WO-0165637 | Sep 2001 | WO |
WO0169814 | Sep 2001 | WO |
WO0182543 | Nov 2001 | WO |
WO-0182544 | Nov 2001 | WO |
WO-0189112 | Nov 2001 | WO |
WO0193505 | Dec 2001 | WO |
WO-0204936 | Jan 2002 | WO |
WO02007375 | Jan 2002 | WO |
WO0215616 | Feb 2002 | WO |
WO-0219746 | Mar 2002 | WO |
0233848 | Apr 2002 | WO |
WO-0231991 | Apr 2002 | WO |
WO-0245293 | Jun 2002 | WO |
WO0245456 | Jun 2002 | WO |
WO-0249306 | Jun 2002 | WO |
WO0249385 | Jun 2002 | WO |
WO02049305 | Jun 2002 | WO |
WO02060138 | Aug 2002 | WO |
WO02065675 | Aug 2002 | WO |
WO02082689 | Oct 2002 | WO |
WO-02082743 | Oct 2002 | WO |
WO02089434 | Nov 2002 | WO |
WO02093782 | Nov 2002 | WO |
WO02093819 | Nov 2002 | WO |
WO02100027 | Dec 2002 | WO |
WO03001696 | Jan 2003 | WO |
WO-03001696 | Jan 2003 | WO |
WO03001761 | Jan 2003 | WO |
WO-03001981 | Jan 2003 | WO |
WO-03003617 | Jan 2003 | WO |
WO03019819 | Mar 2003 | WO |
WO03030414 | Apr 2003 | WO |
WO03034644 | Apr 2003 | WO |
WO03043262 | May 2003 | WO |
WO03043369 | May 2003 | WO |
03058871 | Jul 2003 | WO |
WO03067783 | Aug 2003 | WO |
WO-03069816 | Aug 2003 | WO |
WO03069832 | Aug 2003 | WO |
WO03073646 | Sep 2003 | WO |
WO03075479 | Sep 2003 | WO |
03088538 | Oct 2003 | WO |
WO03085876 | Oct 2003 | WO |
WO03094384 | Nov 2003 | WO |
WO03103331 | Dec 2003 | WO |
WO04002047 | Dec 2003 | WO |
WO2004004370 | Jan 2004 | WO |
WO-2004008681 | Jan 2004 | WO |
WO20044008671 | Jan 2004 | WO |
WO04016007 | Feb 2004 | WO |
WO2004015912 | Feb 2004 | WO |
WO2004021605 | Mar 2004 | WO |
WO2004023834 | Mar 2004 | WO |
WO-2004028037 | Apr 2004 | WO |
WO-2004030238 | Apr 2004 | WO |
WO-2004032443 | Apr 2004 | WO |
WO04038954 | May 2004 | WO |
WO-2004035988 | May 2004 | WO |
WO-2004038972 | May 2004 | WO |
WO-2004040690 | May 2004 | WO |
WO-2004040827 | May 2004 | WO |
WO2004047354 | Jun 2004 | WO |
WO2004049618 | Jun 2004 | WO |
WO-2004051872 | Jun 2004 | WO |
WO-2004056022 | Jul 2004 | WO |
WO2004062255 | Jul 2004 | WO |
WO2004064294 | Jul 2004 | WO |
WO2004064295 | Jul 2004 | WO |
WO2004066520 | Aug 2004 | WO |
WO2004068721 | Aug 2004 | WO |
WO-2004073276 | Aug 2004 | WO |
WO2004075023 | Sep 2004 | WO |
WO2004075442 | Sep 2004 | WO |
WO2004075448 | Sep 2004 | WO |
WO2004075468 | Sep 2004 | WO |
WO2004075596 | Sep 2004 | WO |
WO2004077850 | Sep 2004 | WO |
WO2004084509 | Sep 2004 | WO |
WO-2004086706 | Oct 2004 | WO |
WO-2004086711 | Oct 2004 | WO |
WO2004095730 | Nov 2004 | WO |
WO-2004095851 | Nov 2004 | WO |
WO2004095854 | Nov 2004 | WO |
WO-2004098072 | Nov 2004 | WO |
WO2004098222 | Nov 2004 | WO |
WO2004102815 | Nov 2004 | WO |
WO2004102816 | Nov 2004 | WO |
WO2005015810 | Nov 2004 | WO |
2004105272 | Dec 2004 | WO |
2004114564 | Dec 2004 | WO |
WO2004114549 | Dec 2004 | WO |
2005002253 | Jan 2005 | WO |
2005011163 | Feb 2005 | WO |
2005018270 | Feb 2005 | WO |
WO-2005015795 | Feb 2005 | WO |
WO-2005015797 | Feb 2005 | WO |
WO-2005015941 | Feb 2005 | WO |
WO2005020488 | Mar 2005 | WO |
WO2005020490 | Mar 2005 | WO |
WO2005022811 | Mar 2005 | WO |
WO2005025110 | Mar 2005 | WO |
2005032004 | Apr 2005 | WO |
WO2005043855 | May 2005 | WO |
WO2005046080 | May 2005 | WO |
WO2005055484 | Jun 2005 | WO |
WO-2005055527 | Jun 2005 | WO |
WO2005060192 | Jun 2005 | WO |
WO-2005065062 | Jul 2005 | WO |
WO-2005069538 | Jul 2005 | WO |
WO2005074184 | Aug 2005 | WO |
WO-2005096538 | Oct 2005 | WO |
WO2005122628 | Dec 2005 | WO |
2006007292 | Jan 2006 | WO |
WO2006019710 | Feb 2006 | WO |
