Seal assemblies for surgical access assemblies

Information

  • Patent Grant
  • 11413068
  • Patent Number
    11,413,068
  • Date Filed
    Thursday, May 9, 2019
    5 years ago
  • Date Issued
    Tuesday, August 16, 2022
    2 years ago
Abstract
Access assemblies include an instrument valve housing and a valve assembly disposed within a cavity of the instrument valve housing. The valve assembly includes a guard assembly, and a seal assembly disposed adjacent to the guard assembly. The seal assembly includes first, second, third, and fourth seal sections. The first seal section is nested within the second seal section, the first and second seal sections are nested within the third seal section, and the first, second, and third seal sections are nested within the fourth seal section.
Description
FIELD

The present disclosure relates to access assemblies for minimally invasive surgery. More particularly, the present disclosure relates to seal assemblies for such access assemblies.


BACKGROUND

In order to facilitate minimally invasive surgery, a working space must be created in a desired surgical site. An insufflation gas, typically CO2, is introduced into the abdomen of the patient to create an inflated state called a pneumoperitoneum. Access assemblies are utilized to allow the introduction of surgical instrumentation and endoscopes (or other visualization tools). These access assemblies maintain the pressure of the pneumoperitoneum, as they have one or more seals that adapt to the surgical instrumentation. Typically, a “zero-seal” in the access assembly seals the access assembly in the absence of a surgical instrument in the access assembly, and an instrument seal seals around a surgical instrument that has been inserted through the access assembly.


The breadth of surgical instrumentation on the market today requires a robust instrument seal capable adjusting to multiple sizes and withstanding multiple insertions and removals of surgical instrumentation. Some of the instrumentation can include sharp edges that can tear or otherwise damage instrument seals. Therefore, it would be beneficial to have an access assembly with improved instrument seal durability.


SUMMARY

An access assembly in accordance with embodiments of the present disclosure includes an instrument valve housing and a valve assembly disposed within a cavity of the instrument valve housing. The instrument valve housing includes upper and lower housing sections and defining the cavity. The valve assembly includes a guard assembly including a plurality of guard sections, and a seal assembly disposed adjacent to the guard assembly. The seal assembly includes first, second, third, and fourth seal sections. The first seal section is nested within the second seal section, the first and second seal sections are nested within the third seal section, and the first, second, and third seal sections are nested within the fourth seal section.


In embodiments, an opening in the seal assembly has a diameter from about 0.025″ to about 0.100″. The seal assembly may include more than four seal sections. The first, second, third, and fourth seal sections may be formed of polyisoprenes or silicone elastomers. The fourth seal section may be connected to the third seal section by a first connector portion, the third seal section may be connected to the second seal section by a second connector portion, and the second seal section may be connected to the first seal section by a third connector portion. The first, second, and third connector portions may include living hinges. The valve assembly may also include a centering mechanism for maintaining the seal assembly and guard assembly centered within the cavity of the instrument valve.


In certain aspects of the disclosure, an inner edge of each of the first, second, third, and fourth seal sections is straight. Alternatively, an inner edge of each of the first, second, third, and fourth seal sections defines a V-shape. The V-shape may include an angle from about one hundred eighty degrees to about two hundred seventy-five degrees.


In another aspect, a valve assembly includes a guard assembly, and a seal assembly disposed adjacent to the guard assembly. The guard assembly includes a plurality of guard sections. The seal assembly includes first, second, third, and fourth seal sections. The first seal section is nested within the second seal section, the first and second seal sections are nested within the third seal section, and the first, second, and third seal sections are nested within the fourth seal section. The valve assembly also includes a retainer assembly for securing the guard and seal assemblies.


In embodiments, an opening in the seal assembly has a diameter from about 0.025″ to about 0.100″. The seal assembly may include more than four seal sections. The first, second, third, and fourth seal sections may be formed of polyisoprenes or silicone elastomers. The fourth seal section may be connected to the third seal section by a first connector portion, the third seal section may be connected to the second seal section by a second connector portion, and the second seal section may be connected to the first seal section by a third connector portion. The connector portions may include living hinges. The valve assembly may further include a centering mechanism for maintaining the seal assembly and guard assembly centered within a cavity of an instrument valve.


In yet another aspect, a seal assembly for use in an instrument valve assembly includes first, second, third, and fourth seal sections, wherein the first seal section is nested within the second seal section, the first and second seal sections are nested within the third seal section, and the first, second, and third seal sections are nested within the fourth seal section. The opening in the seal assembly may have a diameter from about 0.025″ to about 0.100″. The seal assembly may include more than four seal sections.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the embodiments given below, serve to explain the principles of the disclosure, wherein:



FIG. 1 is a side perspective view of an access assembly according to an embodiment of the present disclosure;



FIG. 2 is an exploded perspective view of a valve assembly, including a centering mechanism, a guard assembly, a seal assembly, and a retainer assembly;



FIG. 3 is a perspective view of the valve assembly shown in FIG. 2;



FIG. 4 is a top perspective view of the seal assembly shown in FIG. 2, in an unfolded configuration;



FIG. 5 is a bottom perspective view of the seal assembly shown in FIG. 2, in the unfolded configuration;



FIG. 6 is a top view of the seal assembly shown in FIG. 2, in the unfolded configuration;



FIG. 7 is a top view of the seal assembly shown in FIG. 2, in a partially folded configuration;



FIG. 8 is a perspective view of the partially folded sections of the seal assembly as shown in FIG. 7;



FIG. 9 is a top view of the seal assembly shown in FIG. 2, in a subsequent partially folded configuration;



FIG. 10 is a perspective view of the subsequently partially folded sections of the seal assembly as shown in FIG. 9;



FIG. 11 is a top view of the seal assembly shown in FIG. 2, in the fully folded configuration; and



FIG. 12 is a perspective view of the fully folded seal assembly shown in FIG. 11.





DETAILED DESCRIPTION

Particular embodiments of the present seal assemblies are described hereinbelow with reference to the accompanying drawings; however, it is to be understood that the disclosed embodiments are merely exemplary of the disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure. Like reference numerals refer to similar or identical elements throughout the description of the figures.


