This invention relates to seals and, more particularly, to a component having a retention feature for limiting movement of a feather seal.
Feather seals are commonly known and used in aerospace and other industries to provide a seal between two adjacent components. For example, gas turbine engine vanes are arranged in a circumferential configuration to form a vane ring about a center axis of the engine. Typically, each vane includes an airfoil and a platform section. When assembled into the ring, the platforms abut and define a radially inner section for receiving hot gas flow and a radially outer surrounding section.
Typically, the platforms include channels for receiving a feather seal that seals the radially inner section from the radially outer section. Although feather seals often provide effective sealing, conventional feather seals may become damaged during assembly of the vanes into the vane ring. For example, the vanes may be manually arranged into the vane ring configuration before assembly into the engine. During assembly, the vane positions may be adjusted to achieve the desired vane ring alignment, which may cause the feather seals to become liberated from the channels or cause the feather seals to move within the channels. The movement may damage the seals or cause the seals to move from a desired sealing position and thereby prevent the feather seal from properly sealing. Additionally, dimensional variation of the channels and seals may contribute to slightly oversized or undersized channels that permit seal movement or pinch the seals. Moreover, once the vane ring is assembled, disassembly of multiple vanes may be required if it is necessary to replace a damaged feather seal.
An example seal assembly includes a body having two circumferential sides, a leading end, and a trailing end. At least one of the circumferential sides includes a first channel sidewall, a second channel sidewall, and a channel bottom wall that together define a seal channel for receiving a seal. At least one of the first channel sidewall, the second channel sidewall, or the channel bottom wall includes a slot for limiting movement between the seal and the seal channel.
In one example, the seal assembly includes a first component and a second component adjacent the first component. The first component and the second component each include the body such that one of the circumferential sides of the first component is adjacent one of the circumferential sides of the second component. The circumferential sides each include a seal channel, and at least one of the seal channels includes a first channel sidewall, a second channel sidewall, and a channel bottom wall that together define the seal channel, and at least one of the first channel sidewall, the second channel sidewall, or the channel bottom wall includes a slot. A seal is at least partially within the seal channels. The seal includes a retention feature that cooperates with the slot to limit movement between the seal and the seal channels.
In another aspect, an example method of limiting movement between the seal and the seal channel includes inserting the tab of the seal at least partially into the slot of the seal channel to limit movement between the seal and the seal channel.
The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows.
The disclosed examples provide a retention feature for use in turbine vanes or other segmented sealed components that limits movement of a feather seal used between the components, such as during assembly of the components.
As is known, air compressed in the compressor section 16 is mixed with fuel and burned in the combustion section 18 to produce hot gases that are expanded in the turbine section 20.
The inner platform 44 and the outer platform 46 may be relatively similar with respect to sealing between the vanes 24. For illustrative purposes, the outer platform 46 will be described, although it is to be understood that the disclosed examples may also apply to the inner platform 44. Further, although the vane 24 is the basis of the disclosed examples, the examples are also applicable to the blades 22, the blade outer air seal segments 26, or other segmented sealed components, for example.
In the illustrated example, the outer platform 46 includes a leading end 48 and a trailing end 50 that extend between circumferential sides 52 and 54. Each of the circumferential sides 52 and 54 includes a seal channel 56. When the vanes 24 are assembled into a vane ring pack, the channels 56 of one vane 24 are adjacent the channels 56 of an immediately adjacent vane 24′ and form a cavity for receiving a feather seal 58, as illustrated in
In the illustrated example, each circumferential side 52 or 54 includes a first sidewall 60 and an opposed second sidewall 62 that are joined by a channel bottom wall 64 to define the seal channel 56.
Referring also to the portions of the outer platform 46 illustrated in
As shown, each circumferential side 52 and 54 includes one of the retention features 74. However, alternatively, only one of the circumferential sides 52 or 54 may include the retention feature, and in other examples one or both of the circumferential sides 52 and 54 may include multiple retention features 74. Likewise, the circumferential sides of the inner platform 44 may include none, one, or multiple retention features 74.
In the disclosed example, the retention feature 74 comprises a slot 76 for receiving a tab 78 (
The slot 76 may be any of a variety of different shapes or sizes, depending upon the desired design of the feather seal 58 or other design considerations. Further, the slot 76 may be formed in the outer platform using a suitable forming method, such as machining, casting, or other known method. In the illustrated example, the slot 76 extends entirely through the channel bottom wall 64, partially through the channel sidewall 60 and partially through the channel sidewall 62.
The slot 76 includes a recess or step 80 relative to the channel sidewall 62. The step 80 provides the benefit of offsetting the bottom of the slot 76 from the channel sidewall 62 such that the feather seal 58 is in a desired seal position that is flush with the channel sidewall 62.
In one example, the size of the step 80 is at least as great as the combined dimensional variation from the manufacturing of the platform 46 and the slot 76. For example, casting the platform 46 may result in a dimensional variation of =X and machining the slot 76 may result in a dimensional variation of ±Y for a minimum step size 77 of X+Y (
Referring to
Alternatively, as shown in
As shown in
As shown in
Referring to
It should be understood that relative positional terms such as “circumferential,” “forward,” “aft,” “tupper,” “lower,” “above,” “below,” and the like are with reference to the normal operational attitude of the turbine engine 10 and should not be considered otherwise limiting.
Although a combination of features is shown in the illustrated examples, not all of them need to be combined to realize the benefits of various embodiments of this disclosure. In other words, a system designed according to an embodiment of this disclosure will not necessarily include all of the features shown in any one of the Figures or all of the portions schematically shown in the Figures. Moreover, selected features of one example embodiment may be combined with selected features of other example embodiments.
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this disclosure. The scope of legal protection given to this disclosure can only be determined by studying the following claims.
This invention was made with government support under Contract No. N00019-02-C-3003 awarded by the United States Air Force. The government therefore has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
4524980 | Lillibridge et al. | Jun 1985 | A |
4549058 | DelMastro | Oct 1985 | A |
4557412 | Lillibridge | Dec 1985 | A |
4749333 | Bonner | Jun 1988 | A |
5531457 | Tibbott | Jul 1996 | A |
5709530 | Cahill | Jan 1998 | A |
5762472 | Pizzi et al. | Jun 1998 | A |
5868398 | Maier | Feb 1999 | A |
5971703 | Bouchard | Oct 1999 | A |
7217081 | Scheurlen | May 2007 | B2 |
7220099 | Bekreney | May 2007 | B2 |
20060082074 | Synnott | Apr 2006 | A1 |
20060182624 | London et al. | Aug 2006 | A1 |
20060239814 | Uwami et al. | Oct 2006 | A1 |
20060263204 | London et al. | Nov 2006 | A1 |
20070140843 | Drerup et al. | Jun 2007 | A1 |
20090096174 | Spangler et al. | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
102006004613 | Aug 2006 | DE |
1798380 | Jun 2007 | EP |
Number | Date | Country | |
---|---|---|---|
20090092485 A1 | Apr 2009 | US |