WO-2006026344 | Mar 2006 | WO |
WO2006044487 | Apr 2006 | WO |
2006069301 | Jun 2006 | WO |
WO-2006062356 | Jun 2006 | WO |
WO2006069300 | Jun 2006 | WO |
WO2006069397 | Jun 2006 | WO |
WO2006077696 | Jul 2006 | WO |
WO-2006096784 | Sep 2006 | WO |
WO-2006099349 | Sep 2006 | WO |
WO-2006099545 | Sep 2006 | WO |
WO-2006099577 | Sep 2006 | WO |
WO-2006127544 | Nov 2006 | WO |
WO-2006134032 | Dec 2006 | WO |
WO-2006138196 | Dec 2006 | WO |
WO-2006138573 | Dec 2006 | WO |
WO2006138581 | Dec 2006 | WO |
WO-2007022430 | Feb 2007 | WO |
WO-2007024934 | Mar 2007 | WO |
WO-2007024935 | Mar 2007 | WO |
WO2007025160 | Mar 2007 | WO |
WO-2007051159 | May 2007 | WO |
Entry |
---|
Fuchs et al., “A novel Tree-based scheduling algorithm for the downlink of multi-user MIMO systems with ZF Beamforming,” Acoustics, Speech, and Signal Processing, 2005, Proceedings IEEE International Conference on Philadelphia, Pennsylvania, pp. 1121-1124, Piscataway, New Jersey. |
International Search Report, PCT/US06/060327, International Search Authority, European Patent Office, Mar. 1, 2007. |
Written Opinion, PCT/US06/060327, International Search Authority, European Patent Office, Mar. 2, 2007. |
International Preliminary Report on Patentability, PCT/US06/060327, International Bureau of WIPO, Apr. 29, 2008. |
Wang, et al., “Improving performance of multi-user OFDM systems using bit-wise interleaver” Electronics Letters, IEE Stevenage, GB, vol. 37, No. 19, Sep. 13, 2001, pp. 1173-1174, XP006017222. |
Yun, et al., “Performance of an LDPC-Coded Frequency-Hopping OFDMA System Based on Resource Allocation in the Uplink” Vehicular Technology Conference, 2004, VTC 2004-Spring. 2004 IEEE 59th Milan, Italy, May 17-19, 2004, Piscataway, NJ, USA, vol. 4, May 17, 2004, pp. 1925-1928, XP010766497. |
3rd Generation Partnership Project; Technical Specification Group Radio Access Network: Physical Layer Aspects for Evolved UTRA (Release 7). 3GPP TR 25.814 v0.3.1 (Nov. 2005). |
B. Sklar: “The process of thus correcting the channel-induced distortion is called equalization”, Digital Communications; PTR Prentice Hall Upper Saddle River, New Jersey, 1998. Formatting and Baseband Transmission, Chap. 2, Section 2.11.2, pp, 104-105. |
Bahai, Saltzberg: “System Architecture,” Multi-Carrier Digital Communications, Kluwer Academic, New York, NY, XP-002199501, 1999, pp. 17-21. |
Bingham: “Other Types of MCM,” ADSL, VDSL, and Multicarrier Modulation, John wiley & Sons, New York, XP-002199502, 2000, pp, 111-113. |
Carl R Nassar, Balasubramaniam Natarajan and Steve Shattil: Introduction of Carrier Interference to Spread Spectrum Multiple Access, Apr. 1999, IEEE, pp. 1-5. |
Chennakeshu, et al. “A Comparison of Diversity Schemes for a Mixed-Mode Slow Frequency-Hopped Cellular System” IEEE, 1993, pp. 1749-1753. |
Chennakeshu, et al. “Capacity Analysis of a TDMA-Based Slow-Frequency-Hopped Cellular System,” IEEE Transaction on Vehicular Technology, vol. 45., No. 3 Aug. 1996, pp. 531-542. |
Chiani, et al, “Outage Evaluation for Slow Frequency-Hopping Mobile Radio Systems” IEEE Transactions on Communications, vol. 47, No. 12, pp. 1865-1874, Dec. 1999. |
Choi, et al., “Design of the Optimum Pilot Pattern for Channel Estimation in OFDM Systems,” Global Telecommunications Conference, IEEE Communications Society, Globecom, Dallas, Texas (2004), pp. 3661-3665. |
Czylwik: “Comparison Between Adaptive OFDM and Single Carrier Modulation with Frequency Domain Equalization,” IEEE 47th Vehicular Technology Conference, vol. 2, May 4-7, 1997, pp. 865-869. |
