Seal assemblies for surgical access assemblies

Information

  • Patent Grant
  • 11751910
  • Patent Number
    11,751,910
  • Date Filed
    Wednesday, November 3, 2021
    2 years ago
  • Date Issued
    Tuesday, September 12, 2023
    7 months ago
Abstract
Access assemblies include an instrument valve housing and a valve assembly disposed within the cavity of the instrument valve housing. The valve assembly includes a guard assembly, a seal assembly disposed adjacent to the guard assembly, and a centering mechanism for maintaining the seal assembly and guard assembly centered within a cavity of the instrument valve. The guard assembly includes a support ring and a plurality of guard sections disposed distally of the support ring. The seal assembly includes a proximal seal member, an intermediate seal assembly, and a distal seal member, the intermediate seal assembly including a plurality of seal sections in a stacked configuration.
Description
FIELD

The present disclosure relates to access assemblies for minimally invasive surgery, including seals. More particularly, the present disclosure relates to seals for surgical access assemblies.


BACKGROUND

In order to facilitate minimally invasive surgery, a working space must be created at the desired surgical site. An insufflation gas, typically CO2, is introduced into the abdomen of the patient to create an inflated state called a pneumoperitoneum. Access assemblies are utilized to allow the introduction of surgical instrumentation and endoscopes (or other visualization tools). These access assemblies maintain the pressure for the pneumoperitoneum, as they have one or more seals that adapt to the surgical instrumentation. Typically, a “zero-seal” in the access assembly seals the access assembly in the absence of a surgical instrument in the access assembly, and an instrument seal seals around a surgical instrument that has been inserted through the access assembly.


The breadth of surgical instrumentation on the market today requires a robust seal capable of adjusting to multiple sizes and withstanding multiple insertions of surgical instrumentation. Some of the instrumentation can include sharp edges that can tear or otherwise damage seals. Therefore, it would be beneficial to have an access assembly with improved seal durability.


SUMMARY

An access assembly with an improved seal durability is provided. The access assembly includes an instrument valve housing and a valve assembly. The instrument valve housing defines a cavity. The valve assembly is disposed within the cavity of the instrument valve housing. The valve assembly includes a guard assembly, a seal assembly disposed adjacent to the guard assembly, and a centering mechanism for maintaining the seal assembly and guard assembly centered within the cavity of the instrument valve. The guard assembly includes a support ring and a plurality of guard sections disposed distally of the support ring. The seal assembly includes a proximal seal member, an intermediate seal assembly, and a distal seal member.


In embodiments, the guard assembly includes six guard sections. Each guard section of the plurality of guard sections may include a first side configured to accommodate an overlapping portion of an adjacent guard section of the plurality of guard sections. The first side of each guard section of the plurality of guard sections may angle downwardly. Each guard section of the plurality of guard sections may include a guard portion having a substantially kidney shape. Each guard portion may include an indentation and may be configured such that when the plurality of guard sections are assembled, the indentations form an opening.


In some embodiments, at least one of the support ring and the plurality of guard sections includes a plurality of outward extending tabs for aligning the guard assembly with the centering mechanism. The proximal seal member may include an annular flange and a seal portion supported within the annular flange. The intermediate seal assembly includes a plurality of seal sections. The access assembly may further include a retaining member having a plurality of pins. The centering mechanism may include an annular base defining a channel for receiving the plurality of pins for maintaining the valve assembly in an assembled configuration.


Another access assembly with an improved seal durability includes an instrument valve housing and a valve assembly disposed within the instrument valve housing. More particularly, the instrument valve housing includes upper, lower, and inner housing sections and defines a cavity in which the valve assembly is received. The valve assembly includes a guard assembly, a seal assembly disposed adjacent to the guard assembly, and a centering mechanism for maintaining the seal assembly and guard assembly centered within the cavity of the instrument valve. The guard assembly includes a plurality of guard sections. The seal assembly includes a proximal seal member, an intermediate seal assembly, and a distal seal member. The intermediate seal assembly includes a plurality of seal sections in a stacked configuration; and


In embodiments, the intermediate seal assembly includes six seal sections. Each seal section of the plurality of seal sections may include a wing shape. An inner edge of each seal section of the plurality of seal sections may be straight. Alternatively, the inner portion of each seal section of the plurality of seal sections is tapered. At least one of a top surface and a bottom surface of the inner portions may taper. The intermediate seal assembly may be hexagonal. The proximal seal member may include an annular flange and a seal portion supported within the annular flange. The proximal and distal seal members may operate to support the intermediate seal assembly. The access assembly may further include a retainer assembly including upper and lower retainer members. At least one of the upper and lower retainer members may include a plurality of pins receivable through the guard assembly and seal assembly for retaining the guard and seal assemblies relative to each other.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the embodiments given below, serve to explain the principles of the disclosure, wherein:



FIG. 1 is a side perspective view of an access assembly according to an embodiment of the present disclosure;



FIG. 2 a side cross-sectional view of a proximal region of the access assembly shown in FIG. 1 taken along section line 2-2;



FIG. 3 is an exploded perspective view of a valve assembly, including a centering mechanism, a guard assembly, a seal assembly, and a retainer assembly;



FIG. 4 is a perspective view of the seal assembly shown in FIG. 3;



FIG. 5 is a perspective view of the seal assembly shown in FIG. 3, in an unfolded configuration;



FIG. 6-11 are perspective views of the seal assembly shown in FIG. 3, in sequential partially folded and fully folded conditions;



FIG. 12 is a top perspective view of the valve assembly shown in FIG. 3;



FIG. 13 is a bottom perspective view of the valve assembly shown in FIG. 3;



FIG. 14 is a top view of a seal assembly according to another embodiment of the present disclosure, in an initial or unfolded configuration;



FIG. 15 is a perspective side view of a section of the seal assembly shown in FIG. 14;



FIG. 16 is a side cross-sectional view of a section the seal assembly shown in FIG. 14 taken along section line 16-16 shown in FIG. 15;



FIG. 17 is a top view of the seal assembly shown in FIG. 14, in a folded configuration;



FIG. 18 is a perspective view of a valve assembly according to another embodiment of the present disclosure;



FIG. 19 is an exploded perspective view of the valve assembly shown in FIG. 18, including a centering mechanism, a guard assembly, a seal assembly, and a retainer assembly;



FIG. 20 is a top perspective view of the centering mechanism shown in FIG. 19;



FIG. 21 is a side cross-sectional view of the centering mechanism shown in FIG. 20, taken along line 21-21;



FIG. 22 is a top view of a guard section of the guard assembly shown in FIG. 19;



FIG. 23 is a cross-sectional side view of the guard section shown in FIG. 20, taken along line 23-23;



FIGS. 24-29 are perspective views of the guard assembly shown in FIG. 19, in sequential order of assembly;



FIG. 30 is a side cross-sectional view of the valve assembly shown in FIG. 18;



FIG. 31 is a perspective view of a valve assembly according to yet another embodiment of the present disclosure;



FIG. 32 is an exploded perspective view of the valve assembly shown in FIG. 31, including a centering mechanism, a guard assembly, a seal assembly, and a retainer assembly;



FIG. 33 is a top perspective view of seal sections of the seal assembly shown in FIG. 32;



FIG. 34 is a side view of the seal sections shown in FIG. 33;



FIG. 35 is a top view of a seal section of the seal assembly shown in FIG. 33;



FIG. 36 is a side cross-sectional view of the seal section shown in FIG. 35, taken along line 36-36; and



FIGS. 37-42 are perspective views of the seal sections shown in FIG. 33, in sequential order of assembly.





DETAILED DESCRIPTION

Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings; however, it is to be understood that the disclosed embodiments are merely exemplary of the disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure. Like reference numerals refer to similar or identical elements throughout the description of the figures.


As used herein, the term “distal” refers to that portion of the instrument, or component thereof which is farther from the user while the term “proximal” refers to that portion of the instrument or component thereof which is closer to the user.


Access assemblies with obturators are employed during minimally invasive surgery, e.g., laparoscopic surgery, and provide for the sealed access of surgical instruments into an insufflated body cavity, such as the abdominal cavity. The access assemblies of the present disclosure include an instrument valve housing mounted on a cannula tube, and include an obturator (not shown) inserted through the valve housing and cannula. The obturator can have a blunt distal end, or a bladed or non-bladed penetrating distal end and can be used to incise the abdominal wall so that the access assembly can be introduced into the abdomen. The handle of the obturator can engage or selectively lock into the instrument valve housing of the access assembly.


Access assemblies are employed to tunnel through an anatomical structure, e.g., the abdominal wall, either by making a new passage through the anatomical structure or by passing through an existing opening through the anatomical structure. Once the trocar assembly with the obturator has tunneled through the anatomical structure, the obturator is removed, leaving the access assembly in place. The instrument valve housing of the access assembly includes valves that prevent the escape of insufflation gases from the body cavity, while also allowing surgical instruments to be inserted into the cavity.


In various embodiments, a bladeless optical trocar obturator may be provided that permits separation of tissue planes in a surgical procedure and visualization of body tissue fibers as they are being separated, thereby permitting a controlled traversal across a body wall. In other embodiments, the trocar obturator may be bladeless without being optical, e.g., without providing contemporaneous visualization thereof through the distal tip of an obturator. The bladeless obturator may be provided for the blunt dissection of the abdominal lining during a surgical procedure.


