The present disclosure relates generally to seal assemblies for instruments, and, more particularly, to a seal assembly for a retractable instrument, such as a retractable marker.
Capless instruments, such as capless retractable markers, have been developed to solve problems and inconveniences associated with retractable instruments having an outer cap. Such inconveniences include having to use two hands “to uncap and cap a marker pen with the outer cap” and easily losing the outer cap when capping or uncapping an applicator element, e.g., a writing tip. See, e.g., U.S. Pat. No. 6,981,812 to (the '812 patent) (providing a description of problems associated with prior art writing instruments using caps). One capless retractable instrument involves hiding a cover of the capless retractable marker pen within a pen tube, and controlling protraction and retraction of the writing tip by an actuating means installed in a top of the pen tube. Id.
While capless retractable writing instruments have a superior competitive advantage over a marker or pen having an outer cap, capless instruments have several problems. For example, the current sealing elements in retractable instruments are unreliable, as they often do not seal after prolonged use, time, or conditioning. Additionally, such seal assemblies are often unrepeatable, i.e., they do not provide a proper seal after every use. Additionally, “the assembling process is complicated, time-consuming,” and difficult “to be sped up in mass production.” See, e.g., the '812 patent, col. 2, lines 63-65 (explaining that “the conventional capless retractable marker pens still have many problems requiring solving”).
The majority of attempts to solve these problems compromise one or both of the reliability and repeatability of the seal. More specifically, many current designs directly or indirectly rely on contact between an applicator element assembly, e.g., a nib assembly, and a valve door to force the valve door open from a closed state. However, such contact compromises the reliability of the valve seal in that wear results on both the applicator element and valve door. Additionally, because the applicator element typically deposits fluid upon contact, any interaction between the applicator element and the valve door results in fluid depositing on the sealing features of the valve door. Repeated interaction results in additional fluid depositing on the sealing features, thereby causing degradation of the seal quality to a point where the seal fails and exposes the applicator element to the ambient atmosphere. Build-up of fluid deposits due to continued contact between the applicator element and the valve door can further result in binding or sticking of the applicator element and the reservoir holder assembly during retraction.
More specifically, this fluid accumulation continues to the point where the forces generated by the viscosity of the fluid (or residual components of the fluid) prevent one or both of proper protraction and retraction of the applicator element and reservoir holder components. During retraction, fluid deposits may accumulate within and between an inner wall of a valve body and the outer wall of the tube in the applicator element assembly. During protraction, fluid previously deposited onto the valve door may also be transferred back onto an outer wall of a tube in the applicator element assembly. This transfer of fluid is possible because the valve door, which had contacted the applicator element, continues to remain in contact with the outer wall of the tube after the applicator element forces the door open.
Current designs also rely on a variety of either mechanical or material dependent means of providing a repeatable seal to the retractable instrument, e.g., marker. Each of these methods appears to provide varying degrees of repeatability of the seal. However, the repeatability of the seal designs that rely on the material elasticity to return back to a closed position all suffer from the effects of cycling and aging. For example, after prolonged use and exposure to a variety of conditions, the repeatability of the seal is compromised to a point where the applicator element is exposed to the ambient atmosphere. Designs that rely on mechanical means to provide a repeatable seal appear to provide a more repeatable seal for the retractable instrument; however, the complexity of such designs often results in mechanical failure. See, e.g., U.S. Pat. No. 5,022,773 (the '773 patent). The '773 patent discloses a design having a pliable steel member (24) with a spring clip (22) that provides a closure force for a seal member. This seal member design suffers from the same fluid, e.g., ink, accumulation problems previously described because the writing tip (34) itself forces the spring clip open while pushing through the seal member. Also, the writing tip is often damaged while protracting and retracting through the seal member because of the magnitude of the radial force generated by the spring clip.
The present invention improves the reliability and repeatability of a closure assembly for a retractable instrument, e.g., a pen, marker, or the like. Specifically, a closure assembly is coupled to an internal instrument assembly, thereby allowing for constrained movement of the closure assembly when the instrument is protracted and retracted.
According to one aspect of the present disclosure, a closure assembly for a retractable instrument comprises at least two fingers and a movable sleeve operatively coupled with the at least two fingers. When the retractable instrument is in a retracted position, the sleeve constrains the fingers such that the fingers are in a fully closed state, thereby closing around the applicator element of the instrument. Protraction of the sleeve and relative movement between the fingers and the sleeve allows the fingers to open, thereby exposing the applicator element. The closure assembly may be coupled to an applicator element assembly, allowing the closure assembly and the applicator element assembly to be simultaneously protracted.
In one embodiment, the closure assembly may further include a base including a flange, such that the flange of the base engages an inner flange disposed on an inside surface of a tube of the retractable instrument.
The closure assembly may further comprise an end seal disposed on the assembly opposite the applicator element for sealing the base. Further, the sleeve of the closure assembly provides a seat for the fingers of the assembly in a retracted position.
Protraction of the fingers continues until a stop in the nose of the instrument engages a stop of the sleeve, thereby constraining the protraction of the fingers and simultaneously allowing the applicator element to completely protract out of the retractable instrument and into an application position. Further, during retraction of the applicator element, a set of stops disposed on the sleeve engages a set of stops disposed on a body of the instrument, thereby preventing further retraction and allowing the fingers to close around the applicator element.
The closure assembly may further comprise a collet or collet-type valve.
