This application relates to seal cartridges for use in ultra high pressure rotating nozzles. Related methods are also disclosed.
In high-pressure water blasting operations, it is often desirable to rotate a nozzle head to increase surface coverage, and thus productivity. However, sealing between the stationary and rotating components of the water blasting system must be addressed. The high-pressure environment and relative motion between components accelerate wear on the sealing components. For this reason, the sealing components must be changed regularly. The length of time required for this maintenance reduces the productivity of the water blasting system. Multiple solutions have been developed to address this sealing problem.
In one solution, in which seal members are not used, the stationary and rotating components are separated by a very small space, for example less than a thousandth of an inch. The working fluid is allowed to escape through this space. Since there is no contact between the components, friction is minimized. In this solution, the power used to pressurize the fluid which escapes is wasted as it does not flow through the nozzle. At ultra-high pressures, near 40,000 PSI, this can be as much as 30% of the power used in the system.
In another solution, sealing is accomplished using a plastic seal member bearing against a metal mandrel. The pressure of the working fluid forces the plastic seal member against the mandrel, preventing the working fluid from escaping. The plastic seal member is typically supported by a metal backup bushing. While this seal design is quite popular, the maintenance of this design is complicated and time consuming. This seal design uses a number of small parts which are removed and replaced separately. Removing and installing these small parts increases the time required to service the assembly, decreasing overall water blasting system productivity. Further, as such parts are often changed in the field, there is an inherent risk that some of the parts may be mishandled and either damaged or lost. Improvements are desired.
A seal cartridge and an ultra high pressure rotating nozzle assembly incorporating the seal cartridge are disclosed. The main seal member in the nozzle assembly is mounted as part of the seal cartridge. The seal cartridge is also easily removable from the rotating nozzle assembly without requiring the separate removal of the main seal member, or its associated backup bushing. This configuration allows a user to quickly install a new or rebuilt seal during an operation while minimizing or eliminating the necessity to manipulate smaller individual parts in the field.
In one embodiment, the seal cartridge includes a mandrel having an exterior surface and an internal fluid path in which the mandrel has an upstream end with a first cross-sectional diameter and a downstream end with a second cross-sectional diameter that is smaller than the first cross-sectional diameter. Also included is a retaining member that is disposed about the mandrel and is constructed and arranged to connect the seal cartridge to the rotating nozzle assembly. The seal cartridge also includes a main seal member and a backup bushing, both of which are disposed about a portion of the exterior surface of the mandrel. The main seal member is in direct contact with the mandrel while there is a small clearance gap between the backup and the mandrel. The seal cartridge can also include an upstream seal member and a downstream seal member oriented to create a seal about the exterior surface of the seal cartridge. In addition to, or instead of, the upstream seal member, the downstream end of the mandrel can have a straight tapered shape or a radiused shape for forming a seal against a tapered or radiused seal surface of the nozzle shaft. The main seal member can be shaped to have a downstream surface that slopes towards the exterior surface of the mandrel in a direction towards the downstream end of the mandrel. In such a case, the backup bushing can also have a sloped upstream surface that is in at least partial contact with the downstream surface of the main seal member. The seal cartridge can also have a retainer, such as a retaining ring, constructed and arranged to hold the main seal, backup bushing and retaining member onto the mandrel. Further, the mandrel of the seal cartridge can be directly coupled to a rotating shaft within the rotating nozzle assembly by an engagement mechanism.
Also, the seal cartridge can be assembled by (a) installing a retaining member onto a mandrel that has an upstream end and a downstream end wherein the mandrel defines an internal fluid path; (b) installing a backup bushing onto the mandrel from the upstream end of the mandrel such that the backup bushing and retaining member can be brought into contact with each other; and (c) installing a main seal member directly onto the mandrel from the upstream end of the mandrel such that the main seal member and the backup bushing can be brought into contact with each other. In another step, a retainer can be installed directly onto the mandrel from the upstream end of the mandrel so as to secure the main seal member and backup bushing onto the mandrel. However, the friction between the seal member and the mandrel, in certain embodiments, can also provide the necessary resistance to hold the main seal member, the backup bushing and the retaining member onto the mandrel. Other possible steps in the assembly process are installing an upstream seal member and installing a downstream seal member onto the seal cartridge so as to create a seal about the exterior surface of the seal cartridge.