Various trocar obturators suitable for use with the access assembly of the present disclosure are known and include, for example, bladed, bladeless, blunt, optical, and non-optical. For a detailed description of the structure and function of exemplary trocar assemblies, including exemplar trocar obturators and exemplar cannulas, please refer to commonly owned PCT Publication No. WO 2016/186905 (“the '905 publication”), the content of which is hereby incorporated by reference herein in its entirety.


With initial reference now to FIG. 1, an access assembly according to aspects of the present disclosure is shown generally as access assembly 100. The access assembly 100 includes a cannula 102 and an instrument valve housing 110 secured to the cannula 102. For a detailed description of an exemplary access assembly, please refer to the '905 publication.


With reference to FIG. 2, the instrument valve housing 110 of the access assembly 100 includes an upper housing section 112, a lower housing section 114, and an inner housing section 116. The upper, lower, and inner housing sections 112, 114, 116 are configured to support a valve assembly 120 on a proximal end of the cannula 102. More particularly, the inner housing section 116 is secured between the upper and lower housing sections 112, 114, and the valve assembly 120 is received between the inner and lower housing sections 116, 114. The upper and lower housing sections 112, 114 of the instrument valve housing 110 may be selectively attachable to, and detachable from, the inner housing section 116. The lower housing section 114 may be releasably or permanently attached to a cannula tube 104 (FIG. 1) of the access assembly 102. In embodiments, either or both of the upper and lower housing sections 112, 114 of the instrument valve housing 110 may include knurls, indentations, tabs, or be otherwise configured to facilitate engagement by a clinician.


The access assembly 100 may also include features for the stabilization of the access assembly 100. For example, the distal end of the cannula tube 104 may carry a balloon anchor or another expandable member that engages the abdomen from the interior side. For example, see commonly owned U.S. Pat. No. 7,300,448, the entire disclosure of which is hereby incorporated by reference herein. A feature on the opposite side of the abdominal wall may be used to further stabilize the access assembly, such as adhesive tabs or adjustable foam collars.


The upper, lower, and inner housing sections 112, 114, 116 of the instrument valve housing 110 define a longitudinal passage 111 for receipt of a surgical instrument (not shown). The valve assembly 120 is supported within the instrument valve housing 110 to provide sealed passage of the surgical instrument through the access assembly 100.


With particular reference to FIGS. 2 and 3, the valve assembly 120 supported in the instrument valve housing 110 (FIG. 2) includes a centering mechanism 130, a guard assembly 140, a seal assembly 160, and a retainer assembly 180. The centering mechanism 130 of the valve assembly 120 permits radial movement of the valve assembly 120 relative to the instrument valve housing 110 when a surgical instrument is received through the valve assembly 120, and returns the valve assembly 120 to a generally centered position once the surgical instrument is withdrawn from within the instrument valve housing 110. The guard assembly 140 protects the seal assembly 160 during insertion and withdrawal of a surgical instrument through the seal assembly 160. The seal assembly 160 provides sealed passage of the surgical instrument through the instrument valve housing 110. The retainer assembly 180 maintains the centering mechanism 130, the guard assembly 140, and the seal assembly 160 in an aligned relationship with one another.


With continued reference to FIGS. 2 and 3, as noted above, the centering mechanism 130 of the valve assembly 120 is configured to maintain the valve assembly 120 centered within the instrument valve housing 110 (FIG. 2). In embodiments, and as shown, the centering mechanism 130 includes an outer annular ring 132, an inner annular ring 134, and a bellows 136 disposed between the outer annular ring 132 and the inner annular ring 134. As shown in FIG. 2, the outer annular ring 132 is received between the inner housing section 116 and the lower housing section 114 to retain the centering mechanism 130 within the instrument valve housing 110. The inner annular ring 134 supports the seal assembly 160. For a detailed description of the structure and function of an exemplary centering mechanism, please refer to commonly owned U.S. Pat. No. 6,702,787 (“the '787 patent”), the content of which is incorporated herein by reference in its entirety.


Although shown including the centering mechanism 130 having bellows 136, the valve assembly 120 may include alternative centering mechanisms. For example, the centering mechanism may include an annular base and a plurality of spokes extending from the base, as described in commonly owned U.S. Pat. App. Pub. No. 2015/0025477 (“the '477 publication”), the content of which is incorporated herein by reference in its entirety. It is envisioned that the centering mechanism may include multiple sets of spokes, as disclosed in the '477 publication.


Still referring to FIGS. 2 and 3, the guard assembly 140 of the valve assembly 120 includes a ring portion 142 and first, second, third, and fourth petals 144, 146, 148, 150. The guard assembly 140 may be formed from a sheet of plastic/polymeric material by stamping with a tool that forms the ring portion 142 and the petals 144, 146, 148, 150. Alternatively, the guard assembly 140 may be formed by molding or other techniques. It is envisioned that the guard assembly may include any number of petals, and the petals may include flap portions of any size or configuration. See, for example, U.S. Pat. Nos. 5,895,377 and 6,569,120 (“the '377 and '120 Patents”), and PCT Publication WO 91/12838, the entire disclosures of which are hereby incorporated by reference herein, for exemplary guard assemblies, as well as other aspects of access assemblies. For a detailed description of the structure and function of exemplary guard assemblies, please refer to commonly owned U.S. patent application Ser. Nos. 16/394,043 and 16/238,823, the content of each of which is incorporated herein by reference in its entirety.


With particular reference now to FIGS. 4-11, the seal assembly 160 of the valve assembly 120 is configured to provide a seal around an outer surface of a surgical instrument (not shown) passing through the instrument valve housing 110 (FIG. 2).


The seal assembly 160 includes first, second, third, fourth, fifth, and sixth petals or sections 162, 164, 166, 168, 170, 172 movable from a first or unfolded configuration (FIG. 5) to folded configuration (FIG. 4). In the folded configuration, the seal assembly 160 forms a substantially planar, hexagonal member, with the first, second, third, fourth, fifth, and sixth sections 162, 164, 166, 168, 170, 172 of the seal assembly 160 defining an opening 161 therebetween to facilitate sealed passage of a surgical instrument (not shown) through the seal assembly 160. In embodiments, the opening 161 is 0.025″ to 0.100″ in diameter. By forming the opening 161 out of the first, second, third, fourth, fifth, and sixth sections 162, 164, 166, 168, 170, 172 of the seal assembly 160 instead of as a continuous solid opening through as single seal member, the likelihood of the seal assembly 160 tearing during insertion, removal, and use of a surgical instrument therethrough is greatly reduced. Although shown including six (6) sections, it is envisioned that the seal assembly 160 may include as few as four (4) sections, and as many as eight (8) sections.


The first, second, third, fourth, fifth, and sixth sections 162, 164, 166, 168, 170, 172 of the seal assembly 160 are formed of an elastic material, e.g., rubber, polyisoprenes, or silicone elastomers. In embodiments, the first, second, third, fourth, fifth, and sixth sections 162, 164, 166, 168, 170, 172 may include one or more fabric layers.


With particular reference to FIG. 5, the first and second sections 162, 164 of the seal assembly 160, the second and third sections 164, 166, the third and fourth sections 166, 168, the fourth and fifth sections 168, 170, and the fifth and sixth section 170, 172 are connected to one another by a connector portion 162a, 164a, 166a, 168a, 170a, respectively. In embodiments, the connector portions 162a, 164a, 166a, 168a, 170a include a living hinge, or are otherwise formed to facilitate folding of the sections.


An inner edge 162b, 164b, 166b, 168b, 170b, 172b of the respective first, second, third, fourth, fifth, and sixth sections 162, 164, 166, 168, 170, 172 of the seal assembly 160 may be straight (FIG. 14), or may define a V-shape (FIG. 5). In embodiments, the V-shape defines an angle between one-hundred eighty degrees (180°) and two-hundred seventy-five degrees (275°). The V-shape of the inner edges 162b, 164b, 166b, 168b, 170b facilitates reception of a surgical instrument (not shown) through the seal assembly 160.


Each of the first, second, third, fourth, fifth, and sixth sections 162, 164, 166, 168, 170, 172 of the seal assembly 160 includes a wing-shaped body that is configured to partially overlap the respective connected second, third, fourth, fifth, and sixth sections 164, 166, 168, 170, 172 when the seal assembly 160 is in the folded configuration. The first, second, third, fourth, fifth, and sixth sections 162, 164, 166, 168, 170, 172 are also configured to partially overlap the respective adjacent third, fourth, fifth, sixth, first, and second sections 166, 168, 170, 172, 162, 164 and the respective adjacent sixth, first, second, third, fourth, and fifth sections 172, 162, 164, 166, 168. For example, the first section 162 overlaps the connected second section 164, and the adjacent third and sixth sections 166, 172. In this manner, a portion of each of the first, second, third, fourth, fifth, and sixth sections 162, 164, 166, 168, 170, 172 overlaps three sections.