According to another aspect of the present disclosure, a retractable writing instrument comprises a body and a nose disposed at a first end of the body, and an internal writing assembly disposed within the body and including a nib. The retractable writing instrument further includes a closure assembly coupled to the internal writing assembly; the closure assembly comprises at least two fingers and a movable sleeve operatively coupled with the at least two fingers. When the retractable writing instrument is in a retracted position, the sleeve constrains the fingers such that the fingers are in a fully closed state, thereby closing around the nib. Protraction of the sleeve and relative movement between the fingers and the sleeve allows the fingers to open, thereby exposing the nib.
According to another aspect of the present disclosure, a retractable instrument comprises a body and a nose disposed at a first end of the body and an internal assembly disposed within the body and including an applicator element. The retractable instrument further comprises a closure assembly coupled to the internal assembly, wherein the closure assembly comprises at least two fingers and a movable sleeve operatively coupled with the at least two fingers. When the retractable instrument is in a retracted position, the sleeve constrains the fingers such that the fingers are in a fully closed state around the applicator element, and protraction of the sleeve and relative movement between the fingers and the sleeve allows the fingers to open, thereby exposing the applicator element.
Objects, features, and advantages of the present disclosure will become apparent upon reading the following description in conjunction with one or more of the following figures.
Referring now to
Referring now to
Referring now to
While a single embodiment of retractable instrument 10 is generally shown herein, the retractable instrument 10 can generally be constructed in any of the constructions shown in Brand et al., U.S. Pat. No. 6,964,534 (the '534 patent), the description of which is incorporated by reference. In other words, the seal assembly 32, as detailed below, can be incorporated into any of the writing utensil embodiments shown in the '534 patent with only minor modifications as would be seen by one of skill in the art. Accordingly, the seal assembly 32 can be used in combination with fibrous nibs that allow for fluid ink flow by capillaries formed in a porous reservoir, as is well understood by those of skill in the art. Additionally, the seal assembly 32 can be used in combination with a writing utensil designed as a free ink writing utensil, including those using a porous buffer system, wherein the reservoir is a volume in which the fluid ink is contained. Further, the seal assembly 32 can be used in combination with otherwise conventional ball point pens.
Referring to
The seal assembly 32 may also include an additional seal disposed at an end of the assembly opposite the applicator element 24 for sealing the back of the seal assembly 32 against the atmosphere. For example, the end seal may be provided by a seal bead disposed on one or both of an outer wall of the tube 28 and an inner wall of the base 34.
When in a retracted state, the sleeve 38 physically constrains the fingers 36 and also provides a seat. Specifically, interference between the inner wall of the sleeve 38 and the outer surface of the fingers 36 results in the fingers 36 being drawn upon each other to seal the applicator element 24 from the atmosphere.
When protraction begins, the seal assembly 32 is closed until the interference flange 44 of the base 34 contacts the sleeve 38 (
To retract the applicator element 24 back into the body 12, the interference flange 44 on the base and the interference flange 42 of the tube 28 engage, which is caused by a retraction force of the actuation mechanism, e.g., force or pull of the spring. Recall that while the interference flange 44 on the base and the interference flange 42 of the tube 28 are engaged when the applicator element 24 is in a fully retracted position (see, e.g.,
With this design assembly, the seal assembly 32 reliably and consistently seals the applicator element 24 of the instrument from the external environment to prevent dry-out of the applicator element 24 of the writing instrument. Moreover, unlike the current hand-assembly methods of the valve assemblies now used, for example, for markers and the like, the assembly methods for the seal assembly 32 of the retractable instrument 10 described above may be incorporated into a high-speed assembly process without the need for a significant amount of hand-assembly work.
The seal assembly 32 may be a collet or collet-type valve assembly, as shown, for example, in
Further, the sealing features of the seal assembly 32, such as the fingers 36, may be formed of a variety of materials, such as thermoplastic elastomers, which are also known as TPEs. A thermoplastic elastomer is a material which is both a thermoplastic, i.e., it can be melted and cooled to the same state and an elastomer, i.e., rubbery. Most elastomers are thermosets; in contrast, thermoplastic elastomers are relatively easy to use in manufacturing, for example, by injection molding. Because they can be melted and reused, thermoplastic elastomers have the potential to be recycled, unlike thermosets. See http://en.wikipedia.org/wiki/Thermoplastic elastomer; see also http://www.pslc.ws/mactest/tpe.htm. TPEs include thermoplastic urethanes, which are also known as TPUs. Various TPE products, such as Santoprene® products, may be found at Advanced Elastomer Systems, L.P., in Akron, Ohio, for example.
Other molded parts of the seal assembly 32 and retractable instrument 10 may be formed from thermoplastic polymers. As used herein, thermoplastic polymers generally include synthetic high polymers that soften when exposed to heat and return to their original state when cooled to room temperature. More specifically, thermoplastic polymers include polyvinyl chlorides, nylons, propylene/α-olefin copolymers, polyethylenes, ethylene/α-olefin copolymers, polyurethane prepolymers, polystyrenes such as styrene/ethylene and hydrogenated styrene/butadiene block copolymers, polypropylenes, cellulosic resins, and acrylic resins.
Although certain capless retractable instruments have been described herein in accordance with the teachings of the present disclosure, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all embodiments of the teachings of the disclosure that fairly fall within the scope of permissible equivalents. Additionally, as will be appreciated by one of skill in the art, retractable instruments having the seal assembly 32 described above may be used in writing instruments such as highlighters, markers, felt-tipped pens, ball point pens, and the like. In addition to writing instruments, the seal assembly 32 is also applicable to a variety of other retractable instruments including paint brush applicators, correction fluid applicators, make-up applicators, such as nail polish and mascara applicators, perfume applicators, and deodorant applicators.
This is a continuation of U.S. application Ser. No. 11/701,231, filed Feb. 1, 2007, the entire contents of which are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11701231 | Feb 2007 | US |
Child | 12368066 | US |