Das, Arnab, et al “Adaptive, asynchronous incremental redundancy (A-IR) with fixed transmission time intervals TTI for HSDPA,” IEEE, pp. 10-83-1087. |
Das, et al. “On the Reverse Link Interference Structure for Next Generation Cellular Systems,” European Microwave Conference. Oct. 11, 2004, pp. 3068-3072. |
Digital cellular telecommunications system (Phase 2+); mobile radio interface layer 3 specification (GSM 04.08 version 7.7.1 Release 1998); ETSI EN 300 940 V7 7 1 (Oct. 2000), pp. 1,2,91-93. |
Dinis, et al., “A Multiple Access Scheme for the Uplink of Broadband Wireless Systems,” IEEE Global Telecommunications Conference, 2004, Globecom '04, vol. 6, Nov. 29-Dec. 3, 2004, pp. 3808-3812. |
Favre et al: “Self-Adaptive Transmission Procedure” IBM Technical Disclosure Bulletin, IBM Corporation, Sep. 1976, vol. 19, No. 4, pp. 1283-1284, New York, New York. |
Groe, et al., “CDMA Mobile Radio Design,” Sep. 26, 2001 Artech House, Norwood, MA 02062, pp. 257-259. |
Hermann Rohling et al., “Performance Comparison of Different Multiple Access Schemes for the Downlink of an OFDM Communication System”, Vehicular Technology Conference, 1997, 47th IEEE, vol. 3, May 4-7, 1997, pp. 1365-1369. |
Hill, et al., “Cyclic Shifting and Time Inversion of Partial Transmit Sequences to Reduce the Peak-to-Average Power Ratio in OFDM,” IEEE International Symposium on Personal, Indoor and Mobile Radio Commnications, vol. 2, Sep. 18, 2000, Piscataway, NJ, pp. 1256-1259. |
J.S. Chow and J.M. Cioffi, “A Cost-effective maximum likelihood reciever for multicarrier systems”, Proc. IEEE Int. Conf. on Comm., pp. 948-952, Jun. 1992. |
Je, et al. “A Novel Multiple Access Scheme for Uplink Cellular Systems,” IEEE Vehicular Technology Conference, Sep. 26, 2004 pp. 984-988. |
John B. Groe, Lawrence E. Larson, “CDMA Mobile Radio Design” Sep. 26, 2001, Artech House, Norwood, MA02062 580530, XP002397967, pp. 157-159. |
Kaleh: “Channel Equalization for Block transmission Systems,” IEEE Journal on Selected Areas in Communications, vol. 13, No. 1, Jan. 1995, pp. 110-121. |
Kappes, J.M., and Sayegh, S.1., “Programmable Demultiplexer/Demodulator Processor,”COMSAT Laboratories, IEEE, 1990, pp. 230-234. |
Karsten Bruninghaus et al., “Multi-Carrier Spread Spectrum and it's relationship to Single-Carrier Transmission”, Vehicular technology Conference, 1998, VTC 98, 48th IEEE, vol. 3, May 18-21, 1998, pp. 2829-2332. |
Keller, et al.; “Adaptive Multicarrier Modulation; A Convenient Framework for Time-Frequency Processing in Wireless Communications,” Proceedings of the IEEE, vol. 88, No. 5, May 2000, pp. 611-640. |
Kim, et al. “Performance of TDMA System With SFH and 2-Bit Differentially Detected GMSK Over Rayleigh Fading Channel,” IEEE Vehicular Technology Conference. Apr. 28, 1996, pp. 789-793. |
Kishiyama Y et al. “Investigation of Optimum Pilot Channel Structure for VSF-OFCDM Broadband Wireless Access in Forward Link”, IEEE Vehicular Technology Conference, New York, NY, US, vol. 4, Apr. 22, 2003, p. 139-144. |
Kostic, et al. “Dynamic Frequency Hopping in Wireless Cellular Systems-Simulations of Full-Replacement and Reduced-Overhead Methods.” IEEE Vehicular Technology Conference, May 16, 1999, pp. 914-918. |
Kostic, et al, “Fundamentals of Dynamic Frequency Hopping in Cellular Systems,” IEEE Journal on Selected Areas in Communications, vol. 19, No. 11, Nov. 2001, pp. 2254-2266. |