Each of the first, second, third, fourth, fifth, and sixth sections 162, 164, 166, 168, 170, 172 defines a plurality of openings 163, 165, 167, 169, 171, 173 along an outer perimeter of each section 162, 164, 166, 168, 170, 172. In embodiments, and as shown, the plurality of openings 163, 165, 167, 169, 171, 173 is arranged such the first and last two openings of each plurality of openings 163, 165, 167, 169, 171, 173 align with the last and first two openings of the adjacent sections. For example, as noted above, the first section 162 overlaps the connected second section 164 and the adjacent third and sixth sections 166, 177. In this manner, the first two openings 163a of the plurality of openings 163 align with last two openings 167b of the plurality of openings 167 in the third section 166, and the second two openings 163b of the plurality of openings 163 in the first section 162 align with the first two openings 173a of the plurality of openings 173 of the sixth section when the seal assembly 160 is in the folded configuration.


The plurality of openings 163, 165, 167, 169, 171, 173 are configured to receive pins 186 (FIG. 3) of the retainer assembly 180 to maintain the seal assembly 160 in the folded condition and to secure the seal assembly 160 relative to the guard assembly 140 and the centering mechanism 130.


The method of folding the seal assembly 160 will now be described with reference to FIGS. 6-11. Referring initially to FIG. 6, the first section 162 of the seal assembly 160 is folded relative to the second section 164 at the hinge portion 162a between the first and second sections 162, 164, as indicated by arrow “A”, such that a portion of the first section 162 adjacent the hinge portion 162a aligns with the portion of the second section 164 of the seal assembly 160 adjacent the hinge portion 162a. In this manner, the plurality of openings 163 in the portion of the first section 162 adjacent the hinge portion 162a aligns with the plurality of openings 165 in the overlapping portion of the second section 164 of the seal assembly 260 adjacent the hinge portions 162a.


Turning to FIG. 7, the second section 164 of the seal assembly 160 is folded relative to the third section 166 at the hinge portion 164a between the second and third sections 164, 166, as indicated by arrow “B”, such that a portion of the second section 164 adjacent the hinge portion 164a overlaps the length of the portion of the third section 166 of the seal assembly 160 adjacent the hinge portion 164a. In this manner, the plurality of openings 165 in the portion of the second section 164 adjacent the hinge portion 164a aligns with the plurality of openings 167 in the overlapping portion of the third section 166 of the seal assembly 160 adjacent the hinge portions 164a.


Referring to FIG. 8, the third section 166 of the seal assembly 160 is folded relative to the fourth section 168 of the seal assembly 160 at the hinge portion 166a between the third and fourth sections 166, 168, as indicated by arrow “C”, such that the portion of the third section 166 adjacent the hinge portion 166a overlaps the portion of the fourth section 168 of the seal assembly 260 adjacent the hinge portion 166a. In this manner, the plurality of openings 167 in the portion of the third section 166 adjacent the hinge portion 166a aligns with the plurality of openings 169 in the overlapping portion of the fourth section 168 of the seal assembly 160 adjacent the hinge portions 166a.


With reference to FIG. 9, the fourth section 168 of the seal assembly 160 is folded relative to the fifth section 170 of the seal assembly 160 at the hinge portion 168a between the fourth and fifth sections 168, 170, as indicated by arrow “D”, such that the portion of the fourth section 168 adjacent the hinge portion 168a overlaps the portion of the fifth section 170 of the seal assembly 160 adjacent the hinge portion 168a. In this manner, the plurality of openings 169 in the portion of the fourth section 168 adjacent the hinge portion 168a aligns with the plurality of openings 171 in the overlapping portion of the fifth section 170 adjacent the hinge portion 168a.


Turning to FIG. 10, the fifth section 170 of the seal assembly 160 is folded relative to the sixth section 172 at the hinge portion 170a between the fifth and sixth sections 170, 172, as indicated by arrow “E”, such that the portion of the fifth section 170 adjacent the hinge portion 170a overlaps the portion of the sixth section 172 of the seal assembly 260 adjacent the hinge portion 170a. In this manner, the plurality of openings 171 in the portion of the fifth section 170 adjacent the hinge portion 170a aligns with the plurality of openings 173 in the overlapping portion of the sixth section 170 of the seal assembly 160 adjacent the hinge portion 170a.



FIG. 11 illustrates the seal assembly 160 in a fully folded configuration. In embodiments, a portion of the sixth section 172 of the seal assembly 160 is inserted under the first section 162 of the seal assembly 160 to interweave the first and sixth sections 162, 172. This interweaving increases the integrity of the seal assembly 160.


Referring back to FIGS. 2 and 3, the retainer assembly 180 of the valve assembly 120 is configured to secure the guard assembly 140 relative to the seal assembly 160, and secure the guard and seal assemblies 140, 160 to the centering mechanism 130. The retainer assembly 180 includes the upper retainer member 182, and a lower retainer member 184.


As noted above, the upper retainer member 182 includes a plurality of pins 186. The plurality of pins 186 extends from a bottom surface of the upper retainer member 182. Each pin of the plurality of pins 186 is configured to be lockingly received within an opening of a plurality of openings 185 (FIG. 3) of the lower retainer member 184. In embodiments, the plurality of pins 186 is welded, glued, adhered, bonded or otherwise secured within the plurality of openings 185 in the lower retainer member 184 to secure the upper retainer member 182 and the lower retainer member 184 together. Alternatively, the lower retainer member 184 may instead, or additionally, include a plurality of pins (not shown) with the upper retainer member 182 defining a plurality corresponding openings (not shown). Either or both of the upper and lower retainer members 182, 184 may include locking features (not shown) for engaging the plurality of pins and securing the upper retainer member 182 to the lower retainer member 184.


With particular reference to FIG. 2, the plurality of pins 186 of the upper retainer member 182 extends through the ring portion 142 of the guard assembly 140, through the seal assembly 160, through the inner annular ring 134 of the centering mechanism 130, and into the openings 185 in the lower retainer member 184.


During a surgical procedure utilizing access assembly 100, a surgical instrument (not shown) is introduced into the instrument valve housing 110 through the longitudinal passage 111 in the upper, lower, and inner housing sections 112, 114, 116. As described in the '377 and '120 Patents, the distal end of the surgical instrument engages the petals 144, 146, 148, 150 (FIG. 3) of the guard assembly 140 causing the respective petals 144, 146, 148, 150 to flex downward into contact with the seal assembly 160 to cause the central opening 163 of the seal assembly 160 to open to accommodate passage of the surgical instrument through the seal assembly 160. The guard assembly 130 minimizes damage to the seal assembly 160 during insertion of an instrument through the valve assembly 120. The guard assembly 130 operates to protect the seal assembly 160 from tearing or other damage as a surgical instrument is received through and withdrawn from the seal assembly 160. As discussed above, the multi-petal configuration of the seal assembly 160 reduces the likelihood of the seal assembly 160 tearing during insertion and/or removal of the surgical instrument therethrough.


With reference now to FIGS. 14-17, a seal assembly according to another embodiment of the present disclosure is shown generally as seal assembly 260. The seal assembly 260 is substantially similar to the seal assembly 160 (FIGS. 4-11) described hereinabove, and will only be described in detail as relates to the differences therebetween.


The seal assembly 260 is configured to provide a seal around an outer surface of a surgical instrument (not shown) passing through the instrument valve housing 110 (FIG. 2). The seal assembly 260 includes first, second, third, fourth, fifth, and sixth petals or sections 262, 264, 266, 268, 270, 272 foldable from a first or unfolded configuration (FIG. 14) to folded configuration (FIG. 17). In the folded configuration the seal assembly 260 forms a substantially planar, hexagonal member, with the first, second, third, fourth, fifth, and sixth sections 262, 264, 266, 268, 270, 272 of the seal assembly 260 defining an opening 261 therebetween to facilitate sealed passage of a surgical instrument (not shown) through the seal assembly 260.


Inner edges 262b, 264b, 266b, 268b, 270b, 272b of the respective first, second, third, fourth, fifth, and sixth sections 262, 264, 266, 268, 270, 272 of the seal assembly 160 are tapered. The tapered inner edges 262b, 266b, 270b of the first, third, and fifth sections 262, 266, 270, respectively, are disposed on first surfaces 262′, 266′, 270′ (FIG. 17) of the respective first, third, and fifth sections 262, 266, 270, and the tapered inner edges 264b, 268b, 272b of the second, fourth, and sixth sections 264, 268, 274, respectively, are disposed on second surfaces 264″, 268″, 272″ of the respective first, third, and fifth sections 262, 266, 270. The tapered inner edges 262b, 264b, 266b, 268b, 270b, 272b of the respective first, second, third, fourth, fifth, and sixth sections 262, 264, 266, 268, 270, 272 facilitate sealed receipt of a surgical instrument through the opening 261 in the seal assembly 260.


The seal assembly 260 is secured within the instrument valve housing 110 (FIG. 2) in a similar manner to seal assembly 160 (FIG. 3) described hereinabove. The seal assembly 260 operates in a similar manner to seal assembly 160.