As used herein, the term “distal” refers to that portion of the instrument, or component thereof which is farther from the user while the term “proximal” refers to that portion of the instrument or component thereof which is closer to the user. As used herein, the term “about” means that the numerical value is approximate and small variations would not significantly affect the practice of the disclosed embodiments. Where a numerical limitation is used, unless indicated otherwise by the context, “about” means the numerical value can vary by ±10% and remain within the scope of the disclosed embodiments.


Access assemblies with obturators are employed during minimally invasive surgery, e.g., laparoscopic surgery, and provide for the sealed access of surgical instruments into an insufflated body cavity, such as the abdominal cavity. The access assemblies of the present disclosure include an instrument valve housing mounted on a cannula tube, and include an obturator (not shown) inserted through the valve housing and cannula. The obturator can have a blunt distal end, or a bladed or non-bladed penetrating distal end and can be used to incise the abdominal wall so that the access assembly can be introduced into the abdomen. The handle of the obturator can engage or selectively lock into the instrument valve housing of the access assembly.


Access assemblies are employed to tunnel through an anatomical structure, e.g., the abdominal wall, either by making a new passage through the anatomical structure or by passing through an existing opening through the anatomical structure. Once the trocar assembly with the obturator has tunneled through the anatomical structure, the obturator is removed, leaving the access assembly in place. The instrument valve housing of the access assembly includes valves that prevent the escape of insufflation gases from the body cavity, while also allowing surgical instruments to be inserted into the body cavity.


Various trocar obturators suitable for use with the access assembly of the present disclosure are known and include, for example, bladed, bladeless, blunt, optical, and non-optical. For a detailed description of the structure and function of exemplary trocar assemblies, including exemplar trocar obturators and exemplar cannulas, please refer to commonly owned PCT Publication No. WO 2016/186905 (“the '905 publication”), the content of which is hereby incorporated by reference herein in its entirety.


With initial reference now to FIG. 1, an access assembly according to aspects of the present disclosure is shown generally as access assembly 100. The access assembly 100 includes a cannula 102 and an instrument valve housing 110 secured to the cannula 102. For a detailed description of an exemplary access assembly, please refer to the '905 publication.


With reference to FIG. 2, the instrument valve housing 110 of the access assembly 100 includes an upper housing section 112 and a lower housing section 114 secured to the upper housing section 112. The upper and lower housing sections 112, 114 are configured to support a valve assembly 120 on a proximal end of the cannula 102. More particularly, the valve assembly 120 is received between the upper and lower housing sections 112, 114. The lower housing section 114 may be releasably or permanently attached to a cannula tube 104 (FIG. 1) of the cannula 102. In embodiments, either or both of the upper and lower housing sections 112, 114 of the instrument valve housing 110 may include knurls, indentations, tabs, or be otherwise configured to facilitate engagement by a clinician.


The access assembly 100 may also include features for the stabilization of the access assembly 100. For example, the distal end of the cannula tube 104 may carry a balloon anchor or another expandable member (not shown) that engages the abdomen from the interior side. For example, see commonly owned U.S. Pat. No. 7,300,448, the entire disclosure of which is hereby incorporated by reference herein. A feature on the opposite side of the abdominal wall may be used to further stabilize the access assembly, such as adhesive tabs or adjustable foam collars.


The upper and lower, housing sections 112, 114 of the instrument valve housing 110 define a longitudinal passage (not shown) for receipt of a surgical instrument (not shown). The valve assembly 120 is supported within the instrument valve housing 110 to provide sealed passage of the surgical instrument through the access assembly 100.


With particular reference to FIGS. 2 and 3, the valve assembly 120 supported in the instrument valve housing 110 (FIG. 1) includes a centering mechanism 130, a guard assembly 140, a seal assembly 160, and a retainer assembly 180. The centering mechanism 130 of the valve assembly 120 permits radial movement of the valve assembly 120 relative to the instrument valve housing 110 when a surgical instrument is received through the valve assembly 120, and returns the valve assembly 120 to a generally centered position once the surgical instrument is withdrawn from within the instrument valve housing 110. The guard assembly 140 protects the seal assembly 160 during insertion and withdrawal of a surgical instrument through the seal assembly 160. The seal assembly 160 provides sealed passage of the surgical instrument through the instrument valve housing 110. The retainer assembly 180 maintains the centering mechanism 130, the guard assembly 140, and the seal assembly 160 in an aligned relationship with one another.


With continued reference to FIGS. 2 and 3, as noted above, the centering mechanism 130 of the valve assembly 120 is configured to maintain the valve assembly 120 centered within the instrument valve housing 110 (FIG. 1). In embodiments, and as shown, the centering mechanism 130 includes an outer annular ring 132, an inner annular ring 134, and a bellows 136 disposed between the outer annular ring 132 and the inner annular ring 134. The outer annular ring 132 is received between the upper housing section 112 and the lower housing section 114 to retain the centering mechanism 130 within the instrument valve housing 110. The inner annular ring 134 supports the guard assembly 140. For a detailed description of the structure and function of an exemplary centering mechanism, please refer to commonly owned U.S. Pat. No. 6,702,787, the content of which is incorporated herein by reference in its entirety.


Although shown including the centering mechanism 130 having bellows 136, the valve assembly 120 may include alternative centering mechanisms. For example, the centering mechanism may include an annular base and a plurality of spokes extending from the base, as described in commonly owned U.S. Pat. App. Pub. No. 2015/0025477 (“the '477 publication”), the content of which is incorporated herein by reference in its entirety. It is envisioned that the centering mechanism may include multiple sets of spokes, as disclosed in the '477 publication.


Still referring to FIGS. 2 and 3, the guard assembly 140 of the valve assembly 120 includes a ring portion 142 and first, second, third, and fourth petals 144, 146, 148, 150. The guard assembly 140 may be formed from a sheet of plastic/polymeric material by stamping with a tool that forms the ring portion 142 and the petals 144, 146, 148, 150. Alternatively, the guard assembly 140 may be formed by molding or other techniques. It is envisioned that the guard assembly may include any number of petals, and the petals may include flap portions of any size or configuration. See, for example, U.S. Pat. Nos. 5,895,377 and 6,569,120, the entire disclosures of which are hereby incorporated by reference herein, for exemplary guard assemblies, as well as other aspects of access assemblies. For a detailed description of the structure and function of exemplary guard assemblies, please refer to commonly owned U.S. Pat. App. Pub. Nos. 2020/0214740A1, 2020/0337723A1, and 2021/0113240A1, the content of each of which is incorporated herein by reference in its entirety.