Lacroix. et al.; “A Study of OFDM Parameters for High Data Rate Radio LAN's,” 2000 IEEE 51st Vehicular Technology Conference Proceedings, vol. 2, May 15-18, 2000, pp. 1075-1079. |
Laroia, R. et al: “An integrated approach based on cross-layer optimization—Designing a mobile broadband wireless access network” IEEE Signal Processing Magazine, IEEE Service Center, Piscataway, NJ, US, vol. 21, No. 5, Sep. 2004, pp. 20-28, XP011118149. |
Lau, et al., “On the Design of MIMO Block-Fading Channels with Feedback-Link Capacity Constraint,” IEEE Transactions on Communications, IEEE Service Center, Piscataway, NJ, US, v. 52, No. 1, Jan. 2004, pp. 62-70, XP001189908. |
Leon, et al., “Cyclic Delay Diversity for Single Carrier-Cyclic Prefix Systems,” Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, Oct. 28, 2005, Piscataway, NJ, pp. 519-523. |
Lettieri et al: “Adaptive frame length control for improving wireless link throughput, range, and energy efficiency” INFOCOM 98, 17th Annual Joint Conference of the IEEE Computer and Communications Societies, Mar. 29-Apr. 2, 1998, pp. 564-571, vol. 2, IEEE San Francisco, CA, New York, New York. |
Lott: “Comparison of Frequency and Time Domain Differential Modulation in an OFDM System for Wireless ATM,” 1999 IEEE 49th Vehicular Technology Conference, vol. 2, Jul. 1999, pp. 877-883. |
Mignone, et al.: “CD3-OFDM: A New Channel Estimation Method to Improve the Spectrum Efficiency in Digital Terrestrial Television Systems.” International Broadcasting Convention, Sep. 14-18, 1995 Conference Publication No. 413, IEE 1995, pp.122-128. |
Molisch, et al., MIMO systems with antenna selection, IEEE Microwave Magazine, URL: http://ieeexplore.ieee.org/ieI5/6668/28677/01284943.pdf, Retrieved on Dec. 8, 2006, pp. 46-56 (2004). |
Naofal Al-Dhahir: “A Bandwidth-Optimized Reduced-Complexity Equalized Multicarrier Transceiver”, IEEE Transactions on Communications, vol. 45, No. 8, Aug. 1997. |
Naofal Al-Dhahir: “Optimum Finite-Length Equalization for Multicarrier Transceivers”, IEEE Trans. on Comm., pp. 56-64, Jan. 1996. |
Nassar, Carl R., et al., “High-Performance MC-CDMA via Carrier Interferometry Codes”, IEEE Transactions on Vehicular Technology, vol. 50, No. 6, Nov. 2001. |
Ntt DoCoMo, et al,. “Orthogonal Common Pilot Channel and Scrambling Code in Evolved UTRA Downlink,” 3GPP TSG RAN WG1 #42 on LTE, pp. 1-8 (Aug.-Sep. 2005). |
Sari, et al., “Transmission Techniques for Digital Terrestrial TV Broadcasting,” IEEE Communications Magazine, Feb. 1995, pp. 100-109. |
Schnell, et al., “Application of IFDMA to Mobile Radio Transmission,” IEEE 1998 International Conference on Universal Personal Communications, vol. 2, Oct. 5-9, 1998, pp. 1267-1272. |
Schnell, et al., “A Promising New Wideband Multiple-Access Scheme for Future Mobile Communications Systems,” European Transactions on Telecommunications, Wiley & Sons, Chichester, GB, vol. 10, No. 4, Jul. 1999, pp. 417-427. |
Shattil et al., “Array Control Systems for Multicarrier Protocols Using a Frequency-Shifted Feedback Cavity”, IEEE, 1999. |
Sklar: “Formatting and Baseband Transmission”, Chapter 2, pp. 54, 104-106. |
Sorger U. et al., “Interleave FDMA-a new spread-spectrum multiple-access scheme”, IEEE Int. Conference on Atlanta, GA; USA Jun. 7-11, 1996 XP010284733. |
Tellado, “Multicarrier Modulation with Low Par,” Kluwer Academic, Dordrecht, NL, XP-002199500, 2000, pp. 6-11 and 55-60. |