FIGS. 18 and 19 illustrate a valve assembly according to another embodiment of the disclosure shown generally as valve assembly 320. The valve assembly 320 is configured to be supported within an instrument valve housing, e.g., instrument valve housing 110 (FIG. 2), and includes a centering mechanism 330, a guard assembly 340, a seal assembly 360, and a retainer member 380. The centering mechanism 330 of the valve assembly 320 permits radial movement of the valve assembly 320 relative to the instrument valve housing 110 when a surgical instrument is received through the valve assembly 320, and returns the valve assembly 320 to a generally centered position once the surgical instrument is withdrawn from within the instrument valve housing 310. The guard assembly 340 protects the seal assembly 360 during insertion and withdrawal of a surgical instrument through the seal assembly 360. The seal assembly 360 provides sealed passage of the surgical instrument through the instrument valve housing 110. The retainer member 380 maintains the centering mechanism 330, the guard assembly 340, and the seal assembly 360 in an aligned relationship with one another.


With reference to FIGS. 20 and 21, the centering mechanism 330 of the valve assembly 320 is configured to maintain the valve assembly 320 centered within the instrument valve housing 110 (FIG. 2). In embodiments, and as shown, the centering mechanism 330 includes an annular base 332 and a plurality of spokes 334 extending from the annular base 332. The annular base 332 defines a channel 333. The channel 333 is configured to receive a plurality of pins 386 extending from a retainer ring 382 of the retainer member 380. The plurality of pins 386 of the retainer member 380 may be frictionally secured within the annular base 332. Alternatively, the plurality of pins 386 may be secured within the channel 333 of the annular base with adhesive, welding, mechanical fasteners, or in any other suitable manner.


With continued reference to FIGS. 20 and 21, as described in U.S. Pat. App. Pub. No. 2015/0025477 (“the '477 publication”), the content of which is incorporated herein by reference in its entirety, the plurality of spokes 334 extending from the annular base 332 of the centering mechanism 330 acts as springs that bias the annular base 332 toward a centered position within the instrument valve housing 110. It is envisioned that the centering mechanism 330 may include multiple sets of spokes, as disclosed in the '477 publication.


Referring briefly back to FIG. 19, the guard assembly 340 of the valve assembly 320 includes a support ring 342 and a plurality of guard sections 344. Although shown having only a single support ring 342 that is disposed proximally of the plurality of guard sections 344, it is envisioned that the guard assembly may include support rings 342 disposed proximally and distally of the plurality of guard sections 344. The support ring 342 defines a plurality of openings 341 for receiving the plurality of pins 386 extending from the retainer ring 382 of the retainer member 380. The support ring 342 includes a plurality of radially outward extending tabs 342a. The plurality of tabs 342a facilitates positioning of the guard assembly 340 within the centering mechanism 330. As shown, the plurality of guard sections 344 includes six guard sections 346a-f. It is envisioned that the guard assembly 340 may include more or fewer than six guard sections 346a-f.


With reference to FIGS. 22 and 23, the six guard sections 346a-f are substantially similar, and will only be described in detail with regards to an exemplary guard section 346. The guard section 346 includes a base portion 348 and a guard portion 350 extending from the base portion 348. The base portion 348 of the guard section 346 defines a first opening 347a and a second opening 347b, forming a plurality of openings 347, for receiving the plurality of pins 386 of the retainer member 380 (FIG. 19). Although shown having three openings 347, it is envisioned that the guard sections 346 may include any number of openings corresponding in number and placement to the plurality of pins 386 of the retainer member 380. At least one tab 348a extends radially outward from the base portion 348. As shown, the guard section 346 includes a pair of tabs 348a. The tabs 348a facilitate positioning of the guard assembly 340 within the centering mechanism 330.


The guard section 346 of the guard assembly 340 defines at least one longitudinal slot 349 disposed between the base portion 348 and the guard portion 350. As shown, the guard section 346 defines a pair of longitudinal slots 349. The longitudinal slots 349 facilitate flexing of the guard portion 350 relative to the base portion 348. The guard portion 350 of the guard section 346 defines a substantial kidney-shape including an indent 351 along an inner edge 352. When the plurality of guard sections 346a-f is assembled (FIG. 29), the indents 351 along the inner edge 352 of the guard portion 350 form an opening 353 (FIG. 29) for accommodating a surgical instrument (not shown).


With reference to FIG. 23, a first side 354 of the guard section 346 angles downward in relation to the remainder of the guard section 346. An edge 354a of the first side 354 of the guard section 346 is spaced a distance “δ” from a horizontal plane “h” defined by a surface of the remainder of the guard section 346. The downward angling of the first side 354 of the guard section 346 accommodates the overlapping portions of the adjacent guard sections 346a-f when the plurality of guard sections 344 of the guard assembly 340 is assembled (FIG. 29) such that the plurality of guard sections 344 lays in a substantially planar arrangement.


With reference now to FIGS. 24-29, the method of assembling the plurality of guard sections 344 will be described. Referring initially to FIG. 24, the first guard section 346a is positioned such that the first side 354 of the guard portion 350 of the first guard section 346a angles downward.


Turning to FIG. 25, the second guard section 346b is positioned such that the guard portion 350 of the second guard section 346b overlaps the first side 354 of the first guard section 346a with the first side 354 of the guard portion 350 of the second guard section 346b angling downward and away from the first guard section 346a. As such, a first opening 347a of the second guard section 346b overlaps a second opening 347b of the first guard section 346a.


Referring to FIG. 26, the third guard section 346c is positioned such that the guard portion 350 of the third guard section 346c overlaps the first side 354 (FIG. 25) of the second guard section 346a with the first side 354 of the guard portion 350 of the third guard section 346c angling downward and away from the second guard section 346b. As such, a first opening 347a of the third guard section 346c overlaps a second opening 347b of the second guard section 346b.


With reference to FIGS. 27-29, the fourth, fifth, and sixth guard sections 346d, 346e, 346f, are positioned similarly, with the exception that the first side (not shown) of the guard portion 350 of the sixth guard section 346f is positioned under the guard portion 350 of the first guard section 346a to complete the assembly of the plurality of guard sections 344 of the guard assembly 340.


As described in further detail below, the plurality of guard sections 344 of the guard assembly 340 are maintained in the assembled configuration by retainer assembly 380.


With reference back to FIG. 19, and additional reference to FIG. 30, the seal assembly 360 of the valve assembly 320 includes a proximal seal member 362, an intermediate seal assembly 364, and a distal seal member 368. The proximal seal member 362 includes an annular flange 370 and a seal portion 372 supported within the annular flange 370. The seal portion 372 is formed of an elastic material, e.g., rubber, and defines a central opening 371. The annular flange 370 is configured to direct a surgical instrument (not shown) through the central opening 371 in the seal portion 372. The intermediate seal assembly 364 is substantially similar to the seal assemblies 160, 260 described hereinabove. The distal seal member 366 corresponds in shape to the intermediate seal assembly 364. The distal seal member 366 is formed of an elastic material, e.g., rubber, and defines a central opening 365.


With particular reference to FIG. 30, the proximal seal member 362 and the distal seal member 366 of the seal assembly 370 operate together to provide support for the intermediate seal assembly 364. More particularly, the intermediate seal assembly 364 is sandwiched between the seal portion 372 of the proximal seal member 362 and the distal seal member 366. As a surgical instrument (not shown) is received through the seal assembly 360, the distal seal member 366 supports the intermediate seal assembly 364. Similarly, as the surgical instrument is withdrawn from the seal assembly 360, the proximal seal member 362 supports the intermediate seal assembly 364.


Although shown and described with reference to the seal assembly 360, it is envisioned that the valve assembly 320 may include any suitable seal assembly.


As noted above, the retainer ring 382 of the retainer member 380 includes a plurality of pins 386 that is received through the plurality of openings 342, 347 in the support ring 342 and the plurality of guard sections 344 of the guard assembly 340, respectively, and through the seal assembly 360. The plurality of retaining pins 386 is secured within the channel 333 of the annular base 332 of the centering mechanism 330 to maintain the guard assembly 340 and the seal assembly 360 in an assembled configuration.



FIGS. 31 and 32 illustrate a valve assembly according to another embodiment of the disclosure shown generally as valve assembly 420. The valve assembly 420 is configured to be supported within an instrument valve housing, e.g., instrument valve housing 110 (FIG. 2), and includes a centering mechanism 430, a guard assembly 440, a seal assembly 460, and a retainer assembly 480.


The centering mechanism 430 of the valve assembly 420 permits radial movement of the valve assembly 420 relative to the instrument valve housing 110 (FIG. 2) when a surgical instrument is received through the valve assembly 420, and returns the valve assembly 420 toward a generally centered position once the surgical instrument is withdrawn from within the instrument valve housing 410. As shown, the centering mechanism 430 is substantially similar to centering mechanism 330 described hereinabove. It is envisioned that valve assembly 420 may include alternative centering mechanisms including, for example, the centering mechanism 130 described hereinabove.


The guard assembly 440 of the valve assembly 420 protects the seal assembly 460 during insertion and withdrawal of a surgical instrument through the seal assembly 460. As shown, the guard assembly 440 is substantially similar to the guard assembly 440 described hereinabove. It is envisioned that the valve assembly 420 may include alternative guard assemblies including, for example, guard assembly 140 described hereinabove. The seal assembly 460 provides sealed passage of the surgical instrument through the instrument valve housing 110. The retainer member 480 maintains the centering mechanism 430, the guard assembly 440, and the seal assembly 460 in an aligned relationship with one another.