With particular reference now to FIGS. 4-11, the seal assembly 160 of the valve assembly 120 (FIG. 3) is configured to provide a seal around an outer surface of a surgical instrument (not shown) passing through the instrument valve housing 110 (FIG. 1). The seal assembly 160 includes first, second, third, and fourth seal sections 162, 164, 166, 168. As shown, the first, second, third, and fourth seal sections 162, 164, 166, 168 are formed as a single component. The seal assembly 160 may be formed in any suitable manner, including, but not limited to stamp pressing, and injection molding. The first, second, and third seal sections 162, 164, 166 are substantially similar. Although shown including four seal sections, it is envisioned that the seal assembly may include as many as eight seal sections.


Each of the first, second, third, and fourth seal sections 162, 164, 166, 168 of the seal assembly 160 includes a seal portion 162a, 164a, 166a, 168a, respectively, a base portion 162b, 164b, 166b, 168b, respectively, supporting the respective seal portions 162a, 164a, 166a, 168a, and a rim portion 162c, 164c, 166c, 168c, respectively, extending about an outer perimeter of the respective base portions 162b, 164b, 166b, 168b.


The seal portions 162a, 164a, 166a, 168a of the respective first, second, third, and fourth seal sections 162, 164, 166, 168 of the seal assembly 160 are formed of an elastic material, e.g., rubber. In embodiments, the seal assembly 160 is formed of polyisoprene or silicone elastomers. The base portions 162b, 164b, 166b, 168b of the respective first, second, third, and fourth seal sections 162, 164, 166, 168 of the seal assembly 160 may be formed of the same or different materials as the respective seal portions 162a, 164a, 166a, 168a. In embodiments, the seal portions 162a, 164a, 166a, 168a include one or more fabric layers. The instrument engaging portions of the seal portions 162a, 164a, 166a, 168a may be tapered to facilitate sealing.


The seal portions 162a, 164a, 166a, 168a of the first, second, third, and fourth seal sections 162, 164, 166, 168, respectively, of the seal assembly 160 define an opening 161 (FIG. 11) having a non-continuous or virtual inner circumferential surface that is configured to provide a seal around an outer surface of a surgical instrument passing through the valve assembly 120. The non-continuous nature of the inner circumference of the seal assembly 160 reduces the potential for the seal portions 162a, 164a, 166a, 168a tearing during insertion, manipulation, and/or removal of a surgical instrument through the seal assembly 160. The opening 161 in the seal assembly 160 may have diameter measuring from about 0.025″ to about 0.100″.


The seal portions 162a, 164a, 166a, 168a may form a substantially conical seal, as shown, or instead may form a substantially flat seal (not shown). The seal portions 162a, 164a, 166a, 168a of the first, second, third, and fourth seal sections 162, 164, 166, 168 form a shape that defines a wedge-shaped cutout. In embodiments, the seal portions 162a, 164a, 166a, 168a define an angle “α” (FIG. 4) from about one-hundred eighty degrees (180°) to about two-hundred seventy-five degrees (275°). In one embodiment, the angle “α” is two-hundred ten degrees (210°).


The base portions 162b, 164b, 166b, 168b and the rim portions 162c, 164c, 166c, 168c of the first, second, third, and fourth seal sections 162, 164, 166, 168, respectively, of the seal assembly 160 are substantially C-shaped members. Each of the base portions 162b, 164b, 166b, 168b define a plurality of openings 163, 165, 167, 169, respectively, corresponding to a plurality of pins 183 (FIG. 2) extending from an upper retainer member 182 of the retainer assembly 180.


Each of the first, second, and third seal sections 162, 164, 166 are secured to the adjacent second, third, and fourth seal sections 164, 166, 168 by a tab portion 162d, 164d, 166d, respectively, extending from the respective rim portions 162c, 164c, 166c of the first, second, and third seal sections 162, 164, 166. The tab portions 162d, 164d, 166d of the respective first, second, and third seal sections 162, 164, 166 form a living hinge and are secured to the respective second, third, and fourth seal sections 164, 166, 168 at a location along the rim portions 164c, 166c, 168c, respectively, of the adjacent second, third, and fourth seal sections 164, 166, 168 that permits each of the first, second, and third seal sections 162, 164, 166 to be received within the adjacent second, third, and fourth seal sections 164, 166, 168, i.e., a nested arrangement.


With particular reference to FIG. 6, a width of the base portions 162b, 164b, 166b, 168b of the first, second, third, and fourth seal sections 162, 164, 166, 168 of the seal assembly 160 increases in a clockwise direction, as viewed in FIG. 6. In this manner, using the fourth seal section 168 of FIG. 6 as an example, a distance “x1” between the rim portion 168c and a first opening 169a of the plurality of openings 169 of the base portion 162b is less than a distance “x2” between the rim portion 168c and a final opening 169b of the plurality of openings 169.


Each of the first, second, and third seal sections 162, 164, 166 of the seal assembly 160 includes a tab portion 162d, 164d, 166d extending from the respective rim portions 162c, 164c, 166c. The tab portions 162d, 164d, 166d facilitate assembly of the seal assembly 160, as will be described herein below.


The method of assembling the seal assembly 160 will now be described with reference to FIGS. 7-12. Referring initially to FIGS. 7 and 8, the fourth seal section 168 is pivoted about tab portion 166d of the third seal section 166, as indicated by arrow “A”, such that the rim portion 168c of the fourth seal section 168 engages the rim portion 166c of the third seal section 166. In this manner, the fourth seal section 168 is nested within the third seal section 166.


Turning to FIGS. 9 and 10, the fourth and third seal sections 168, 166 are pivoted about tab portion 164d of the second seal section 164, as indicated by arrow “B”, such that the rim portions 166c of the third seal section 166 engages the rim portion 164c of the second seal portion 164. In this manner, the fourth and third seal sections 168, 166 are nested within the second seal section 164.


With reference now to FIGS. 11 and 12, the fourth, third, and second seal sections 168, 166, 164 are pivoted about tab portion 162d of the first seal section 162, as indicated by arrow “C”, such that the rim portion 164c of the second seal section 164 engages the rim portion 162c of the first seal section 162. In this manner, the fourth, third, and second seal sections 168, 166, 164 are nested within the first seal section 162.


