The present disclosure relates to a seal section or pressure equalizer of a submersible well pump assembly. More specifically, the present disclosure relates to securing the ends of a pressure equalizing bladder by bonding them to sleeves, which in turn are attached to structure in the seal section.
Electrical submersible pumps (ESP) are commonly used in hydrocarbon producing wells. An ESP includes a pump driven by an electrical motor. Dielectric lubricant in the motor lubricates motor bearings. A pressure equalizer or seal section has an elastomeric bladder or a metal bellows with an interior in fluid communication the motor lubricant to reduce a pressure differential between the motor lubricant and the wellbore fluid exterior of the motor. Usually, the seal section connects between the motor and the pump.
The elastomeric bag has open upper and lower ends. A guide tube extends through the open ends and secures to retainers on the upper and lower ends of the seal section. A drive shaft sealed at the upper retainer from well fluid locates within the guide tube. The seal is usually a mechanical face seal, which allows slight leakage of well fluid into the upper retainer. A well fluid port in the upper retainer admits well fluid into the housing exterior of the bladder to exert a pressure force against motor lubricant in the interior of the bladder. It is important to minimize well fluid leakage into the interior of the bladder because it could migrate down to the motor.
There are a number of designs used and known to secure the upper and lower ends to the upper and lower retainers. In one past technique, the open ends of the bladder were adhesively bonded to the upper and lower retainers. ESPs must be retrieved periodically for maintenance. Reconditioning a seal section usually involves replacing the bladder. If adhesively bonded, it was difficult to remove them from the retainers, normally requiring at least part of an expensive retainer to be thrown away.
A submersible, electrical well pump assembly includes a seal section housing for coupling between a motor and a pump of the assembly. The housing has an axis. First and second retainers are axially spaced apart and extend toward each other from first and second ends of the housing, respectively. Each of the first and second retainers has an outward facing cylindrical wall relative to the axis. A bladder has first and second openings on opposite ends. Rigid first and second sleeves are bonded to and within the first and second openings, respectively. The first sleeve receives and secures to the cylindrical wall of the first retainer. The second sleeve receives and secures to the cylindrical wall of the second retainer.
A first seal ring seals between the first sleeve and the cylindrical wall of the first retainer. A second seal ring seals between the second sleeve and the cylindrical wall of second retainer.
In one embodiment, a first retaining ring secures to the cylindrical wall of the first retainer to retain the first sleeve on the first retainer. A second retaining ring secures to the cylindrical wall of the second retainer and retains the second sleeve on the second retainer. The first and second retaining rings are located within an interior of the bladder.
A first shoulder on the first retainer faces in a second direction. A second shoulder on the second retainer faces the first shoulder. The first sleeve has a first end abutting the first shoulder. The first retaining ring abuts a second end of the first sleeve. The second sleeve has a second end abutting the second shoulder. The second retaining ring abuts a first end of the second sleeve.
An outward protruding annular first rib on a second end of the first sleeve is located within an interior of the bladder. An outward protruding annular second rib on a first end of the second sleeve and located within the interior of the bladder.
In a second embodiment, a first set screw extends through the first sleeve into a mating recess on the cylindrical wall of the first retainer. A second set screw that extends through the second sleeve into a mating recess on the cylindrical wall of the second retainer. The first and second set screws are exterior of the bladder.
While the disclosure will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the disclosure to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the scope of the claims.
The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout. In an embodiment, usage of the term “about” includes +/−5% of the cited magnitude. In an embodiment, usage of the term “substantially” includes +/−5% of the cited magnitude.
It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.
A string of production tubing 21 suspended within casing 23 supports ESP 11. In this example, pump 13 discharges into production tubing 21. Alternately, coiled tubing could support ESP 11, in which case, pump 13 would discharge into the annulus around the coiled tubing. The power cable for motor 17 would be within the coiled tubing instead of alongside production tubing 21.
Upper and lower connectors 27, 29 have bores 31 through which a rotatable drive shaft 33 extends. Bearings 35, which are shown schematically, support drive shaft 33 in bores 31 but do not seal around drive shaft 33. A seal, normally a mechanical face type (not shown) seals the upper end of shaft 33 to retard the entry of well fluid.
Referring to
A bag or bladder 45 has a circular upper opening 47 at its upper end 49, which is a short cylindrical portion of bladder 45. Bladder 45 is a tubular, flexible member and may be formed of an elastomeric material. Upper end 49 may have a smaller outer diameter than the remaining portions of bladder 45. An upper sleeve 51 inserts closely into upper opening 47. Upper sleeve 51 is a rigid member formed of a material such as of a steel alloy. Upper sleeve 51 bonds within upper opening 47. In this example, an adhesive layer 53, shown schematically, bonds the inner diameter of upper opening 47 to the outer diameter of upper sleeve 51. Adhesive layer 53 may be of a variety of types, including pressure sensitive tape. In this example, upper sleeve 51 has an external flange 55 on its lower end, and the lower end of adhesive layer 53 terminates at external flange 55.