With reference continued reference to FIGS. 31 and 32, and additional reference to FIGS. 33 and 34, the seal assembly 460 of the valve assembly 420 includes a proximal seal member 462, an intermediate seal assembly 464, and a distal seal member 466. The proximal seal member 462 is substantially similar to proximal seal member 362 described hereinabove, and includes an annular flange 462a and a seal portion 462b supported within the annular flange 462a. The intermediate seal assembly 464 is similar to the seal assemblies 160, 260 described hereinabove, and will be described in further detail below. The distal seal member 366 corresponds in size and shape to the seal portion 462b of the proximal seal member 462. The proximal seal member 462 and the distal seal member 466 of the seal assembly 470 operate together to provide support for the intermediate seal assembly 464.


The intermediate seal assembly 464 of the seal assembly 460 includes a plurality of seal sections 470 (first, second, third, fourth, fifth, and sixth seal sections 472a-f) arranged in an overlapping or stacked configuration. In the overlapping configuration, the intermediate seal assembly 464 forms a substantially planar, hexagonal member, with the first, second, third, fourth, fifth, and sixth seal sections 472a-f of the seal assembly 464 defining an opening 463 (FIG. 32) to facilitate sealed passage of a surgical instrument (not shown) through the seal assembly 460. In embodiments, the opening 463 is 0.025″ to 0.100″ in diameter. By forming the opening 463 out of the first, second, third, fourth, fifth, and sixth seal sections 472a-f of the seal assembly 460 instead of as a continuous solid opening through a single seal member, the likelihood of the seal assembly 460 tearing during insertion, removal, and manipulation of a surgical instrument therethrough is greatly reduced. Although shown including six (6) seal sections, it is envisioned that the seal assembly 460 may include as few as four (4) seal sections, and as many as eight (8) seal sections.


The first, second, third, fourth, fifth, and sixth seal sections 472a-f of the seal assembly 460 are formed of an elastic material, e.g., rubber, polyisoprenes, or silicone elastomers. In embodiments, the first, second, third, fourth, fifth, and sixth seal sections 472a-f may include one or more fabric layers.


With reference now to FIGS. 35 and 36 the first, second, third, fourth, fifth, and sixth seal sections 472a-f are substantially identical and will only be described in detail with regards to an exemplary seal section 472. The exemplary seal section 472 is substantially similar to the seal sections of the seal assemblies 160, 260 described hereinabove. More particularly, the seal section 472 includes a wing-shaped body configured to partially overlap adjacent seal sections. An inner or edge portion 476 of the seal section 472 may be straight (FIG. 14), or may define a V-shape, as shown. In embodiments, the V-shape defines an angle “β” between about one-hundred eighty degrees (180°) and about two-hundred seventy-five degrees (275°). The V-shape of the inner portion 474 facilitates reception of a surgical instrument (not shown) through the seal assembly 460.


As shown in FIG. 36, the inner portion 474 of the seal section 472 is tapered, e.g., the thickness of the inner portion 474 decreases from proximal and distal surfaces a distance “a”, “b” respectively. Although shown with a symmetric taper, e.g., distances “a”, “b” are the same, it is envisioned that the inner portion 474 of the seal section 472 may be tapered on only one of the proximal and distal surface, or that the distances “a”, “b” may be different. The tapered configuration of the inner portion 474 facilitates insertion and withdrawal of a surgical instrument through the seal assembly 460. The tapered configuration of the inner portion 474 of the seal sections 472 may also provide improved sealing about a surgical instrument received through the seal assembly 470.



FIGS. 37-42 illustrate the assembly of the intermediate seal assembly 464. More particularly, the figures illustrate the stacked and overlapping configuration of the plurality of seal sections 470. The plurality of seal sections 470 of the intermediate seal assembly 464 are maintained in the assembled configuration by retainer assembly 480 (FIG. 32). More particularly, a plurality of pins 486 (FIG. 32) of an upper retainer member 482 of the retainer assembly 480 is received through a plurality of openings 473 in the seal sections 472. The retainer assembly 480 further maintains the seal assembly 460 relative to the centering mechanism 430, and the guard assembly 440. The plurality of pins 486 of the retainer assembly 480 are secured to a lower retainer member 484 (FIG. 32) of the retainer assembly 480. More particularly, the plurality of pins 486 is secured within a channel 485 of the lower retainer member 484 in any suitable fashion, including, for example, by friction fit, welding, or adhesive.


While various embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that these embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the present disclosure. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.

Claims
  • 1. A valve assembly comprising: a guard assembly including a plurality of guard sections;a seal assembly disposed distal of the guard assembly, the seal assembly including a proximal seal member and a distal seal member;a centering mechanism for permitting radial movement of the valve assembly within a housing of an access device; anda retainer member securing the guard assembly, the seal assembly, and the centering mechanism relative to each other, one of the centering mechanism or the retainer member including a plurality of pins extending through each guard section of the plurality of guard sections and the proximal and distal seal members and being secured to the other of the retainer member or the centering mechanism.
  • 2. The valve assembly of claim 1, wherein the centering mechanism includes an annular base and a plurality of spokes extending outward from the annular base.
  • 3. The valve assembly of claim 2, wherein the retainer member includes the plurality of pins and the annular base of the centering mechanism defines a channel in which the plurality of pins are secured.
  • 4. The valve assembly of claim 1, wherein the plurality of guard sections of the guard assembly defines a central opening.
  • 5. The valve assembly of claim 1, wherein each guard section of the plurality of guard sections includes a substantially kidney-like shape.
  • 6. The valve assembly of claim 1, wherein the proximal seal member includes an annular flange portion and a seal portion supported by the annular flange portion.
  • 7. The valve assembly of claim 6, wherein the distal seal member includes a plurality of seal sections in a folded configuration.
  • 8. The valve assembly of claim 6, wherein the retainer member is received within the annular flange portion of the proximal seal member.
  • 9. The valve assembly of claim 1, wherein the guard sections of the plurality of guard sections and the proximal and distal seal members each define openings through which the plurality of pins are received.
  • 10. An access assembly comprising: an instrument valve housing defining a cavity; anda valve assembly disposed within the cavity of the instrument valve housing, the valve assembly including: a guard assembly including a plurality of guard sections;a seal assembly disposed distal of the guard assembly, the seal assembly including a proximal seal member and a distal seal member;a centering mechanism for permitting radial movement of the valve assembly within the cavity of the instrument valve housing; anda retainer member securing the guard assembly, the seal assembly, and the centering mechanism relative to each other, one of the centering mechanism or the retainer member including a plurality of pins extending through each guard section of the plurality of guard sections and the proximal and distal seal members and being secured to the other of the retainer member or the centering mechanism.
  • 11. The access assembly of claim 10, wherein the centering mechanism includes an annular base and a plurality of spokes extending outward from the annular base.
  • 12. The access assembly of claim 11, wherein the retainer member includes the plurality of pins and the annular base of the centering mechanism defines a channel in which the plurality of pins are received.
  • 13. The access assembly of claim 10, wherein the plurality of guard sections of the guard assembly defines a central opening.
  • 14. The access assembly of claim 10, wherein each guard section of the plurality of guard sections includes a kidney-like shape.
  • 15. The access assembly of claim 10, wherein the proximal seal member includes an annular flange portion and a seal portion supported by the annular flange portion.
  • 16. The access assembly of claim 15, wherein the distal seal member includes a plurality of seal sections in a folded configuration.
  • 17. The access assembly of claim 15, wherein the retainer member is received within the annular flange portion of the proximal seal member.
  • 18. The access assembly of claim 10, wherein the guard sections of the plurality of guard section and the proximal and distal seal members each define openings through which the plurality of pins are received.
  • 19. An access assembly comprising: an instrument valve housing defining a cavity;a cannula assembly extending from the instrument valve housing; anda valve assembly disposed within the cavity of the instrument valve housing, the valve assembly including: a guard assembly including a plurality of guard sections;a seal assembly disposed distal of the guard assembly, the seal assembly including a proximal seal member and a distal seal member;a centering mechanism for permitting radial movement of the valve assembly within the cavity of the instrument valve housing; anda retainer member securing the guard assembly, the seal assembly, and the centering mechanism relative to each other, one of the centering mechanism or the retainer member including a plurality of pins extending through each guard section of the plurality of guard sections and the proximal and distal seal members and being secured to the other of the retainer member or the centering mechanism.
  • 20. The access assembly of claim 19, wherein the centering mechanism includes an annular base and a plurality of spokes extending outward from the annular base.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 16/703,383, filed on Dec. 4, 2019, now U.S. Pat. No. 11,166,748, which is a continuation-in-part application of U.S. patent application Ser. No. 16/272,068, filed Feb. 11, 2019, now U.S. Pat. No. 10,792,071, the content of which are incorporated herein by reference in their entireties.