With reference back to FIG. 2, once the seal assembly 160 is assembled, a middle retainer member 186 is received within the seal assembly 160, the centering mechanism 130 is placed adjacent the middle retainer member 186, and the guard assembly 140 is placed adjacent the centering mechanism 130 and is supported by the inner annular ring 134. The centering mechanism 130, the guard assembly 140, and the seal assembly 160 are then secured together by a plurality of pins 183, 185 extending from each of an upper retainer member 182 and a lower retainer member 184 of the retainer assembly 180 through the centering mechanism 130, the guard assembly 140, and the seal assembly 160. In embodiments, and as shown the middle retainer member 186 defines a plurality of openings 187 for receiving the plurality of pins 181, 183 of the respective upper and lower retainer members 182, 184. The plurality of pins 183, 185 may be adhered, welded, bond, friction fit, mechanically or chemically fastened or otherwise secured with the plurality of openings 187. Although shown including a plurality of pins 183, 185 extending from both the upper and lower retaining members 182, 184, it is envisioned that a plurality of pins may extend from only one of the upper and lower retainer members 182, 184. Alternatively, the plurality of pins 183 of the upper retainer member 182 may be configured for secure engagement with the plurality of pins 185 of the lower retainer member 184.


While various embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that these embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the present disclosure. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.