Upper sleeve 51 fits closely around upper retainer cylindrical wall 41 and is sealed to cylindrical wall 41 by seal ring 43. A retaining ring 57, which may be a split, snap ring, engages a groove on cylindrical wall 41 below upper sleeve 51 to prevent upper sleeve 51 from sliding downward off of neck 39. The upper end of upper sleeve 51 abuts or is closely spaced to downward facing shoulder 40 at the upper end of upper retainer neck 39. Retaining ring 57 and downward facing shoulder 40 serve as a fastener to secure upper sleeve 51 to upper retainer 37.
As a backup for adhesive layer 53, an optional clamp 58 extends around bladder upper end 49. Clamp 58 may be a metal strap that is crimped to exert a continuous compressive force on bladder upper end 49 against upper sleeve 51.
A lower retainer 59 has a lower portion that sealingly inserts into bore 31 of lower connector 29. Lower connector 29 may be considered to be part of lower retainer 59. Lower retainer 59 has a cylindrical upper portion that extends upward passed an upper side 64 of lower connector 29. That upper portion has an outward facing cylindrical wall 61 with a seal ring 63 located in a groove encircling cylindrical wall 61.
Bladder 45 has a circular lower opening 65 in a lower end 67. Bladder lower end 67 is cylindrical and may have a larger outer diameter than bladder upper end 49. A lower sleeve 69 inserts into lower opening 65 and is sealed to the inner diameter of bladder lower opening 65 by an adhesive layer 71. Lower sleeve 69 may have an external flange 73 on its upper end above adhesive layer 71. Lower sleeve 69 closely fits over lower retainer cylindrical wall 61 and is sealed by seal ring 63. A clamp 75, which may the same type as clamp 58, may clamp around bladder lower end 67 as a backup for adhesive layer 71. A retaining ring 77 secures to an annular groove in lower retainer cylindrical wall 61 above lower sleeve 69. The lower end of lower sleeve 69 abuts or is closely spaced to connector upper side 64, which serves as an upward facing shoulder to prevent upward movement of lower sleeve 69 on retainer 59. Retaining ring 77 prevents upward movement of lower sleeve 69 on lower retainer 59. Retaining ring 77 and lower retainer shoulder 64 define a fastener for securing lower sleeve 69 to lower retainer 59. Upper and lower retaining rings 57, 77 are located within the interior of bladder 45.
Referring also to
Shaft 33 extends through guide tube 79 and has a smaller diameter than the inner diameter of guide tube 79, creating an annular passage. The annular passage is in communication with lubricant in motor 17 (
In one method of assembly, a technician positions upper and lower sleeves 51, 69 around upper and lower retainers 37, 59 and secures them with retaining rings 57, 77. Guide tube 79 may be installed between upper and lower retainers 37, 59 before or after installing upper and lower sleeves 51, 69. Then, the technician slides bladder 45 lower end 67 and upper end 49 downward over upper retainer 37. He then and slides bladder lower end 67 downward over flange 73 around lower sleeve 69. The technician then bonds bladder lower end 67 to lower sleeve 69 with adhesive layer 71. Then the technician positions bladder upper end 49 around upper sleeve 51 and bonds it with adhesive layer 53. The technician positions the sub assembly of guide tube 79, sleeves 51, 69, bag 45 and retainers 39, 59 in housing 25, stabbing lower retainer 59 into bore 31 in lower connector 29. The technician then secures upper connector 27 to housing 25, causing upper retainer 37 to stab into bore 31 of upper connector 27.
When ESP 11 is retrieved for repair or replacement, technicians may easily disassemble seal section 19 and discard bladder 45 along with upper and lower sleeves 51, 69 still bonded to bladder 45. A new bladder 45 and new upper and lower sleeves 51, 69 may be installed in seal section 19. Because bladder 45 is not bonded to upper and lower retainers 37, 59, upper and lower retainers 37, 59 may be easily re-used. Adhesive layers 53, 71 prevent leakage into or out of bladder 45 better than if clamps 58, 75 are used without adhesive bonding.
Referring to
In the second embodiment, in one method, bladder upper opening 147 will be bonded to upper sleeve 85 before upper sleeve 85 is installed on upper retainer 83. Also, bladder lower opening 165 will be bonded to lower sleeve 93 before it is installed on lower retainer 91. Then, a technician may insert upper retainer 83 into upper sleeve 85 and secure it with set screw 87. The technician inserts lower retainer 91 into lower sleeve 93 and secures it with set screw 95. Both set screws 87, 95 are exterior of the interior of bladder 145.
The subassembly comprising bladder 145, guide tube 179, and upper and lower retainers 83, 91 may then be lowered into housing 125 until lower retainer 91 stabs into lower connector 129. Upper connector 127 may be secured into the upper end of housing 125 with upper retainer 83 stabbing into bore 133.
The present disclosure described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While two embodiments of the disclosure have been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the scope of the appended claims.
This application claims priority to provisional application Ser. No. 62/541,546, filed Aug. 4, 2017.
Number | Date | Country | |
---|---|---|---|
62541546 | Aug 2017 | US |