US Referenced Citations (501)
Number Name Date Kind
3402710 Paleschuck Sep 1968 A
3495586 Regenbogen Feb 1970 A
4016884 Kwan-Gett Apr 1977 A
4112932 Chiulli Sep 1978 A
4183357 Bentley et al. Jan 1980 A
4356826 Kubota Nov 1982 A
4402683 Kopman Sep 1983 A
4653476 Bonnet Mar 1987 A
4737148 Blake Apr 1988 A
4863430 Klyce et al. Sep 1989 A
4863438 Gauderer et al. Sep 1989 A
4984564 Yuen Jan 1991 A
5002557 Hasson Mar 1991 A
5033428 Sasaki Jul 1991 A
5073169 Raiken Dec 1991 A
5082005 Kaldany Jan 1992 A
5122122 Allgood Jun 1992 A
5159921 Hoover Nov 1992 A
5176697 Hasson et al. Jan 1993 A
5183471 Wilk Feb 1993 A
5192301 Kamiya et al. Mar 1993 A
5209741 Spaeth May 1993 A
5209754 Ahluwalia May 1993 A
5217466 Hasson Jun 1993 A
5242409 Buelna Sep 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5257973 Villasuso Nov 1993 A
5257975 Foshee Nov 1993 A
5269772 Wilk Dec 1993 A
5290249 Foster et al. Mar 1994 A
5312391 Wilk May 1994 A
5312417 Wilk May 1994 A
5314417 Stephens et al. May 1994 A
5318516 Cosmescu Jun 1994 A
5330486 Wilk Jul 1994 A
5334143 Carroll Aug 1994 A
5336169 Divilio et al. Aug 1994 A
5336203 Goldhardt et al. Aug 1994 A
5337937 Remiszewski et al. Aug 1994 A
5345927 Bonutti Sep 1994 A
5360417 Gravener et al. Nov 1994 A
5366478 Brinkerhoff et al. Nov 1994 A
5375588 Yoon Dec 1994 A
5378588 Tsuchiya Jan 1995 A
5391156 Hildwein et al. Feb 1995 A
5394863 Sanford et al. Mar 1995 A
5395367 Wilk Mar 1995 A
5437683 Neumann et al. Aug 1995 A
5445615 Yoon Aug 1995 A
5451222 De Maagd et al. Sep 1995 A
5460170 Hammerslag Oct 1995 A
5464409 Mohajer Nov 1995 A
5480410 Cuschieri et al. Jan 1996 A
5490843 Hildwein et al. Feb 1996 A
5496280 Vandenbroek Mar 1996 A
5507758 Thomason et al. Apr 1996 A
5511564 Wilk Apr 1996 A
5514133 Golub et al. May 1996 A
5514153 Bonutti May 1996 A
5520698 Koh May 1996 A
5522791 Leyva Jun 1996 A
5524644 Crook Jun 1996 A
5540648 Yoon Jul 1996 A
5545150 Danks et al. Aug 1996 A
5545179 Williamson, IV Aug 1996 A
5556385 Andersen Sep 1996 A
5569159 Anderson et al. Oct 1996 A
5577993 Zhu et al. Nov 1996 A
5601581 Fogarty et al. Feb 1997 A
5603702 Smith Feb 1997 A
5624399 Ackerman Apr 1997 A
5628732 Antoon, Jr. May 1997 A
5634911 Hermann et al. Jun 1997 A
5634937 Mollenauer et al. Jun 1997 A
5643285 Rowden et al. Jul 1997 A
5649550 Crook Jul 1997 A
5651771 Fangherlini et al. Jul 1997 A
5653705 de la Torre et al. Aug 1997 A
5656013 Yoon Aug 1997 A
5672168 de la Torre et al. Sep 1997 A
5683378 Christy Nov 1997 A
5685857 Negus et al. Nov 1997 A
5697946 Hopper et al. Dec 1997 A
5709675 Williams Jan 1998 A
5713858 Heruth et al. Feb 1998 A
5713869 Morejon Feb 1998 A
5722962 Garcia Mar 1998 A
5728103 Picha et al. Mar 1998 A
5730748 Fogarty et al. Mar 1998 A
5735791 Alexander, Jr. et al. Apr 1998 A
5741298 MacLeod Apr 1998 A
5752970 Yoon May 1998 A
5782817 Franzel et al. Jul 1998 A
5795290 Bridges Aug 1998 A
5803921 Bonadio Sep 1998 A
5810712 Dunn Sep 1998 A
5813409 Leahy et al. Sep 1998 A
5830191 Hildwein et al. Nov 1998 A
5836871 Wallace et al. Nov 1998 A
5836913 Orth et al. Nov 1998 A
5840077 Rowden et al. Nov 1998 A
5842971 Yoon Dec 1998 A
5848992 Hart et al. Dec 1998 A
5853417 Fogarty et al. Dec 1998 A
5857461 Levitsky et al. Jan 1999 A
5865817 Moenning et al. Feb 1999 A
5871474 Hermann et al. Feb 1999 A
5876413 Fogarty et al. Mar 1999 A
5894843 Benetti et al. Apr 1999 A
5899208 Bonadio May 1999 A
5899913 Fogarty et al. May 1999 A
5904703 Gilson May 1999 A
5906577 Beane et al. May 1999 A
5914415 Tago Jun 1999 A
5916198 Dillow Jun 1999 A
5941898 Moenning et al. Aug 1999 A
5951588 Moenning Sep 1999 A
5957913 de la Torre et al. Sep 1999 A
5964781 Mollenauer et al. Oct 1999 A
5976174 Ruiz Nov 1999 A
5989224 Exline Nov 1999 A
5997515 de la Torre et al. Dec 1999 A
6017355 Hessel et al. Jan 2000 A
6018094 Fox Jan 2000 A
6024736 de la Torre et al. Feb 2000 A
6030402 Thompson et al. Feb 2000 A
6033426 Kaji Mar 2000 A
6033428 Sardella Mar 2000 A
6042573 Lucey Mar 2000 A
6048309 Flom et al. Apr 2000 A
6059816 Moenning May 2000 A
6068639 Fogarty et al. May 2000 A
6077288 Shimomura et al. Jun 2000 A
6086603 Termin et al. Jul 2000 A
6099506 Macoviak et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6142936 Beane et al. Nov 2000 A
6156006 Brosens et al. Dec 2000 A
6162196 Hart et al. Dec 2000 A
6171282 Ragsdale Jan 2001 B1
6197002 Peterson Mar 2001 B1
6217555 Hart et al. Apr 2001 B1
6228063 Aboul-Hosn May 2001 B1
6234958 Snoke et al. May 2001 B1
6238373 de la Torre et al. May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6251119 Addis Jun 2001 B1
6254534 Butler et al. Jul 2001 B1
6264604 Kieturakis et al. Jul 2001 B1
6276661 Laird Aug 2001 B1
6293952 Brosens et al. Sep 2001 B1
6315770 de la Torre et al. Nov 2001 B1
6319246 de la Torre et al. Nov 2001 B1
6328720 McNally et al. Dec 2001 B1
6329637 Hembree et al. Dec 2001 B1
6371968 Kogasaka et al. Apr 2002 B1
6382211 Crook May 2002 B1
6423036 Van Huizen Jul 2002 B1
6440061 Wenner et al. Aug 2002 B1
6440063 Beane et al. Aug 2002 B1
6443957 Addis Sep 2002 B1
6447489 Peterson Sep 2002 B1
6450983 Rambo Sep 2002 B1
6454783 Piskun Sep 2002 B1
6464686 O'Hara et al. Oct 2002 B1
6468292 Mollenauer et al. Oct 2002 B1
6485410 Loy Nov 2002 B1
6488620 Segermark et al. Dec 2002 B1
6488692 Spence et al. Dec 2002 B1
6524283 Hopper et al. Feb 2003 B1
6527787 Fogarty et al. Mar 2003 B1
6544210 Trudel et al. Apr 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6558371 Dorn May 2003 B2
6562022 Hoste et al. May 2003 B2
6569120 Green et al. May 2003 B1
6572631 McCartney Jun 2003 B1
6578577 Bonadio et al. Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6589167 Shimomura et al. Jul 2003 B1
6589316 Schultz et al. Jul 2003 B1
6592543 Wortrich et al. Jul 2003 B1
6613952 Rambo Sep 2003 B2
6623426 Bonadio et al. Sep 2003 B2
6669674 Macoviak et al. Dec 2003 B1
6676639 Ternstrom Jan 2004 B1
6684405 Lezdey Feb 2004 B2
6702787 Racenet Mar 2004 B2
6706050 Giannadakis Mar 2004 B1
6716201 Blanco Apr 2004 B2
6723044 Pulford et al. Apr 2004 B2
6723088 Gaskill, III et al. Apr 2004 B2
6725080 Melkent et al. Apr 2004 B2
6800084 Davison et al. Oct 2004 B2
6811546 Callas et al. Nov 2004 B1
6814078 Crook Nov 2004 B2
6830578 O'Heeron et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6840946 Fogarty et al. Jan 2005 B2
6840951 de la Torre et al. Jan 2005 B2
6846287 Bonadio et al. Jan 2005 B2
6863674 Kasahara et al. Mar 2005 B2
6878110 Yang et al. Apr 2005 B2
6884253 McFarlane Apr 2005 B1
6890295 Michels et al. May 2005 B2