Claims
  • 1. An access assembly comprising: an instrument valve housing including upper and lower housing sections and defining a cavity; anda valve assembly disposed within the cavity of the instrument valve housing, the valve assembly including: a guard assembly including a plurality of guard sections, anda seal assembly disposed adjacent to the guard assembly, the seal assembly including a first seal section, a second seal section connected to the first seal section by a first tab portion, a third seal section connected to the second seal section by a second tab portion, and a fourth seal section connected to the third seal section by a third tab portion, wherein the first seal section is nested within the second seal section, the first and second seal sections are nested within the third seal section, and the first, second, and third seal sections are nested within the fourth seal section.
  • 2. The access assembly of claim 1, wherein an opening in the seal assembly has a diameter from about 0.025″ to about 0.100″.
  • 3. The access assembly of claim 1, wherein the seal assembly includes more than four seal sections.
  • 4. The access assembly of claim 1, wherein the first, second, third, and fourth seal sections are formed of polyisoprenes or silicone elastomers.
  • 5. The access assembly of claim 1, wherein the first, second, and third tab portions include living hinges.
  • 6. The access assembly of claim 1, further including a centering mechanism for maintaining the seal assembly and guard assembly centered within the cavity of the instrument valve housing.
  • 7. The access assembly of claim 1, wherein an inner edge of each of the first, second, third, and fourth seal sections is straight.
  • 8. The access assembly of claim 1, wherein an inner edge of each of the first, second, third, and fourth seal sections defines a V-shape.
  • 9. The access assembly of claim 8, wherein the V-shape includes an angle from about one hundred eighty degrees to about two hundred seventy-five degrees.
  • 10. A seal assembly for use in an instrument valve assembly, the seal assembly comprising: first, second, third, and fourth seal sections, the seal assembly including an unfolded configuration and a nested configuration, wherein when the seal assembly is in the unfolded and nested configurations the fourth seal section is connected to the third seal section, the third seal section is connected to the second seal section, and the second seal section is connected to the first seal section, wherein in the nested configuration the first seal section is nested within the second seal section, the first and second seal sections are nested within the third seal section, and the first, second, and third seal sections are nested within the fourth seal section.
  • 11. The seal assembly of claim 10, wherein an opening in the seal assembly has a diameter from about 0.025″ to about 0.100″.
  • 12. The seal assembly of claim 10, wherein the seal assembly includes more than four seal sections.
  • 13. A valve assembly for use in an access assembly, the valve assembly comprising: a guard assembly including a plurality of guard sections; anda seal assembly disposed adjacent to the guard assembly, the seal assembly including first, second, third, and fourth seal sections, each of the first, second, third, and fourth seal sections including a seal portion, a base portion, and a rim portion, wherein the rim portion of the first seal section is nested within the rim portion of the second seal section, the rim portions of the first and second seal sections are nested within the rim portion of the third seal section, and the rim portions of the first, second, and third seal sections are nested within the rim portion of the fourth seal section.
  • 14. The valve assembly of claim 13, wherein an opening in the seal assembly has a diameter from about 0.025″ to about 0.100″.
  • 15. The valve assembly of claim 13, wherein the seal assembly includes more than four seal sections.
  • 16. The valve assembly of claim 13, wherein the first, second, third, and fourth seal sections are formed of polyisoprenes or silicone elastomers.
  • 17. The valve assembly of claim 13, wherein the fourth seal section is connected to the third seal section by a first connector portion, the third seal section is connected to the second seal section by a second connector portion, and the second seal section is connected to the first seal section by a third connector portion.
  • 18. The valve assembly of claim 17, wherein the first, second, and third connector portions include living hinges.
  • 19. The valve assembly of claim 13, further including a centering mechanism for maintaining the seal assembly and guard assembly centered within a cavity of an instrument valve housing.
US Referenced Citations (483)
Number Name Date Kind
3402710 Paleschuck Sep 1968 A
3495586 Regenbogen Feb 1970 A
4016884 Kwan-Gett Apr 1977 A
4112932 Chiulli Sep 1978 A
4183357 Bentley et al. Jan 1980 A
4356826 Kubota Nov 1982 A
4402683 Kopman Sep 1983 A
4653476 Bonnet Mar 1987 A
4737148 Blake Apr 1988 A
4863430 Klyce et al. Sep 1989 A
4863438 Gauderer et al. Sep 1989 A
4984564 Yuen Jan 1991 A
5002557 Hasson Mar 1991 A
5073169 Raiken Dec 1991 A
5082005 Kaldany Jan 1992 A
5122122 Allgood Jun 1992 A
5159921 Hoover Nov 1992 A
5176697 Hasson et al. Jan 1993 A
5183471 Wilk Feb 1993 A
5192301 Kamiya et al. Mar 1993 A
5209741 Spaeth May 1993 A
5209754 Ahluwalia May 1993 A
5217466 Hasson Jun 1993 A
5242409 Buelna Sep 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5257973 Villasuso Nov 1993 A
5257975 Foshee Nov 1993 A
5269772 Wilk Dec 1993 A
5290249 Foster et al. Mar 1994 A
5312391 Wilk May 1994 A