A rotating nozzle assembly is also disclosed that includes the above described seal cartridge, and can also include a seal cartridge housing directly connected to the seal cartridge via the retaining member of the seal cartridge, a nozzle housing directly connected to the seal cartridge housing, a nozzle shaft directly coupled to the mandrel of the seal cartridge, and a rotating nozzle head directly coupled to the nozzle shaft. The rotating nozzle assembly can be serviced by installing a fully assembled seal cartridge into the rotating nozzle assembly, by securing the fully assembled seal cartridge to the seal cartridge housing, and by securing the seal cartridge housing to the housing of the rotating nozzle assembly. Once the seal cartridge is spent, the fully assembled seal cartridge from the rotating nozzle assembly can be removed and replaced with a new seal cartridge. By use of the term “fully assembled”, it is meant to indicate that the seal cartridge remains intact during the installation and removal process such that the subcomponents of the seal cartridge are not further separated from the mandrel at any point during the process.
This disclosure relates to seal cartridges for use in ultra high pressure rotating nozzles.
In the embodiment shown, seal cartridge 100 includes a mandrel 102. Mandrel 102 is a rotating component for providing an interior flow path through which pressurized fluid can flow, for providing a positive pressure bias when pressurized fluid (not shown) is flowing through the mandrel, and for providing a sealing surface to prevent pressurized fluid from escaping the nozzle assembly 200 in which the seal cartridge is installed. By the use of the term “positive pressure bias” it is meant that the mandrel is configured such that the pressurized fluid exerts a net pressure or force on the mandrel in the same direction as the pressurized fluid is flowing. As can be best seen at
Mandrel 102 also defines an interior flow path 102b through which the pressurized fluid can flow. As shown at
Another feature of mandrel 102 relates to the various shapes front end 102f can be formed to include. These various shapes are for enabling a metal-to-metal seal to form between the front end 102f of the mandrel 102 and a sealing surface 202d on the nozzle shaft 202. This type of seal can be used instead of or in conjunction with the seal formed by the downstream seal 114. Many types of shapes are suitable for the purpose of forming a metal-to-metal seal. For example, front end 102f can be formed with a straight tapered shape having an angle α relative to the flow direction 120, as best seen at
In operation, the positive pressure bias force causes the front end 112f of the mandrel 102 to be forced against the sealing surface 202d of the shaft 202. The resulting contact area between the front end 112f and 202d is designed to be relatively small such that the positive pressure bias force creates a suitably high pressure for creating the seal. The size of the contact area can be controlled by several methods. One example, is by using a straight tapered front end 112f that has a slightly smaller angle α than a straight taper angle θ on the sealing surface 202d. This difference in angles allows for only the tip of front end 112f to come into contact with the sealing surface 202d, thereby creating a sufficiently small contact area. Alternatively, the contact area can be minimized by using a radiused front end 112f against either a tapered sealing surface 202c (shown in
Other aspects of mandrel 102 are a first enlarged portion 102g and a second enlarged portion 102h. The first enlarged portion 102g enables machining of the mandrel 102 to be performed more easily and also serves as a surface to engage the retaining member 108, when removing the seal cartridge 100 from the nozzle 200. The second enlarged portion 102h is for providing a mounting surface for engagement mechanism 116. The engagement mechanism 116 and the retaining member 108 are discussed in more detail below. In the particular embodiment shown, both the first and second enlarged portions 102g, 102h have a diameter that is greater than that of cross-sectional diameters 102c and 102e. Additionally, second enlarged portion 102h has a diameter that is larger than that of first enlarged portion 102g. It should be noted, that mandrel 102 does not need to be machined to have first and second enlarged portions 102g, 102h and that, if absent, engagement mechanism 116 could be installed on a non-enlarged portion of mandrel 102 and would perform the same removal function as portion 102g.
In the particular embodiment shown at
Another aspect of seal cartridge 100 is the seal assembly which is comprised of a main seal member 104 and a backup bushing 106. The seal assembly is for preventing pressurized fluid from leaking past the exterior surface 102a of the mandrel 102 such that all of the pressurized fluid is directed through the interior flow path 102b and to the nozzle assembly 200. The seal assembly can be constructed in many variations without departing from this concept. As shown, the main seal member 104 and the backup bushing 106, are disposed about the exterior surface 102a of the mandrel 102 with the main seal member 104 being in direct contact with the mandrel 102.