6913609 Yencho et al. Jul 2005 B2
6916310 Sommerich Jul 2005 B2
6916331 Mollenauer et al. Jul 2005 B2
6929637 Gonzalez et al. Aug 2005 B2
6939296 Ewers et al. Sep 2005 B2
6942633 Odland Sep 2005 B2
6945932 Caldwell et al. Sep 2005 B1
6958037 Ewers et al. Oct 2005 B2
6972026 Caldwell et al. Dec 2005 B1
6981966 Green Jan 2006 B2
6986752 McGuckin, Jr. et al. Jan 2006 B2
6991602 Nakazawa et al. Jan 2006 B2
6997909 Goldberg Feb 2006 B2
7001397 Davison et al. Feb 2006 B2
7008377 Beane et al. Mar 2006 B2
7011645 McGuckin, Jr. et al. Mar 2006 B2
7014628 Bousquet Mar 2006 B2
7033319 Pulford et al. Apr 2006 B2
7052454 Taylor May 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7077852 Fogarty et al. Jul 2006 B2
7081089 Bonadio et al. Jul 2006 B2
7083626 Hart et al. Aug 2006 B2
7100614 Stevens et al. Sep 2006 B2
7101353 Lui et al. Sep 2006 B2
7104981 Elkins et al. Sep 2006 B2
7153261 Wenchell Dec 2006 B2
7160309 Voss Jan 2007 B2
7163510 Kahle et al. Jan 2007 B2
7192436 Sing et al. Mar 2007 B2
7195590 Butler et al. Mar 2007 B2
7201725 Cragg et al. Apr 2007 B1
7214185 Rosney et al. May 2007 B1
7217277 Parihar et al. May 2007 B2
7223257 Shubayev et al. May 2007 B2
7223278 Davison et al. May 2007 B2
7235064 Hopper et al. Jun 2007 B2
7235084 Skakoon et al. Jun 2007 B2
7238154 Ewers et al. Jul 2007 B2
7258712 Schultz et al. Aug 2007 B2
7276075 Callas et al. Oct 2007 B1
7294103 Bertolero et al. Nov 2007 B2
7300399 Bonadio et al. Nov 2007 B2
7316699 McFarlane Jan 2008 B2
7331940 Sommerich Feb 2008 B2
7344547 Piskun Mar 2008 B2
7377898 Ewers et al. May 2008 B2
7390322 McGuckin, Jr. et al. Jun 2008 B2
7393322 Wenchell Jul 2008 B2
7412977 Fields et al. Aug 2008 B2
7440661 Kobayashi Oct 2008 B2
7445597 Butler et al. Nov 2008 B2
7452363 Ortiz Nov 2008 B2
7473221 Ewers et al. Jan 2009 B2
7481765 Ewers et al. Jan 2009 B2
7493703 Kim et al. Feb 2009 B2
7513361 Mills, Jr. Apr 2009 B1
7513461 Reutenauer et al. Apr 2009 B2
7520876 Ressemann et al. Apr 2009 B2
7537564 Bonadio et al. May 2009 B2
7540839 Butler et al. Jun 2009 B2
7559893 Bonadio et al. Jul 2009 B2
7608082 Cuevas et al. Oct 2009 B2
7625361 Suzuki et al. Dec 2009 B2
7645232 Shluzas Jan 2010 B2
7650887 Nguyen et al. Jan 2010 B2
7704207 Albrecht et al. Apr 2010 B2
7717846 Zirps et al. May 2010 B2
7717847 Smith May 2010 B2
7721742 Kalloo et al. May 2010 B2
7727146 Albrecht et al. Jun 2010 B2
7730629 Kim Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7753901 Piskun et al. Jul 2010 B2
7758500 Boyd et al. Jul 2010 B2
7762995 Eversull et al. Jul 2010 B2
7766824 Jensen et al. Aug 2010 B2
7787963 Geistert et al. Aug 2010 B2
7798998 Thompson et al. Sep 2010 B2
7811251 Wenchell et al. Oct 2010 B2
7815567 Albrecht et al. Oct 2010 B2
7837612 Gill et al. Nov 2010 B2
7846123 Vassiliades et al. Dec 2010 B2
7850600 Piskun Dec 2010 B1
7850667 Gresham Dec 2010 B2
7867164 Butler et al. Jan 2011 B2
7896889 Mazzocchi et al. Mar 2011 B2
7905829 Nishimura et al. Mar 2011 B2
7909760 Albrecht et al. Mar 2011 B2
7913697 Nguyen et al. Mar 2011 B2
7951076 Hart et al. May 2011 B2
7955257 Frasier et al. Jun 2011 B2
7955313 Boismier Jun 2011 B2
7998068 Bonadio et al. Aug 2011 B2
8012128 Franer Sep 2011 B2
8021296 Bonadio et al. Sep 2011 B2
8025670 Sharp et al. Sep 2011 B2
8029475 Franer Oct 2011 B2
8038652 Morrison et al. Oct 2011 B2
8066673 Hart et al. Nov 2011 B2
8079986 Taylor et al. Dec 2011 B2
8092430 Richard et al. Jan 2012 B2
8105234 Ewers et al. Jan 2012 B2
8109873 Albrecht et al. Feb 2012 B2
8157786 Miller et al. Apr 2012 B2
8157817 Bonadio et al. Apr 2012 B2
8187177 Kahle et al. May 2012 B2
8187178 Bonadio et al. May 2012 B2
8197404 Cropper et al. Jun 2012 B2
8241209 Shelton, IV Aug 2012 B2
8262568 Albrecht et al. Sep 2012 B2
8323184 Spiegal et al. Dec 2012 B2
8335783 Milby Dec 2012 B2
8343047 Albrecht et al. Jan 2013 B2
8353824 Shelton, IV et al. Jan 2013 B2
8403889 Richard Mar 2013 B2
8409084 Battles Apr 2013 B2
8480683 Fowler et al. Jul 2013 B2
8574153 Richard Nov 2013 B2
8585632 Okoniewski Nov 2013 B2
10792071 Pilletere Oct 2020 B2
11166748 Pilletere Nov 2021 B2
20010037053 Bonadio et al. Nov 2001 A1
20020055714 Rothschild May 2002 A1
20020072713 Almond Jun 2002 A1
20030014076 Mollenauer et al. Jan 2003 A1
20030093104 Bonner et al. May 2003 A1
20030187376 Rambo Oct 2003 A1
20030233115 Eversull et al. Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040059297 Racenet et al. Mar 2004 A1
20040092795 Bonadio et al. May 2004 A1
20040102804 Chin May 2004 A1
20040111061 Curran Jun 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040204734 Wagner et al. Oct 2004 A1
20040267096 Caldwell et al. Dec 2004 A1
20050020884 Hart et al. Jan 2005 A1
20050070850 Albrecht Mar 2005 A1
20050070851 Thompson Mar 2005 A1
20050070935 Ortiz Mar 2005 A1
20050070943 Hueil Mar 2005 A1
20050070946 Franer Mar 2005 A1
20050070947 Franer Mar 2005 A1
20050077688 Voegele Apr 2005 A1
20050077689 Hueil Apr 2005 A1
20050096695 Olich May 2005 A1
20050119525 Takemoto Jun 2005 A1
20050137459 Chin et al. Jun 2005 A1
20050148823 Vaugh et al. Jul 2005 A1
20050192483 Bonadio et al. Sep 2005 A1
20050203346 Bonadio et al. Sep 2005 A1
20050209608 O'Heeron Sep 2005 A1
20050245876 Khosravi et al. Nov 2005 A1
20050251092 Howell et al. Nov 2005 A1
20050277946 Greenhalgh Dec 2005 A1
20060071432 Staudner Apr 2006 A1
20060129165 Edoga et al. Jun 2006 A1
20060149137 Pingleton et al. Jul 2006 A1
20060149306 Hart et al. Jul 2006 A1
20060161049 Beane et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060212063 Wilk Sep 2006 A1
20060224161 Bhattacharyya Oct 2006 A1
20060241651 Wilk Oct 2006 A1
20060247498 Bonadio et al. Nov 2006 A1
20060247499 Butler et al. Nov 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060247516 Hess et al. Nov 2006 A1
20060247586 Voegele et al. Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060247678 Weisenburgh et al. Nov 2006 A1
20060264992 Franer Nov 2006 A1
20060270911 Voegele et al. Nov 2006 A1
20070093695 Bonadio et al. Apr 2007 A1
20070118175 Butler et al. May 2007 A1
20070151566 Kahle et al. Jul 2007 A1
20070203398 Bonadio et al. Aug 2007 A1
20070208312 Norton et al. Sep 2007 A1
20070225650 Hart et al. Sep 2007 A1
20070270654 Pignato et al. Nov 2007 A1
20070270882 Hjelle et al. Nov 2007 A1
20080009826 Miller et al. Jan 2008 A1
20080021360 Fihe et al. Jan 2008 A1
20080027476 Piskun Jan 2008 A1
20080048011 Weller Feb 2008 A1
20080091143 Taylor et al. Apr 2008 A1
20080097162 Bonadio et al. Apr 2008 A1
20080097332 Greenhalgh et al. Apr 2008 A1