5312417 Wilk May 1994 A
5314417 Stephens et al. May 1994 A
5318516 Cosmescu Jun 1994 A
5330486 Wilk Jul 1994 A
5334143 Carroll Aug 1994 A
5336169 Divilio et al. Aug 1994 A
5336203 Goldhardt et al. Aug 1994 A
5337937 Remiszewski et al. Aug 1994 A
5345927 Bonutti Sep 1994 A
5360417 Gravener et al. Nov 1994 A
5366478 Brinkerhoff et al. Nov 1994 A
5375588 Yoon Dec 1994 A
5378588 Tsuchiya Jan 1995 A
5391156 Hildwein et al. Feb 1995 A
5394863 Sanford et al. Mar 1995 A
5395367 Wilk Mar 1995 A
5437683 Neumann et al. Aug 1995 A
5445615 Yoon Aug 1995 A
5451222 De Maagd et al. Sep 1995 A
5460170 Hammerslag Oct 1995 A
5464409 Mohajer Nov 1995 A
5480410 Cuschieri et al. Jan 1996 A
5490843 Hildwein et al. Feb 1996 A
5507758 Thomason et al. Apr 1996 A
5511564 Wilk Apr 1996 A
5514133 Golub et al. May 1996 A
5514153 Bonutti May 1996 A
5520698 Koh May 1996 A
5522791 Leyva Jun 1996 A
5524644 Crook Jun 1996 A
5540648 Yoon Jul 1996 A
5545150 Danks et al. Aug 1996 A
5545179 Williamson, IV Aug 1996 A
5556385 Andersen Sep 1996 A
5569159 Anderson et al. Oct 1996 A
5577993 Zhu et al. Nov 1996 A
5601581 Fogarty et al. Feb 1997 A
5624399 Ackerman Apr 1997 A
5634911 Hermann et al. Jun 1997 A
5634937 Mollenauer et al. Jun 1997 A
5643285 Rowden et al. Jul 1997 A
5649550 Crook Jul 1997 A
5651771 Tangherlini et al. Jul 1997 A
5653705 de la Torre et al. Aug 1997 A
5656013 Yoon Aug 1997 A
5672168 de la Torre et al. Sep 1997 A
5683378 Christy Nov 1997 A
5685857 Negus et al. Nov 1997 A
5697946 Hopper et al. Dec 1997 A
5709675 Williams Jan 1998 A
5713858 Heruth et al. Feb 1998 A
5713869 Morejon Feb 1998 A
5722962 Garcia Mar 1998 A
5728103 Picha et al. Mar 1998 A
5730748 Fogarty et al. Mar 1998 A
5735791 Alexander, Jr. et al. Apr 1998 A
5741298 MacLeod Apr 1998 A
5752970 Yoon May 1998 A
5782817 Franzel et al. Jul 1998 A
5795290 Bridges Aug 1998 A
5803921 Bonadio Sep 1998 A
5810712 Dunn Sep 1998 A
5813409 Leahy et al. Sep 1998 A
5830191 Hildwein et al. Nov 1998 A
5836871 Wallace et al. Nov 1998 A
5836913 Orth et al. Nov 1998 A
5840077 Rowden et al. Nov 1998 A
5842971 Yoon Dec 1998 A
5848992 Hart et al. Dec 1998 A
5853417 Fogarty et al. Dec 1998 A
5857461 Levitsky et al. Jan 1999 A
5865817 Moenning et al. Feb 1999 A
5871474 Hermann et al. Feb 1999 A
5876413 Fogarty et al. Mar 1999 A
5894843 Benetti et al. Apr 1999 A
5895377 Smith et al. Apr 1999 A
5899208 Bonadio May 1999 A
5899913 Fogarty et al. May 1999 A
5904703 Gilson May 1999 A
5906577 Beane et al. May 1999 A
5914415 Tago Jun 1999 A
5916198 Dillow Jun 1999 A
5941898 Moenning et al. Aug 1999 A
5951588 Moenning Sep 1999 A
5957913 de la Torre et al. Sep 1999 A
5964781 Mollenauer et al. Oct 1999 A
5976174 Ruiz Nov 1999 A
5997515 de la Torre et al. Dec 1999 A
6017355 Hessel et al. Jan 2000 A
6018094 Fox Jan 2000 A
6024736 de la Torre et al. Feb 2000 A
6030402 Thompson et al. Feb 2000 A
6033426 Kaji Mar 2000 A
6033428 Sardella Mar 2000 A
6042573 Lucey Mar 2000 A
6048309 Flom et al. Apr 2000 A
6059816 Moenning May 2000 A
6068639 Fogarty et al. May 2000 A
6077288 Shimomura et al. Jun 2000 A
6086603 Termin et al. Jul 2000 A
6099506 Macoviak et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6142936 Beane et al. Nov 2000 A
6156006 Brosens et al. Dec 2000 A
6162196 Hart et al. Dec 2000 A
6171282 Ragsdale Jan 2001 B1
6197002 Peterson Mar 2001 B1
6217555 Hart et al. Apr 2001 B1
6228063 Aboul-Hosn May 2001 B1
6234958 Snoke et al. May 2001 B1
6238373 de la Torre et al. May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6251119 Addis Jun 2001 B1
6254534 Butler et al. Jul 2001 B1
6264604 Kieturakis et al. Jul 2001 B1
6276661 Laird Aug 2001 B1
6293952 Brosens et al. Sep 2001 B1
6315770 de la Torre et al. Nov 2001 B1
6319246 de la Torre et al. Nov 2001 B1
6328720 McNally et al. Dec 2001 B1
6329637 Hembree et al. Dec 2001 B1
6371968 Kogasaka et al. Apr 2002 B1
6382211 Crook May 2002 B1
6423036 Van Huizen Jul 2002 B1
6440061 Wenner et al. Aug 2002 B1
6440063 Beane et al. Aug 2002 B1
6443957 Addis Sep 2002 B1
6447489 Peterson Sep 2002 B1
6450983 Rambo Sep 2002 B1
6454783 Piskun Sep 2002 B1
6464686 O'Hara et al. Oct 2002 B1
6468292 Mollenauer et al. Oct 2002 B1
6485410 Loy Nov 2002 B1
6488620 Segermark et al. Dec 2002 B1
6488692 Spence et al. Dec 2002 B1
6524283 Hopper et al. Feb 2003 B1
6527787 Fogarty et al. Mar 2003 B1
6544210 Trudel et al. Apr 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6558371 Dorn May 2003 B2
6562022 Hoste et al. May 2003 B2
6569120 Green et al. May 2003 B1
6572631 McCartney Jun 2003 B1
6578577 Bonadio et al. Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6589167 Shimomura et al. Jul 2003 B1
6589316 Schultz et al. Jul 2003 B1
6592543 Wortrich et al. Jul 2003 B1
6613952 Rambo Sep 2003 B2
6623426 Bonadio et al. Sep 2003 B2
6669674 Macoviak et al. Dec 2003 B1
6676639 Ternstrom Jan 2004 B1
6684405 Lezdey Feb 2004 B2
6706050 Giannadakis Mar 2004 B1
6716201 Blanco Apr 2004 B2
6723044 Pulford et al. Apr 2004 B2
6723088 Gaskill, III et al. Apr 2004 B2
6725080 Melkent et al. Apr 2004 B2
6800084 Davison et al. Oct 2004 B2
6811546 Callas et al. Nov 2004 B1
6814078 Crook Nov 2004 B2
6830578 O'Heeron et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6840946 Fogarty et al. Jan 2005 B2
6840951 de la Torre et al. Jan 2005 B2
6846287 Bonadio et al. Jan 2005 B2
6863674 Kasahara et al. Mar 2005 B2
6878110 Yang et al. Apr 2005 B2
6884253 McFarlane Apr 2005 B1
6890295 Michels et al. May 2005 B2
6913609 Yencho et al. Jul 2005 B2
6916310 Sommerich Jul 2005 B2
6916331 Mollenauer et al. Jul 2005 B2
6929637 Gonzalez et al. Aug 2005 B2
6939296 Ewers et al. Sep 2005 B2
6942633 Odland Sep 2005 B2
6945932 Caldwell et al. Sep 2005 B1
6958037 Ewers et al. Oct 2005 B2
6972026 Caldwell et al. Dec 2005 B1