Tellambura, “Use of m-sequences for OFDM Peak-to-Average Power Ratio Reduction,” Electronics Letters, vol. 33, No. 15, Jul. 17, 1997, pp. 1300-1301. |
TIA/EIA/IS-2000 “Standards for CDMA2000 Spread Spectrum Systems” Version 1.0 Jul. 1999. |
TIA/EIA/IS-95 “Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System” Jul. 1993. |
TIA-1121.001 “Physical Layer for Ultra Mobile Broadband (UMB) Air interface Specification,” 3GPP2 C.-S0084-001-0, Version 2.0 (Aug. 2007). |
TIA-1121.002 “Medium Access Control Layer for Ultra Mobile Broadband (UMB) Air Interface Specification,” 3GPP2 C, S0084-002-0, Version 2.0 (Aug. 2007). |
Tomcik, J.: “MBFDD and MBTDD Wideband Mode: Technology Overview,” IEEE 802.20 Working Group Mobile Broadband Wireless Access, Jan. 2006, pp. 1-109, XP002429968. |
Tomcik, J.: “QFDD Technology Overview Presentation,” IEEE 802.20 Working Group on Mobile Broadband Wireless Access, Slides/pp. 1-73, Nov. 15, 2005 and Oct. 28, 2005. |
Torrieri, “Cellular Frequency-Hopping CDMA Systems,” IEEE Vehicular Technology Conference, May 16, 1999, pp. 919-925. |
Toufik I et al., “Channel allocation algorithms for multi-carrier systems”, Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60TH Los Angeles, CA, USA Sep. 26-29, 2004, pp. 1129-1133, XP010786798, ISBN: 07-7803-8521-7. |
Xiaodong, et al., “M-Sequences for OFDM Peak-to-Average Power Ratio Reduction and Error Correction;” Electronics Letters, vol. 33, Issue 7, Mar. 27, 1997, pp. 554-555. |
Zekri, et al., “DMT Signals with Low Peak-to-Average Power Ratio,” Proceedings, IEEE International Symposium on Computers and Communications, Jul. 6-8, 1999, pp. 362-368. |
B. Sklar: “The process of the correcting the channel-induced disortion is called equalization”, Digital Communications, PTR Prentice Hall, Upper Saddle River, New Jersey, 1998, Formatting and Baseband Transmission, Chap. 2, Section 2.11.2, pp. 104-106. |
“European Search Report—EP10011743, Search Authority—Munich Patent Office, Dec. 20, 2010”. |
European Search Report—EP10012081, Search Authority—Munich Patent Office, Dec. 17, 2010. |
European Search Report—EP10012082, Search Authority—Munich Patent Office, Dec. 20, 2010. |
European Search Report—EP10012083, Search Authority—Munich Patent Office, Dec. 30, 2010. |
Guo, K. Et al.: “Providing end-to-end QoS for multimedia applications in 3G wireless networks,” Proceedings vol. 5242, SPIE ITCom 2003 Conf. Internet Multimedia Management Systems IV, Nov. 26, 2003, pp. 1-14, DOI: 10,1117/12.514061. |
Maniatis, I. at al., “Pilots for joint channel estimation in multi-user OFDM mobile radio systems,” 2002 IEEE Seventh International Symposium on Spread Spectrum Techniques and Applications, Prague, Czech Republic, Sep. 2, 2002, pp. 44-48, XP010615562. |
Sumii, Kenji, at al., “A Study on Computational Complexity Reduction of Iterative Decoding for Turbo-coded MIMO-SDM Using Sphere Decoding,” Technical Report of IEICE RCS, Nov. 9, 2010, vol. 104, No. 675, pp. 43-48. |
Taiwan Search Report—TW094123763—TIPO—Aug. 8, 2011. |
Taiwan Search Report—TWO95129021—Tipo—May. 24, 2011. |
Taiwan Search Report—TW095130842—Tipo—Jun. 18, 2011. |
Taiwan Search Report—TW096146164—Tipo—Jun. 1, 2011. |
Taiwanese Search Report—095139893—Tipo—Dec. 30, 2010. |
Tomcik, T.: “QTDD Performance Report 2,” IEEE C802.20-05/88, IEEE 802.20 Working Group on Mobile Broadband Wireless Access, <http://ieee802.org1201>, pp. 1-56, XP002386798 (Nov. 15, 2005). |
