This invention relates to seals that seal holes in panels having shafts extending therethrough.
A motor vehicle typically includes a dash panel, or bulkhead, that separates the passenger compartment from an engine compartment. A steering shaft passes through a hole in the dash panel to connect the steering wheel, which is in the passenger compartment, to the steering gear, which is in the engine compartment. A seal is typically employed between the dash panel and the shaft to prevent noise, gases, water, and debris from entering the passenger compartment from the engine compartment via the hole in the dash panel.
An apparatus is provided for sealing a hole in a panel having a first surface on one side of the panel and a second surface on the other side of the panel. The apparatus includes a boot and a seal member. The boot includes a first portion having a first bellows, a second portion having a second bellows, and a third portion that interconnects the first portion and the second portion. The seal member is operatively connected to the third portion of the boot and is configured such that, when the third portion of the boot is within the hole, the seal member contacts the panel to form at least one seal around the hole.
The seal member provides a seal around the hole, while the boot provides a seal around a shaft that extends through the hole. Installation of the shaft through the boot may require repositioning part of the boot relative to the panel. The apparatus provided herein facilitates the installation of the shaft because the bellows decouple the seal member from loads generated by movement of the boot during shaft installation, thereby maintaining the position of the seal member relative to the panel and thus increasing the efficacy of the seal member.
The above features and advantages and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.
Referring to
The seal apparatus 42 includes a boot 46 having a first portion 50, a second portion 54, and a third portion 58. The first portion 50 includes a first bellows 62. The second portion 54 includes a second bellows 66. The third portion 58 extends through the hole 30 and interconnects the first portion 50 and the second portion 54.
The seal apparatus 42 also includes a seal member 70, which is operatively connected to the third portion 58 of the boot 46. The seal member 70 is configured such that, when the third portion 58 of the boot 46 is disposed within the hole 30, the seal member 70 contacts the panel 10 to form at least one seal 74 around the hole 30.
The boot 46 is generally cylindrical, although other shapes may be employed within the scope of the claimed invention. For example, the boot 46 may be conical or frusto-conical. The boot 46 is shown in
The boot 46 defines a chamber 78. The first portion 50 of the boot 46 defines a first opening 82 of the chamber 78 on the first side 18 of the panel 10. The boot 46 includes a bearing 86 that is operatively connected to the second portion 54 of the boot 46. The bearing 86 defines a second opening 90 of the chamber 78 on the second side 26 of the panel 10. More specifically, in the embodiment depicted, the bearing 86 includes a plastic support member 88 defining a hole or cylindrical aperture 89. A low-friction O-ring or bushing 93 is mounted to the plastic support member 88 inside a groove around the aperture 89 and defines the second opening 90.
The steering shaft is extendable through the first and second openings 82, 90 and the chamber 78, as shown in
To engage the steering shaft 38 with the seal apparatus 42, the steering shaft 38 is inserted from the engine compartment (on the first side 18 of the panel 10) through the first opening 82, and into the chamber 78. The steering gear assembly 94 moves with the steering shaft 38, and the housing 98 contacts the first portion 50 of the boot 46. As the steering shaft 38 moves further into the chamber 78, the housing 98 compresses the first bellows 62, and the first portion 50 forms a seal 102 against the housing 98. The first bellows 62 decouples the seal member 70 from loads transmitted from the housing 98 to the seal apparatus 42 during this process; accordingly, the mating of the housing 98 to the seal apparatus 42 will not significantly affect the seal 74 formed between the seal member 70 and the panel 10.
The bearing 86 must be moved relative to the panel 10 and the steering shaft 38 in order to be sufficiently aligned with the steering shaft 38 to allow the steering shaft 38 to extend through the second opening 90. The second bellows 66 enables movement of the bearing 86 relative to the panel 10 without significant transmission of any resultant loads to the seal member 70. Accordingly, the bearing 86 is movable without affecting the seal 74 formed between the seal member 70 and the panel 10.