6986752 McGuckin, Jr. et al. Jan 2006 B2
6991602 Nakazawa et al. Jan 2006 B2
6997909 Goldberg Feb 2006 B2
7001397 Davison et al. Feb 2006 B2
7008377 Beane et al. Mar 2006 B2
7011645 McGuckin, Jr. et al. Mar 2006 B2
7014628 Bousquet Mar 2006 B2
7033319 Pulford et al. Apr 2006 B2
7052454 Taylor May 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7077852 Fogarty et al. Jul 2006 B2
7081089 Bonadio et al. Jul 2006 B2
7083626 Hart et al. Aug 2006 B2
7100614 Stevens et al. Sep 2006 B2
7101353 Lui et al. Sep 2006 B2
7104981 Elkins et al. Sep 2006 B2
7153261 Wenchell Dec 2006 B2
7160309 Voss Jan 2007 B2
7163510 Kahle et al. Jan 2007 B2
7192436 Sing et al. Mar 2007 B2
7195590 Butler et al. Mar 2007 B2
7201725 Cragg et al. Apr 2007 B1
7214185 Rosney et al. May 2007 B1
7217277 Parihar et al. May 2007 B2
7223257 Shubayev et al. May 2007 B2
7223278 Davison et al. May 2007 B2
7235064 Hopper et al. Jun 2007 B2
7235084 Skakoon et al. Jun 2007 B2
7238154 Ewers et al. Jul 2007 B2
7258712 Schultz et al. Aug 2007 B2
7276075 Callas et al. Oct 2007 B1
7294103 Bertolero et al. Nov 2007 B2
7300399 Bonadio et al. Nov 2007 B2
7300448 Criscuolo et al. Nov 2007 B2
7316699 McFarlane Jan 2008 B2
7331940 Sommerich Feb 2008 B2
7344547 Piskun Mar 2008 B2
7377898 Ewers et al. May 2008 B2
7390322 McGuckin, Jr. et al. Jun 2008 B2
7393322 Wenchell Jul 2008 B2
7412977 Fields et al. Aug 2008 B2
7440661 Kobayashi Oct 2008 B2
7445597 Butler et al. Nov 2008 B2
7452363 Ortiz Nov 2008 B2
7473221 Ewers et al. Jan 2009 B2
7481765 Ewers et al. Jan 2009 B2
7493703 Kim et al. Feb 2009 B2
7513361 Mills, Jr. Apr 2009 B1
7513461 Reutenauer et al. Apr 2009 B2
7520876 Ressemann et al. Apr 2009 B2
7537564 Bonadio et al. May 2009 B2
7540839 Butler et al. Jun 2009 B2
7559893 Bonadio et al. Jul 2009 B2
7608082 Cuevas et al. Oct 2009 B2
7625361 Suzuki et al. Dec 2009 B2
7645232 Shluzas Jan 2010 B2
7650887 Nguyen et al. Jan 2010 B2
7704207 Albrecht et al. Apr 2010 B2
7717846 Zirps et al. May 2010 B2
7717847 Smith May 2010 B2
7721742 Kalloo et al. May 2010 B2
7727146 Albrecht et al. Jun 2010 B2
7730629 Kim Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7753901 Piskun et al. Jul 2010 B2
7758500 Boyd et al. Jul 2010 B2
7762995 Eversull et al. Jul 2010 B2
7766824 Jensen et al. Aug 2010 B2
7787963 Geistert et al. Aug 2010 B2
7798998 Thompson et al. Sep 2010 B2
7811251 Wenchell et al. Oct 2010 B2
7815567 Albrecht et al. Oct 2010 B2
7837612 Gill et al. Nov 2010 B2
7846123 Vassiliades et al. Dec 2010 B2
7850600 Piskun Dec 2010 B1
7850667 Gresham Dec 2010 B2
7867164 Butler et al. Jan 2011 B2
7896889 Mazzocchi et al. Mar 2011 B2
7905829 Nishimura et al. Mar 2011 B2
7909760 Albrecht et al. Mar 2011 B2
7913697 Nguyen et al. Mar 2011 B2
7951076 Hart et al. May 2011 B2
7955257 Frasier et al. Jun 2011 B2
7955313 Boismier Jun 2011 B2
7998068 Bonadio et al. Aug 2011 B2
8021296 Bonadio et al. Sep 2011 B2
8025670 Sharp et al. Sep 2011 B2
8038652 Morrison et al. Oct 2011 B2
8066673 Hart et al. Nov 2011 B2
8079986 Taylor et al. Dec 2011 B2
8092430 Richard et al. Jan 2012 B2
8105234 Ewers et al. Jan 2012 B2
8109873 Albrecht et al. Feb 2012 B2
8157786 Miller et al. Apr 2012 B2
8157817 Bonadio et al. Apr 2012 B2
8187177 Kahle et al. May 2012 B2
8187178 Bonadio et al. May 2012 B2
8241209 Shelton, IV et al. Aug 2012 B2
8262568 Albrecht et al. Sep 2012 B2
8323184 Spiegal et al. Dec 2012 B2
8335783 Milby Dec 2012 B2
8343047 Albrecht et al. Jan 2013 B2
8353824 Shelton, IV et al. Jan 2013 B2
8403889 Richard Mar 2013 B2
8480683 Fowler et al. Jul 2013 B2
8574153 Richard Nov 2013 B2
8585632 Okoniewski Nov 2013 B2
10568660 Zhou Feb 2020 B2
10653449 Main et al. May 2020 B2
20010037053 Bonadio et al. Nov 2001 A1
20020055714 Rothschild May 2002 A1
20030014076 Mollenauer et al. Jan 2003 A1
20030093104 Bonner et al. May 2003 A1
20030187376 Rambo Oct 2003 A1
20030233115 Eversull et al. Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040059297 Racenet et al. Mar 2004 A1
20040092795 Bonadio et al. May 2004 A1
20040102804 Chin May 2004 A1
20040111061 Curran Jun 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040204734 Wagner et al. Oct 2004 A1
20040230161 Zeiner Nov 2004 A1
20040267096 Caldwell et al. Dec 2004 A1
20050020884 Hart et al. Jan 2005 A1
20050070935 Ortiz Mar 2005 A1
20050096605 Green et al. May 2005 A1
20050096695 Olich May 2005 A1
20050119525 Takemoto Jun 2005 A1
20050137459 Chin et al. Jun 2005 A1
20050148823 Vaugh et al. Jul 2005 A1
20050192483 Bonadio et al. Sep 2005 A1
20050203346 Bonadio et al. Sep 2005 A1
20050209608 O'Heeron Sep 2005 A1
20050245876 Khosravi et al. Nov 2005 A1
20050251092 Howell et al. Nov 2005 A1
20050277946 Greenhalgh Dec 2005 A1
20060071432 Staudner Apr 2006 A1
20060129165 Edoga et al. Jun 2006 A1
20060135972 Zeiner Jun 2006 A1
20060149137 Pingleton et al. Jul 2006 A1
20060149306 Hart et al. Jul 2006 A1
20060161049 Beane et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060212063 Wilk Sep 2006 A1
20060224161 Bhattacharyya Oct 2006 A1
20060241651 Wilk Oct 2006 A1
20060247498 Bonadio et al. Nov 2006 A1
20060247499 Butler et al. Nov 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060247516 Hess et al. Nov 2006 A1
20060247586 Voegele et al. Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060247678 Weisenburgh et al. Nov 2006 A1
20060270911 Voegele et al. Nov 2006 A1
20070093695 Bonadio et al. Apr 2007 A1
20070118175 Butler et al. May 2007 A1
20070151566 Kahle et al. Jul 2007 A1
20070203398 Bonadio et al. Aug 2007 A1
20070208312 Norton et al. Sep 2007 A1
20070225650 Hart et al. Sep 2007 A1
20070270654 Pignato et al. Nov 2007 A1
20070270882 Hjelle et al. Nov 2007 A1
20080009826 Miller et al. Jan 2008 A1
20080021360 Fihe et al. Jan 2008 A1
20080027476 Piskun Jan 2008 A1