As best viewed at
As shown, backup bushing 106 has an upstream surface 106a and a downstream surface 106b. The backup bushing 106 also has a bore 106c through which one end of the mandrel passes. The upstream surface 106a of backup bushing 106 is sloped such that at least a portion of the upstream surface 106a can be brought into contact with the sloped downstream surface 104a of the seal member 104. As pressurized fluid forces seal member 104 in the direction of fluid flow (towards the backup bushing 106), the sloped surfaces 104a, 106b engage to force the interior seal surface 104c against the exterior surface 102a of mandrel 102. Thus, through the use of the pressure of the working fluid itself, the seal assembly is able to apply additional sealing force against the mandrel 102. The bore 106c of the backup bushing 106 has a very small clearance, for example less than two thousandths of an inch around the mandrel 102. This small clearance prevents the seal member 104 from extruding past the backup bushing 106 under the action of the pressurized fluid. In the particular embodiment shown, backup bushing 106 is 9C bronze. However, the backup bushing 106 can be made of other materials suitable for accomplishing the above stated functions of the backup bushing 106.
The backup bushing 106 can also be provided with a counter bore 106d, as shown in
Yet another aspect of the seal cartridge 100, is the retaining member 108. Retaining member 108 is for installing and removing the seal cartridge 100 to and from the rotating nozzle assembly 200. Retaining member 108 also performs the function of keeping the main seal member 104 and the backup bushing 106 in place in seal cartridge housing 212 until it is necessary to rebuild the seal cartridge 100. In the embodiment shown, mandrel 102 passes through retaining member 108 such that the downstream surface 106b of the backup bushing 106 rests against the retaining member 108. This arrangement allows for the backup bushing 106 to remain in position against the pressure from the main seal member 104 when the main seal member 104 is exposed to pressurized fluid. Retaining member 108 also has a connection point 108b for securing the seal cartridge 100 to the rotating nozzle assembly 100. In the particular embodiment shown, the connection point 108b includes helical threads designed to engage a complementary set of threads at connection point 212d on the rotating nozzle assembly 200. Other types of mechanical connections known in the art are suitable as well. Retaining member 108 also includes a head 108a such that an operator can use a tool to install and remove the seal cartridge 100 into and out of the seal cartridge housing 212 of the rotating nozzle assembly 200. In the embodiment shown, head 108a is a hex head configured for use with a wrench. However, other configurations of head 108a known in the art are possible.
A further aspect of seal cartridge 100 is engagement mechanism 116. Engagement mechanism 116 is for engaging the mandrel 102 of the seal cartridge 100 to the rotating shaft 202 of the nozzle assembly 200 such that the rotating shaft 202 can impart a rotational force onto mandrel 102. As shown, engagement mechanism 116 includes two pins inserted into the second enlarged portion 102h of the mandrel 102. Once the pins of the engagement mechanism 116 have been installed and the seal cartridge fully inserted into the nozzle assembly 200, the mandrel 102 and shaft 202 are engaged such that they will rotate together. The engagement action between the engagement mechanism 116 pins and the shaft 202 is best viewed at
Yet another aspect of the disclosure is downstream seal member 114. The downstream seal member 114 is for providing a water tight seal between mandrel 102 and shaft 202 such that water does not unintentionally leak out of nozzle assembly 200. With downstream seal member 114 installed, the pressurized fluid cannot leak around the exterior surface of the assembled seal cartridge 100 at the downstream end of the mandrel 102. In the particular embodiment shown, downstream seal member 114 is mounted within a recess in shaft 202 and comes into contact with mandrel 102 as the seal cartridge is inserted into shaft 202. Many types of seal members are useful for this purpose. By use of the term “downstream seal member”, it is meant to identify that the seal member is located nearer the downstream end of the mandrel than it is to the upstream end of the mandrel. In the particular embodiment shown, seal 114 is an o-ring type of seal member. However, any other type of seal member known in the art configured to perform this function may be used.
The above described components can be assembled to form the seal cartridge 100, as follows. First, mandrel 102 is passed through retaining member 108 from the downstream end 102a of the mandrel 102 until there is sufficient clearance on mandrel 102 for installing the backup bushing 106, main seal member 104 and retainer 110. In some cases, this can be when retaining member 108 is pressed against either of the first or second enlarged portions 102g, 102h of the mandrel 102. Where the first and second enlarged portions 102g, 102h are not present on mandrel 102, retaining member 108 may be inserted onto mandrel 102 until it comes into contact with engagement mechanism 116. Second, the backup bushing is mounted onto the mandrel 102 until it abuts the retaining member 108. The main seal member 104 is then mounted onto mandrel 102 until its sloped downstream surface 104a comes into contact with the sloped upstream surface 106a of backup bushing 106. Subsequently, retainer 110 is installed onto mandrel 102 to prevent the main seal member 104, backup bushing 106 and retaining member 108 from becoming removed from the mandrel 102. Seal member 112 can be installed onto the main seal member 104 at any time during the assembly process. The engagement mechanism can also be installed at any time in the process, but are preferably installed as a first step when access to mandrel 102 is easier. The disassembly of the seal cartridge 100 is the reverse. Once fully assembled, the seal cartridge 100 is ready for installation into the nozzle assembly 200. It should be appreciated that seal cartridge 100 can be configured such that the individual components of seal cartridge 100 can be installed or removed in a different order than described here.