As shown in
The first and second fastening elements 106, 110 are configured to provide a snap-fit engagement with one another when the steering shaft 38 is sufficiently inserted through the second opening 90. More specifically, in the embodiment depicted, the first fastening element 106 is a hook having a surface 114 that is oriented approximately 45 degrees from the axis A2 of the shaft 38. The hook also includes a surface 118 that is perpendicular to the axis A2. The second fastening element 110 is a member that includes inclined surface 122 and surface 126, which is perpendicular to the axis A2.
As the steering shaft 38 is axially moved through the opening 90 in bearing 86, inclined surface 122 of the second fastening element 110 contacts surface 114 of the first fastening element, which results in a force having a radial component that elastically bends the first fastening element 106 radially outward. As the shaft 38 is further inserted through the opening 90, surface 122 and surface 114 lose contact, and the first fastening element 106 moves radially inward with the removal of the stress caused by the force from the second fastening element 110. Surface 126 and surface 118 are in contact with one another and thereby prevent axial movement of the bearing 86 relative to the shaft 38. As shown in
The shaft 38 is rotatable about axis A2 relative to the fastening elements 106, 110 and the bearing 86. The bushing 93 sealingly contacts the shaft 38. Accordingly, both openings 82, 90 to the chamber 78 are sealed. Openings 82, 90 are the only openings to the chamber 78.
In the embodiment depicted, the first portion 50 of the boot 46 has a higher spring constant than the second portion 54 of the boot 46, and may be blow-molded polyethylene. The seal member 70 may, for example, be a compliant rubber. The seal member 70 in the embodiment depicted includes a first part 130 that contacts the panel 10 inside the hole 30, a second part 134 that contacts the first surface 14 of the panel 10, and a third part 138 that contacts the second surface 22 of the panel 10. The contact between the first part 130 of the seal member 70 and the panel 10 forms a first annular face seal 74. The contact between the second part 134 of the seal member 70 and the first surface 14 forms a second annular face seal 142. The contact between the third part 138 of the seal member 70 and the second surface 22 forms a third annular face seal 146.
It should be noted that the boot 46 and seal member 70 may be a single piece or may comprise multiple connected pieces within the scope of the claimed invention.
While the best modes for carrying out the invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2702996 | Davis | Mar 1955 | A |
3747368 | Morin | Jul 1973 | A |
4478137 | Clark | Oct 1984 | A |
4826466 | Triquet | May 1989 | A |
4877258 | Alt et al. | Oct 1989 | A |
4961480 | Weiler et al. | Oct 1990 | A |
5419741 | Schwarzler | May 1995 | A |
5931738 | Robb | Aug 1999 | A |
6328315 | Hebenstreit | Dec 2001 | B1 |
6764243 | Inuzuka et al. | Jul 2004 | B1 |
6796563 | Ruebsamen et al. | Sep 2004 | B2 |
6808207 | Nakano et al. | Oct 2004 | B2 |
6932346 | Hayward | Aug 2005 | B1 |
7281984 | Foster-Hamilton et al. | Oct 2007 | B2 |
7296802 | Ota | Nov 2007 | B2 |
7753380 | Kumazaki et al. | Jul 2010 | B2 |
8469366 | Deisinger et al. | Jun 2013 | B2 |
8550740 | Brunneke et al. | Oct 2013 | B2 |
20080237999 | Mauceri et al. | Oct 2008 | A1 |
20080246229 | Ott | Oct 2008 | A1 |
20090140497 | Roberts et al. | Jun 2009 | A1 |
20100230907 | Hatano et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
201092292 | Jul 2008 | CN |
2932317 | Feb 1981 | DE |
19857389 | Mar 2000 | DE |
102006053263 | May 2008 | DE |
102010006645 | Aug 2011 | DE |
11170927 | Jun 1999 | JP |
2006076329 | Mar 2006 | JP |
2007230279 | Sep 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20140033855 A1 | Feb 2014 | US |