20080048011 Weller Feb 2008 A1
20080091143 Taylor et al. Apr 2008 A1
20080097162 Bonadio et al. Apr 2008 A1
20080097332 Greenhalgh et al. Apr 2008 A1
20080119868 Sharp et al. May 2008 A1
20080146882 Cropper et al. Jun 2008 A1
20080161758 Insignares Jul 2008 A1
20080161826 Guiraudon Jul 2008 A1
20080188868 Weitzner et al. Aug 2008 A1
20080194973 Imam Aug 2008 A1
20080200767 Ewers et al. Aug 2008 A1
20080255519 Piskun et al. Oct 2008 A1
20080319261 Lucini et al. Dec 2008 A1
20090012477 Norton et al. Jan 2009 A1
20090036738 Cuschieri et al. Feb 2009 A1
20090036745 Bonadio et al. Feb 2009 A1
20090093752 Richard et al. Apr 2009 A1
20090093850 Richard Apr 2009 A1
20090105635 Bettuchi et al. Apr 2009 A1
20090131751 Spivey et al. May 2009 A1
20090137879 Ewers et al. May 2009 A1
20090182279 Wenchell et al. Jul 2009 A1
20090182288 Spenciner Jul 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090204067 Abu-Halawa Aug 2009 A1
20090221968 Morrison et al. Sep 2009 A1
20090227843 Smith et al. Sep 2009 A1
20090326330 Bonadio et al. Dec 2009 A1
20090326332 Carter Dec 2009 A1
20100057009 McQueen Mar 2010 A1
20100063452 Edelman et al. Mar 2010 A1
20100081880 Widenhouse Apr 2010 A1
20100100043 Racenet Apr 2010 A1
20100113886 Piskun et al. May 2010 A1
20100228094 Ortiz et al. Sep 2010 A1
20100240960 Richard Sep 2010 A1
20100249516 Shelton, IV et al. Sep 2010 A1
20100249523 Spiegal et al. Sep 2010 A1
20100249524 Ransden et al. Sep 2010 A1
20100262080 Shelton, IV et al. Oct 2010 A1
20100280326 Hess et al. Nov 2010 A1
20100286484 Stellon et al. Nov 2010 A1
20100286506 Ransden et al. Nov 2010 A1
20100298646 Stellon et al. Nov 2010 A1
20100312063 Hess et al. Dec 2010 A1
20110009704 Marczyk et al. Jan 2011 A1
20110021877 Fortier et al. Jan 2011 A1
20110028891 Okoniewski Feb 2011 A1
20110034778 Kleyman Feb 2011 A1
20110054257 Stopek Mar 2011 A1
20110054258 O'Keefe et al. Mar 2011 A1
20110054260 Albrecht et al. Mar 2011 A1
20110082341 Kleyman et al. Apr 2011 A1
20110082343 Okoniewski Apr 2011 A1
20110082346 Stopek Apr 2011 A1
20110118553 Stopek May 2011 A1
20110124968 Kleyman May 2011 A1
20110124969 Stopek May 2011 A1
20110124970 Kleyman May 2011 A1
20110125186 Fowler et al. May 2011 A1
20110166423 Farascioni et al. Jul 2011 A1
20110251463 Kleyman Oct 2011 A1
20110251464 Kleyman Oct 2011 A1
20110251465 Kleyman Oct 2011 A1
20110251466 Kleyman et al. Oct 2011 A1
20110251560 Albrecht et al. Oct 2011 A1
20110313250 Kleyman Dec 2011 A1
20120059640 Roy et al. Mar 2012 A1
20120130177 Davis May 2012 A1
20120130181 Davis May 2012 A1
20120130182 Rodrigues, Jr. et al. May 2012 A1
20120130183 Barnes May 2012 A1
20120130184 Richard May 2012 A1
20120130185 Pribanic May 2012 A1
20120130186 Stopek et al. May 2012 A1
20120130187 Okoniewski May 2012 A1
20120130188 Okoniewski May 2012 A1
20120130190 Kasvikis May 2012 A1
20120130191 Pribanic May 2012 A1
20120149987 Richard et al. Jun 2012 A1
20120157777 Okoniewski Jun 2012 A1
20120157779 Fischvogt Jun 2012 A1
20120157780 Okoniewski et al. Jun 2012 A1
20120157781 Kleyman Jun 2012 A1
20120157782 Alfieri Jun 2012 A1
20120157783 Okoniewski et al. Jun 2012 A1
20120157784 Kleyman et al. Jun 2012 A1
20120157785 Kleyman Jun 2012 A1
20120157786 Pribanic Jun 2012 A1
20120190931 Stopek Jul 2012 A1
20120190932 Okoniewski Jul 2012 A1
20120190933 Kleyman Jul 2012 A1
20120209077 Racenet Aug 2012 A1
20120209078 Pribanic et al. Aug 2012 A1
20120245427 Kleyman Sep 2012 A1
20120245429 Smith Sep 2012 A1
20120245430 Kleyman et al. Sep 2012 A1
20120283520 Kleyman Nov 2012 A1
20120310165 Hart et al. Dec 2012 A1
20130225930 Smith Aug 2013 A1
20130225931 Cruz et al. Aug 2013 A1
20130245373 Okoniewski Sep 2013 A1
20130274559 Fowler et al. Oct 2013 A1
20130310651 Alfieri Nov 2013 A1
20140018632 Kleyman Jan 2014 A1
20150025477 Evans Jan 2015 A1
20150223833 Coffeen et al. Aug 2015 A1
20180021063 Main Jan 2018 A1
Foreign Referenced Citations (77)
Number Date Country
2702419 Nov 2010 CA
0226026 Jun 1987 EP
0538060 Apr 1993 EP
0577400 Jan 1994 EP
0630660 Dec 1994 EP
0807416 Nov 1997 EP
0950376 Oct 1999 EP
1188415 Mar 2002 EP
1312318 May 2003 EP
1774918 Apr 2007 EP
1932485 Jun 2008 EP
2044889 Apr 2009 EP
2044897 Apr 2009 EP
2080494 Jul 2009 EP
2095781 Sep 2009 EP
2098182 Sep 2009 EP
2138117 Dec 2009 EP
2138118 Dec 2009 EP
2181657 May 2010 EP
2226025 Sep 2010 EP
2229900 Sep 2010 EP
2238924 Oct 2010 EP
2238925 Oct 2010 EP
2238926 Oct 2010 EP
2238933 Oct 2010 EP
2248478 Nov 2010 EP
2248482 Nov 2010 EP
2253283 Nov 2010 EP
2272450 Jan 2011 EP
2277464 Jan 2011 EP
2289438 Mar 2011 EP
2292165 Mar 2011 EP
2343019 Jul 2011 EP
2469083 Apr 2009 GB
8401512 Apr 1984 WO
9314801 Aug 1993 WO
9404067 Mar 1994 WO
9610963 Apr 1996 WO
9636283 Nov 1996 WO
9733520 Sep 1997 WO
9742889 Nov 1997 WO
9916368 Apr 1999 WO
9922804 May 1999 WO
9929250 Jun 1999 WO
0032116 Jun 2000 WO
0032120 Jun 2000 WO
0054675 Sep 2000 WO
0108581 Feb 2001 WO
0149363 Jul 2001 WO
0207611 Jan 2002 WO
03034908 May 2003 WO
03071926 Sep 2003 WO
03077726 Sep 2003 WO
2004043275 May 2004 WO
2004054456 Jul 2004 WO
2004075741 Sep 2004 WO
2004075930 Sep 2004 WO
2005058409 Jun 2005 WO
2006019723 Feb 2006 WO
2006100658 Sep 2006 WO
2006110733 Oct 2006 WO
2007018458 Feb 2007 WO
2007095703 Aug 2007 WO
2007143200 Dec 2007 WO
2008015566 Feb 2008 WO
2008042005 Apr 2008 WO
2008077080 Jun 2008 WO
2008093313 Aug 2008 WO
2008103151 Aug 2008 WO
2008121294 Oct 2008 WO
2008147644 Dec 2008 WO
2009036343 Mar 2009 WO
2010000047 Jan 2010 WO
2010141409 Dec 2010 WO
2010141673 Dec 2010 WO
2014116889 Jul 2014 WO
2016186905 Nov 2016 WO
Non-Patent Literature Citations (1)
Entry
European Search Report dated Aug. 18, 2020, issued in EP Appln. No. 20172914, 7 pages.
Related Publications (1)
Number Date Country
20200352601 A1 Nov 2020 US