Translation of Office Action in Chinese Application 2006800295980 corresponding to U.S. Appl. No. 11/260,895, citing CN1346221 and CN1383631 dated Feb. 16, 2011. |
Translation of Office Action in Japan application 2008-538193 corresponding to U.S. Appl. No. 11/261,065, citing JP11196109, JP10322304 and JP09008725 dated Mar. 8, 2011. |
Translation of Office Action in Korean application 10-2007-7031029 corresponding to U.S. Appl. No. 11/260,931, citing US20030202491 and KR20040063057 datedJan. 28, 2011. |
Translation of Office Action in Canadian application 2625987 corresponding to U.S. Appl. No. 11/261,065, citing CA2557369 dated Apr. 12, 2011. |
Translation of Office Action in Chinese application 200680040236,1 corresponding to U.S. Appl. No. 11/261,065, citing US20040048609 and CN1402916 dated Feb. 18, 2011. |
Translation of Office Action in Chinese application 200680048265.2 corresponding to U.S. Appl. No 11/260,931, citing US6904097, WO2004095851, CN1344451 dated Jan. 26, 2011. |
Translation of Office Action in Chinese application 200680048832.4 corresponding to U.S. Appl. No. 11/261,158, citing CN1132474 dated Dec. 31, 2010. |
Translation of Office Action in Japanese Application 2008-514880 corresponding to U.S. Appl. No. 11/445,377, citing JP2007519281 and JP2006505172 dated Nov. 9, 2010. |
Translation of Office Action in Japanese application 2008-528103 corresponding to U.S. Appl. No. 11/260,924. citing JP2005502218, JP2004534456, JP2003348047, JP2003199173, JP2004529524, JP11508417, JP2001238269, JP2005130491 and JP2003500909 dated Feb. 8, 2011. |
Translation of Office Action in Japanese Application 2008-529216 corresponding to U.S. Appl. No. 11/261.159, citing GB2348776 , WO2004098222, WO2005065062 and WO2004102815. Dated Jan. 11, 2011. |
Translation of Office Action in Japanese application 2008-538181 corresponding to U.S. Appl. No. 11/511,735, citing W004064295, JP2002515203, JP8288927, JP7336323 and 0 JP200157545 dated Jan. 25, 2011. |
Voltz, P. J.,“Characterization of the optimum transmitter correlation matrix for MIMO with antenna subset selection”, IEEE Transactions on Communications, vol. 51, No. 11, pp. 1779-1782. (Nov. 1, 2003). |
Yongrnei Dai,; Sumei Sun; Zhongding Lei; Yuan Li: “A List Sphere Decoder based turbo receiver for groupwise space time trellis coded (GSTTC) systems,” 2004 IEEE 59th Vehicular Technology Conference, vol. 2, pp. 804-808, May 17, 2004, doi: 10.1109VETECS.2004.1388940. |
3GPP TS 33.220 V.1.1.0 XX,XX, “3rd Generation Partnership Project; T Technical Specification Group Services and System Aspects; Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture RELEASE 6)” February 9, 2004, pp. 1-17, figure 4, XP002996023. |
Blum et al, “On Optimum MIMO with antenna selection,” IEEE International Conference on Communications. Conference Proceedings, vol. 1, Apr. 28. 2002, pp. 386-390. |
Chiani, et al. “Outage Evaluation for Slow Frequency-Hopping Mobile Radio Systems” IEEE Transactions on Communications, vol. 47, No. 12, Dec. 1999, pp. 1865-1874 . |
Dierks, et ai , “The TLS Protocol”, Version 1.0. Network Working Group, Request for Comments 2246, pp. 1-80 (Jan. 1999). |
El Gamal, et al.: “Universal Space-Time Coding,” IEEE Transactions on Information Theory, vol. 49, Issue 5, pp. 1097-1119, XP011074756, ISSN: 0018-9448, May 2003. |
Hochwald et al., “Achieving near-capacity on a multiple-antenna channel,” IEEE Transactions on Communications, IEEE Service Center, Piscataway, New Jersey, vol. 51, No. 3, pp. 389-399 (2003). |
