The present disclosure is directed to insulating seals for window shade coverings.
Window coverings come in many varieties, including pleated, cellular, roller, etc. Such window coverings are becoming a popular choice for many people. Conventional cellular shades are made of two fabric sheets joined together in intervals to form individual cells and flexibly raise and lower to cover a window. These window coverings are used to provide some degree of protection against light and visibility through a window.
Embodiments of the present disclosure are directed to a seal apparatus for a window shade including a first side seal on a first side of a window and a second side seal on a second side of the window opposite the first side. Each of the first and second side seals includes a base configured to anchor to a side of a window frame, and an extensible sealing portion coupled to the base and being configured to extend laterally from the base toward the window shade. The extensible sealing portion is configured to contact the window shade at a vertical edge of the window shade to seal the window shade from both sides using the first and second side seals in concert to enclose a volume between the window shade and the window frame. The seal apparatus also includes an actuator configured to reversibly extend the extensible sealing portion.
Further embodiments of the present disclosure are directed to a seal for a cellular window shade having a plurality of cells each having an opening at a side of the cell. The seal includes a cell sealing portion shaped to cover the openings of the cells to close the cells, and an extensible portion coupled to the cell sealing portion and being configured to move the cell sealing portion between a sealing position in which the cell sealing portion is held against the openings and the cells are sealed, and an open position in which the cell sealing portion is spaced apart from the openings. The seal also includes an actuator configured to operate the extensible portion, and a side sealing portion between a frame adjacent the cellular window shade and the cell sealing portion.
Other embodiments of the present disclosure are directed to a method for converting a cellular window shade into a window insulator. The method includes positioning a sealing portion between a vertical window frame member and side openings of the cellular window shade. The method also includes closing cells of the cellular window shade by moving the sealing portion from an open position in which the sealing portion does not contact the cells, and a closed position in which the sealing portion contacts and thereby closes the cells.
Further aspects and embodiments are provided in the foregoing drawings, detailed description and claims.
The following drawings are provided to illustrate certain embodiments described herein. The drawings are merely illustrative and are not intended to limit the scope of claimed inventions and are not intended to show every potential feature or embodiment of the claimed inventions. The drawings are not necessarily drawn to scale; in some instances, certain elements of the drawing may be enlarged with respect to other elements of the drawing for purposes of illustration.
The following description recites various aspects and embodiments of the inventions disclosed herein. No particular embodiment is intended to define the scope of the invention. Rather, the embodiments provide non-limiting examples of various compositions, and methods that are included within the scope of the claimed inventions. The description is to be read from the perspective of one of ordinary skill in the art. Therefore, information that is well known to the ordinarily skilled artisan is not necessarily included.
The following terms and phrases have the meanings indicated below, unless otherwise provided herein. This disclosure may employ other terms and phrases not expressly defined herein. Such other terms and phrases shall have the meanings that they would possess within the context of this disclosure to those of ordinary skill in the art. In some instances, a term or phrase may be defined in the singular or plural. In such instances, it is understood that any term in the singular may include its plural counterpart and vice versa, unless expressly indicated to the contrary.
As used herein, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. For example, reference to “a substituent” encompasses a single substituent as well as two or more substituents, and the like.
As used herein, “for example,” “for instance,” “such as,” or “including” are meant to introduce examples that further clarify more general subject matter. Unless otherwise expressly indicated, such examples are provided only as an aid for understanding embodiments illustrated in the present disclosure and are not meant to be limiting in any fashion. Nor do these phrases indicate any kind of preference for the disclosed embodiment.
As used herein, “light property” is meant to refer to how an object interacts with light. In some cases, materials are referred to as reflective or absorptive. It is to be appreciated that some materials are more reflective than others, and some are more absorptive than others. Some materials are translucent, i.e., allowing light, but not detailed shapes, to pass through. It is often a question of degree. Nevertheless, it is understood by a person of ordinary skill in the art that a reflective material reflects more light and energy than an absorptive material, despite the fact that no material reflects or absorbs perfectly.
Visible light waves are composed of different wavelengths or frequencies. When a light wave having a certain frequency strikes an object the light wave could be absorbed by the object, in which case its energy is converted to heat. Alternatively, the light wave could be reflected by the object or transmitted by the object. It is rare for a single frequency of light to strike an object. More commonly visible light of many frequencies or even all frequencies is incident towards the surface of objects. When this happens, objects tend to selectively absorb, reflect, or transmit light certain frequencies. That is, an object might reflect green light while absorbing all other frequencies of visible light. Another object may transmit blue light while absorbing other frequencies of visible light. The interaction between visible light and objects depends upon the frequency of the light and the nature of the object.