20080119868 Sharp et al. May 2008 A1
20080161826 Guiraudon Jul 2008 A1
20080188868 Weitzner et al. Aug 2008 A1
20080194973 Imam Aug 2008 A1
20080200767 Ewers et al. Aug 2008 A1
20080255519 Piskun et al. Oct 2008 A1
20080319261 Lucini et al. Dec 2008 A1
20090012477 Norton et al. Jan 2009 A1
20090036738 Cuschieri et al. Feb 2009 A1
20090036745 Bonadio et al. Feb 2009 A1
20090093752 Richard et al. Apr 2009 A1
20090093850 Richard Apr 2009 A1
20090105635 Bettuchi et al. Apr 2009 A1
20090131751 Spivey et al. May 2009 A1
20090137879 Ewers et al. May 2009 A1
20090182279 Wenchell et al. Jul 2009 A1
20090182288 Spenciner Jul 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090204067 Abu-Halawa Aug 2009 A1
20090221968 Morrison et al. Sep 2009 A1
20090227843 Smith et al. Sep 2009 A1
20090326330 Bonadio et al. Dec 2009 A1
20090326332 Carter Dec 2009 A1
20100063452 Edelman et al. Mar 2010 A1
20100100043 Racenet Apr 2010 A1
20100113886 Piskun et al. May 2010 A1
20100160938 Franer Jun 2010 A9
20100228094 Ortiz et al. Sep 2010 A1
20100240960 Richard Sep 2010 A1
20100249516 Shelton, IV et al. Sep 2010 A1
20100249523 Spiegal et al. Sep 2010 A1
20100249524 Ransden et al. Sep 2010 A1
20100262080 Shelton, IV et al. Oct 2010 A1
20100280326 Hess et al. Nov 2010 A1
20100286484 Stellon et al. Nov 2010 A1
20100286506 Ransden et al. Nov 2010 A1
20100298646 Stellon et al. Nov 2010 A1
20100312063 Hess et al. Dec 2010 A1
20100312065 Shelton, IV Dec 2010 A1
20110009704 Marczyk et al. Jan 2011 A1
20110021877 Fortier et al. Jan 2011 A1
20110028891 Okoniewski Feb 2011 A1
20110034778 Kleyman Feb 2011 A1
20110054257 Stopek Mar 2011 A1
20110054258 O'Keefe et al. Mar 2011 A1
20110054260 Albrecht et al. Mar 2011 A1
20110082341 Kleyman et al. Apr 2011 A1
20110082343 Okoniewski Apr 2011 A1
20110082346 Stopek Apr 2011 A1
20110118553 Stopek May 2011 A1
20110124968 Kleyman May 2011 A1
20110124969 Stopek May 2011 A1
20110124970 Kleyman May 2011 A1
20110125186 Fowler et al. May 2011 A1
20110166423 Farascioni et al. Jul 2011 A1
20110251463 Kleyman Oct 2011 A1
20110251464 Kleyman Oct 2011 A1
20110251465 Kleyman Oct 2011 A1
20110251466 Kleyman et al. Oct 2011 A1
20110251560 Albrecht Oct 2011 A1
20110313250 Kleyman Dec 2011 A1
20120059640 Roy et al. Mar 2012 A1
20120130177 Davis May 2012 A1
20120130181 Davis May 2012 A1
20120130182 Rodrigues, Jr. et al. May 2012 A1
20120130183 Barnes May 2012 A1
20120130184 Richard May 2012 A1
20120130185 Pribanic May 2012 A1
20120130186 Stopek et al. May 2012 A1
20120130187 Okoniewski May 2012 A1
20120130188 Okoniewski May 2012 A1
20120130190 Kasvikis May 2012 A1
20120130191 Pribanic May 2012 A1
20120149987 Richard et al. Jun 2012 A1
20120157777 Okoniewski Jun 2012 A1
20120157779 Fischvogt Jun 2012 A1
20120157780 Okoniewski et al. Jun 2012 A1
20120157781 Kleyman Jun 2012 A1
20120157782 Alfieri Jun 2012 A1
20120157783 Okoniewski et al. Jun 2012 A1
20120157784 Kleyman et al. Jun 2012 A1
20120157785 Kleyman Jun 2012 A1
20120157786 Pribanic Jun 2012 A1
20120190931 Stopek Jul 2012 A1
20120190932 Okoniewski Jul 2012 A1
20120190933 Kleyman Jul 2012 A1
20120209077 Racenet Aug 2012 A1
20120209078 Pribanic et al. Aug 2012 A1
20120245427 Kleyman Sep 2012 A1
20120245429 Smith Sep 2012 A1
20120245430 Kleyman et al. Sep 2012 A1
20120283520 Kleyman Nov 2012 A1
20130225930 Smith Aug 2013 A1
20130225931 Cruz et al. Aug 2013 A1
20130245373 Okoniewski Sep 2013 A1
20130274559 Fowler et al. Oct 2013 A1
20130310651 Alfieri Nov 2013 A1
20140018632 Kleyman Jan 2014 A1
20150223833 Coffeen Aug 2015 A1
20180021063 Main et al. Jan 2018 A1
20190059938 Holsten Feb 2019 A1
20190059944 Holsten Feb 2019 A1
20190350619 Fujii et al. Nov 2019 A1
20200113598 Evans Apr 2020 A1
20200253634 Pilletere Aug 2020 A1
20200253638 Pilletere Aug 2020 A1
20220054169 Pilletere Feb 2022 A1
Foreign Referenced Citations (83)
Number Date Country
2702419 Nov 2010 CA
0226026 Jun 1987 EP
0538060 Apr 1993 EP
0577400 Jan 1994 EP
0630660 Dec 1994 EP
0807416 Nov 1997 EP
0950376 Oct 1999 EP
1188415 Mar 2002 EP
1312318 May 2003 EP
1774918 Apr 2007 EP
1932485 Jun 2008 EP
1994896 Nov 2008 EP
2044889 Apr 2009 EP
2044897 Apr 2009 EP
2080494 Jul 2009 EP
2095781 Sep 2009 EP
2098182 Sep 2009 EP
2138117 Dec 2009 EP
2138118 Dec 2009 EP
2181657 May 2010 EP
2226025 Sep 2010 EP
2229900 Sep 2010 EP
2238924 Oct 2010 EP
2238925 Oct 2010 EP
2238926 Oct 2010 EP
2238933 Oct 2010 EP
2248478 Nov 2010 EP
2248482 Nov 2010 EP
2253283 Nov 2010 EP
2272450 Jan 2011 EP
2277464 Jan 2011 EP
2289438 Mar 2011 EP
2292165 Mar 2011 EP
2343019 Jul 2011 EP
3449853 Mar 2019 EP
2469083 Apr 2009 GB
8401512 Apr 1984 WO
9314801 Aug 1993 WO
9404067 Mar 1994 WO
9610963 Apr 1996 WO
9636283 Nov 1996 WO
9733520 Sep 1997 WO
9742889 Nov 1997 WO
9916368 Apr 1999 WO
9922804 May 1999 WO
9929250 Jun 1999 WO
0032116 Jun 2000 WO
0032120 Jun 2000 WO
0054675 Sep 2000 WO
0108581 Feb 2001 WO
0149363 Jul 2001 WO
0207611 Jan 2002 WO
03034908 May 2003 WO
03071926 Sep 2003 WO
03077726 Sep 2003 WO
2004043275 May 2004 WO
2004054456 Jul 2004 WO
2004075741 Sep 2004 WO
2004075741 Sep 2004 WO
2004075930 Sep 2004 WO
2005058409 Jun 2005 WO
2006019723 Feb 2006 WO
2006100658 Sep 2006 WO
2006110733 Oct 2006 WO
2007018458 Feb 2007 WO
2007095703 Aug 2007 WO
2007143200 Dec 2007 WO
2008015566 Feb 2008 WO
2008042005 Apr 2008 WO
2008077080 Jun 2008 WO
2008093313 Aug 2008 WO
2008103151 Aug 2008 WO
2008121294 Oct 2008 WO
2008147644 Dec 2008 WO
2009036343 Mar 2009 WO
2010000047 Jan 2010 WO
2010141409 Dec 2010 WO
2010141673 Dec 2010 WO
2012131746 Oct 2012 WO
2014116889 Jul 2014 WO
2016110720 Jul 2016 WO
2016186905 Nov 2016 WO
2018077226 May 2018 WO
Non-Patent Literature Citations (6)
Entry
U.S. Appl. No. 16/394,043, filed Apr. 25, 2019, inventor Lorenzo Vaccarella.
U.S. Appl. No. 16/238,823, filed Jan. 3, 2019, inventor Garrett Ebersole.
European Search Report dated Apr. 12, 2021, correponding to counterpart European Application No. 20211882.4; 14 pages.
European Search Report dated Jul. 3, 2020, issued in EP Appln. No. 20156174, 8 pages.
European Search Report dated Jul. 23, 2021, corresponding to counterpart European Application No. 20211882.4; 15 pages.
U.S. Appl. No. 16/238,823, filed Jan. 3, 2019, inventor Garrett E5b4bersole.
Related Publications (1)
Number Date Country
20220054169 A1 Feb 2022 US
Continuations (1)
Number Date Country
Parent 16703383 Dec 2019 US
Child 17517722 US
Continuation in Parts (1)
Number Date Country
Parent 16272068 Feb 2019 US
Child 16703383 US