Kiessling et al, “Short-term and long-term diagonalization of correlated MIMO channels with adaptive modulation” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 2, Sep. 15, 2002, pp. 593-597. |
Kousa M A et al: “Adaptive Binary Coding for Diversity Communication Systems” IEEE International Conference on Personal Wireless Communications Proceedings, pp. 80-84, XP000992269, 1997. |
Nokia, “Uplink Considerations for UTRA LTE”, 3GPP TSG RAN WG1#40bis, Beijing, CN, R1-050251, 3GPP, Apr. 4, 2005, pp. 1-9. |
NTT DoCoMo, “Downlink Multiple Access Scheme for Evolved UTRA”, 3GPP R1-050249, 3GPP, Apr. 4, 2005, pp. 1-8. |
Prasad N. et al: “Analysis of Decision Feedback Detection for MIMO Rayleigh Fading Channels and Optimum Allocation of Transmitter Powers and Qam Constellations.” pp. 267 1-10, 39th Annual Conference on Comm. Control and Comput., Monticello, IL Oct. 2001. |
Qualcomm Europe: “Description and link simulations for OFDMA based E-UTRA uplink” 3GPP Draft; R1-051100, 3RD Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WG1, No. San Diego, USA; 20051004, Oct. 4, 2005, pp. 1-10, XP050100715 retrieved on Oct. 4, 2005. |
S. Catreux, P. F. Droessen, L.J. Greenstein, “Simulation results for an interference-limited multiple input multiple output cellular system”., Global Telecommrnunications Conference, 2000. Globecom '00. IEEE Dec. 1, 2000. vol, 2, pp. 1094-1096 http://ieeexplore ieee.org/ie15/7153/19260/00891306.pdf?tp=8,isnumber=192608,arnumbe r=8913063&punumber=7153. |
S. Nishimura et al., “Downlink Null-Formation Using Receiving Antenna Selection in MIMO/SDMA”, Technical Search Report of Electric Information Communication Academic Conference, Feb. 28, 2002, vol. 101, No. 683, pp. 17-22, RCS 2001-286. |
Schnell at al.. “Application of IFDMA to Mobile Radio Transmission”, IEEE 1998 International Conference on Universal Personal Communications, vol. 2, 5-9 Oct 1998, pp. 1267-1272. |
Seong Taek Chung et al: “Low complexity algorithm for rate and power quantization in extended V-Blast” VTC Fall 2001. IEEE 54th. Vehicular Technology Conference Proceedings. Atlantic City, NJ, Oct, 7-11,,2001, vol. 1 of 4 , pp. 910-914, Conf. 54. |
Taiwanese Search report—095139900—TIPO—Apr. 29, 2010. |
Widdup at al., “A highly-parallel VLSI architecture for a list sphere detector,” IEEE International Conference, Paris, Fance, vol. 5, pp. 2720-2725 (2004). |
Wiesel a at al.: “Efficient implementation of sphere demodulation” Signal Processing Advances in Wireless Communications, 2003. SPAWC 200 3. 4TH IEEE Workshop on Rome. Italy June 15-18, 2003, Piscataway, NJ, USA, IEEE, US, June 15, 2003, pp. 36-40, XP010713463. |
Alcatel-Lucent, et al., “Dedicated Reference Signals for Precoding in E-UTRA Downlink” 3GPP Draft; R1-071718, 3RD Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. Ran WG1, No. St. Julian; 20070403, Apr. 3, 2007, XP050105640 [retrieved on Apr. 4, 2007]. |
Bengtsson, M. et at, “A Generalization of Weighted Subspace Fitting to Full-Rank Models”, IEEE Transactions on Signal Processing, IEEE Service Center, New York, NY, US, vol. 49, No. 5, pp. 1002-1012, May 1, 2001. |
Dammann, a. et al., “Beamforming in Combination with Space-Time Diversity for Broadband OFDM Systems”, ICC 2002. 2002 IEEE International Conference on Communications. April 28- May 2, 2002, pp. 165-171, XP010589479. |
European Search Report—EP10184156—Search Authority—Munich—Jun. 14, 2012. |