It should also be appreciated that the assembly and disassembly of seal cartridge 100 does not need to occur in the field, and that multiple seal cartridges can be assembled or rebuilt in a setting conducive to the handling of small parts. This allows an operator in the field to easily remove a failed seal cartridge 100 from nozzle assembly 200 and to quickly install a second seal cartridge 100. Thus, the nozzle assembly 200 can be rapidly placed back into service. This is in contrast to many prior art nozzle assemblies that require the complete disassembly and replacement of the failed sealing parts in the field in order to return a nozzle assembly to service.
Referring to
As can be best seen at
Nozzle head 206 is also shown as including a plurality of interior flow paths 206a, each of which leads to discharge nozzle receptacles 206b. Nozzle receptacles 206b are adapted to receive a replaceable orifice to create the desired spray output from the nozzle assembly 200. In the particular embodiment shown, nozzle receptacles 206b are angled with respect to the direction of fluid flow 120 such that the discharged pressurized fluid will cause the nozzle head 206, the rotating shaft 202 and the mandrel 102 to rotate. This rotational force causes the nozzle assembly 200 to deliver the pressurized fluid in a circular pattern to the surface to be treated which enhances the blasting or cleaning effect of the nozzle assembly 200. Nozzle head 206 is also shown as having a protective cover 206d that has openings 206e corresponding to discharge nozzle receptacles 206b.
The nozzle shaft 202 can also be caused to rotate through the use of an additional power source, such as an air, hydraulic, or electric motor. In such an application, it would not be necessary for nozzle receptacles 206b to be angled, or to rely upon a specific water pressure to obtain a particular rotational speed. However, the rotational speed of shaft 202 can be controlled even without an additional power source through the use of a braking device 210, as shown at
As can be seen at
Nozzle casing 204 also includes a main housing 204a and a pilot bearing housing 204b that are removably connected to each other. The pilot bearing housing 204a secures bearing assembly 208b, and other internal components of nozzle assembly 200 near the point where mandrel 102 and shaft 202 are engaged via engagement mechanism 116. The main housing 204a secures bearing assembly 208a, and the internal components of nozzle assembly 200 downstream of the pilot bearing housing. At pilot bearing housing 204b, a connection point 204c is provided for connecting the nozzle casing 204 to a corresponding connection point 212c on the seal cartridge housing 212. In the particular embodiment shown, the connection point 204c includes helical threads designed to engage a complementary set of threads at connection point 212c on the seal cartridge housing 212. Other types of mechanical connections known in the art are suitable as well.
As identified above, another aspect of nozzle assembly 200 is seal cartridge housing 212. Seal cartridge housing 212 is for mounting and retaining seal cartridge 100 on the nozzle assembly 200. Many configurations of seal cartridge housing 212 are possible without departing from the concepts presented herein. As previously discussed, seal cartridge housing 212 has a connection point 212c for connecting the seal cartridge housing 212 to the pilot bearing housing 204b of nozzle housing 204 and another connection point 212d for connecting the seal cartridge housing 212 to the seal cartridge 100. As shown, seal cartridge 212 also has an interior fluid path 212a that is in fluid communication with the interior fluid path 102a of the seal cartridge 100. The interior fluid path 212a of the seal cartridge housing 212 can also be placed in fluid communication with a pressurized fluid source and can be coupled to the pressurized fluid source via connection point 212e. In the particular embodiment shown, connection point 212e includes helical threads. However, other connection methods known in the art can be used. Seal cartridge housing 212 is also shown as defining an interior surface against which seal member 112 of seal cartridge 100 forms a watertight seal to prevent pressurized fluid from leaking out of the nozzle assembly 200.