Ken Murakami et al., “Status Toward Standardization at IEEE 802.3ah and items on the construction of GE-PON system ,” Technical Report of the Institute of Electronics, Information and Communication Engineers, Jun. 13, 2003, vol. 103, No. 124, pp. 1-6, IN2003-24. |
Physical Channels and Multiplexing in Evolved UTRA Downlink TSG-RAN Working Group 1 Meeting, XX, XX, vol. Ri-050590, Jun. 20, 2005, pp. 1-24, XP003006923 the whole document. |
Siemens, “Evolved UTRA uplink scheduling and frequency reuse” [online], 3GPP TSG-RAN WG1 # 41 R1-050476, Internet <Url:http://www.3gpp.org/ftp/tsg13 ran/WG113 RL1/TSGR113 41/Docs/R1-050476.zip>, May 9, 2005. |
Viswanath, P. et al, “Opportunistic Beamforming Using Dumb Antennas” IEEE Transactions on Information Theory, IEEE Usa, vol. 48, No. 6, Jun. 2002 , pp. 1277-1294, XP002314708 ISSN: 0018-9448 abstract right-hand column, paragraph 1. |
Yatawatta, S. et al., “Energy Efficient Channel Estimation in MIMO Systems”, 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, March 18-23, 2005, Philadelphia, vol. 4, pp. 317-320, Mar. 18, 2005. |
Anonymous: “3GPP TS 36.211 V8.0.0; Evo/Yed Universal TerrestriaI Radio Access (E-UTRA); Physical channels and ,modulation Release 8)” 3RD Generation Partnership Project; Technical Specification Group Radio Access Network, [Online]2007, XP002520076 Retrieved from the Internet: URL:http://www.Sgpp.org/ftp/Specs/html-i nf o/36211.htm> [retrieved on Sep. 27, 2009] Section 5. |
Jim Tomcik, QFDD and QTDD: Technology Overview, IEEE 802.20 Working Group on Mobile Broadband Wireless Access, October 28, 2005, pp. 48-50. URL, http://www,IEEE802.Org/20/Contribs/C802.20-05-68.Z1P. |
Miorandi D., at a1., “Analysis of master-slave protocols for reai-time industrial communications over IEEE 802,11 WLANs ” Industrial Informatics, 2004. Indin '04, 2nd IEEE International Conference on Berlin, Germany June 24-25, 2004. Piscataway, NJ, USA IEEE, June 24, 2004. pp. 143-148, XP010782619, ISBN 0789385136, Para 3, point B. |
Nokia; “compact signalling of multi-code allocation for HSDPA”, version 2.3GPP R1-02- 0018, Jan. 11, 2002. |
Sethi M, et e. , “Code Reuse DS-CDMA—A Space Time Approach”, Proceedings of the 3002 lEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp: 2297-2300, May 13-17, 2002. |
Samsung: “Uplink Transmission and Multiplexing for EUTRA”, 3GPP Draft; R1-050605 UL Multiplexing: Jun. 16, 2005, XP050111420. |
Bhushan N., “UHDR Overview”, 030-20060522-037, Denver, CO, May 22, 2006, pp. 1-115. |
Tachikawa (Editor); “W-CDMA Mobile Cornmuncation Systems”, John Wiley & Sons Ltd., Japan , Maruzen: pp. 82-213, Jun. 25, 2001. |
LG Electronics: “PAPR comparison of uplink MA schemes”, 3GPP TSG RAN WG1 Meeting #41, R1-050475, May, 9-13, 2005, pp. 6. |
Motorola,“Uplink Numerology and Frame Structure”, 3GPP TAG RAN1 #41 Meeting R1-050397, May 13, 2005. |
Samsung Electonics Co. Ltd.; “Uplink Multiple Access and Multiplexing for Evolved UTRA”, R1-050439, May 3, 2005, pp. 1-22, XP55018616, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg13 ran/WG113 R1/TSGR1/DOCS/[retrieved on Feb. 7, 2012]. |
Tomcik J., “QFDD and QTDD: Proposed Draft Air Interface Specification,” IEEE C802.20-05/69, IEEE 802.20 Working Group on Mobile Broadband Wireless Access, Oct. 28, 2005, P.1-6,1-7,1-16,6-65,7-11,7-33,7-37-7-55,9-21,9-22,9-24-9-32. |
Number | Date | Country | |
---|---|---|---|
20070097910 A1 | May 2007 | US |