In accordance with the above description, the seal cartridge 100 is installed into the nozzle assembly 200, as follows. First, seal cartridge 100 is connected to the seal cartridge housing 212 via connection points 108b and 212d. In the embodiment shown, this step is accomplished by threading the seal cartridge 100 and the seal cartridge housing 212 together. Subsequently, the seal cartridge housing is connected to the housing 204 of the nozzle assembly via connection points 204c and 212c. In the embodiment shown, this step is accomplished by threading the seal cartridge housing 212 and the nozzle housing 204 together. As this step is performed, the mandrel 102 is drawn into the shaft 202, such that the mandrel 102 and the nozzle assembly rotating shaft 202 become rotatably engaged together via engagement mechanism 116 and tabs 202c. Removal of the seal cartridge 100 from the nozzle assembly is the reverse of the above described steps. It should also be noted that the nozzle assembly 200 can be configured differently such that the seal cartridge 100 can be installed before the step of connecting the seal cartridge 100 to the seal cartridge housing 212.
The above are example principles. Many embodiments can be made.
Number | Name | Date | Kind |
---|---|---|---|
1845364 | Thompson | Feb 1932 | A |
2227105 | Pritchard | Dec 1940 | A |
2301038 | Guarnaschelli | Nov 1942 | A |
RE22309 | Guarnaschelli | May 1943 | E |
2574183 | Holmes | Nov 1951 | A |
2712457 | Kimbro | Jul 1955 | A |
2928608 | Royer | Mar 1960 | A |
2946517 | Jacoby | Jul 1960 | A |
2980341 | Royer et al. | Apr 1961 | A |
3089713 | Scaramucci | May 1963 | A |
3120346 | Willhoite | Feb 1964 | A |
3129960 | Schrodt | Apr 1964 | A |
3347464 | Hruby, Jr. | Oct 1967 | A |
3764073 | Costa et al. | Oct 1973 | A |
3889983 | Freize et al. | Jun 1975 | A |
3937494 | Hicks | Feb 1976 | A |
3957205 | Costa | May 1976 | A |
4062494 | Healy | Dec 1977 | A |
4272108 | Maasberg | Jun 1981 | A |
4561681 | Lebsock | Dec 1985 | A |
4690325 | Pacht | Sep 1987 | A |
4715539 | Steele | Dec 1987 | A |
4744517 | Iwamoto et al. | May 1988 | A |
4817995 | Deubler et al. | Apr 1989 | A |
5060862 | Pacht | Oct 1991 | A |
5060863 | Hammelmann | Oct 1991 | A |
5104043 | Pacht | Apr 1992 | A |
5203842 | Mark et al. | Apr 1993 | A |
5248095 | Rankin et al. | Sep 1993 | A |
5402936 | Hammelmann | Apr 1995 | A |
5685487 | Ellis | Nov 1997 | A |
5909848 | Zink | Jun 1999 | A |
6027040 | Frye-Hammelmann | Feb 2000 | A |
6029695 | Logan | Feb 2000 | A |
6059202 | Zink et al. | May 2000 | A |
6149733 | Djumlija et al. | Nov 2000 | A |
6481885 | Dupre | Nov 2002 | B2 |
6698669 | Rieben | Mar 2004 | B2 |
6886832 | Forrest | May 2005 | B2 |
6913266 | Jarchau et al. | Jul 2005 | B2 |
7108293 | Van Der Meijden et al. | Sep 2006 | B2 |
7273188 | Saha | Sep 2007 | B2 |
7316363 | Hume et al. | Jan 2008 | B2 |
7354075 | Hagen | Apr 2008 | B2 |
7404581 | Baving et al. | Jul 2008 | B2 |
7546959 | Wagner et al. | Jun 2009 | B2 |
7584906 | Lev | Sep 2009 | B2 |
7600700 | Trunick et al. | Oct 2009 | B2 |
7624935 | Nelson et al. | Dec 2009 | B2 |
7635096 | Wright et al. | Dec 2009 | B2 |
7637508 | Montipo | Dec 2009 | B2 |
7654583 | Kvamme et al. | Feb 2010 | B2 |
20010008257 | Scholz et al. | Jul 2001 | A1 |
20090206557 | Wright | Aug 2009 | A1 |
20100187330 | Healy | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
102004022587 | Dec 2005 | DE |
202008002597 | Apr 2008 | DE |
1890068 | Feb 2008 | EP |
2 278 162 | Jan 2011 | EP |
Number | Date | Country | |
---|---|---|---|
20120006910 A1 | Jan 2012 | US |