Atoms and molecules contain electrons that can be thought of as attached to the atoms by springs. The electrons and their attached springs vibrate at specific frequencies The electrons of atoms have a natural frequency at which they tend to vibrate. When a light wave with that same natural frequency strikes an atom, then the electrons of that atom are set into vibrational motion. If a light wave having a frequency strikes a material with electrons having the same vibrational frequencies, then those electrons absorb the energy of the light wave and transform it into vibrational motion. While vibrating the electrons interact with neighboring atoms and convert its vibrational energy into thermal energy. The light wave with that given frequency is absorbed by the object, never again to be released in the form of light. The partial absorption of light by a particular material occurs because the selected frequency of the light wave matches the frequency at which electrons in the atoms of that material vibrate. Different atoms and molecules have different natural frequencies of vibration and therefore will selectively absorb different frequencies of visible light.
Reflection and transmission of light waves happens because the frequencies of the light waves are different from the natural frequencies of vibration of the objects. When light waves of these frequencies strike an object, the electrons in the atoms of the object vibrate. But rather than vibrating in resonance at a large amplitude, the electrons vibrate for brief periods of time with small amplitudes of vibration, and then the energy is reemitted as a light wave. If the object is transparent the vibrations of the electrons are transmitted through the object and on to neighboring atoms through the bulk of the material and reemitted. The reemitted frequencies of light waves are transmitted. If the object is opaque, then the vibrations of the electrons are not passed from atom to atom through the bulk of the material. Rather the electrons of atoms on the material's surface vibrate for short periods of time and then reemit the energy as a reflected light wave. Such frequencies of light are said to be reflected.
Transparent materials allow one or more of the frequencies of visible light to be transmitted through them. The colors not transmitted by such objects are absorbed by them. The appearance of a transparent object is dependent upon what color or colors of light are incident upon the object and what colors of light are transmitted through the object.
These characteristics are generally referred to herein as the “light properties” of the materials. In other words, as used herein, the term “light properties” is used to refer to at least one of transparency, translucency, transmission, opacity, reflectivity and absorbency.
In some embodiments, a material's ability to absorb light may result in generation of thermal energy to achieve a desired heating effect. In other embodiments, the material is selected so as to absorb certain frequencies of light, thus acting as a filter, for example, for harmful UV rays.
In still other embodiments, the material is selected with photochromic properties, i.e., a material that undergoes a reversible change in color or shade when exposed to light of a particular frequency or intensity. Such known photochromic materials can be used to automatically shade bright sunlight in a sunny midday, while allowing more light to pass during other parts of the day.
In still yet other embodiments, a material's translucency (i.e., allowing light, but not detailed shapes, to pass through), may be used to allow light to pass through to light a room, while maintaining privacy.
As used herein “cellular window shade” refers to window coverings that are constructed of flexible material that defines discrete cells that are vertically aligned and that permit the window cover to raise and lower. The shape of the cells changes as the shade is raise and lowered. In some embodiments the cells close completely when the shade is retracted. In some embodiments a volume of the cells changes as the shade is raised or lowered or otherwise moved or manipulated such as by air pressure or flow inside the cells.
As used herein, the term “seal” refers to increasing the barrier properties of the shade. This can be the thermal barrier or thermal insulation properties of the shade, the optical barrier properties of the shade and/or the sound barrier properties of the shade. As used herein “thermal seal” refers to a barrier that inhibits thermal energy transfer. A thermal seal need not be a perfect seal. As used herein “optical seal” refers to a barrier for light energy, and may refer to a blackout material, or a translucent material, or any other level of light between. Likewise, as used herein “sound seal” refers to a barrier, which at least reduces the passage of sound.
Embodiments of the present disclosure are directed to systems, methods, and apparatuses that seal the cells in such a window covering to provide thermal insulation in addition to blocking light and/or visibility. The disclosed systems can achieve a thermal and/or optical seal.
While cellular shades are currently preferred, other types of shade can be used. For example, a conventional set of blinds, such as venetian blinds or mini blinds with tilting slats, such as shown in
Preferably, the window shades are motorized so that they can be raised and lowered by commands received from the user, such as by a smart phone or by commands or pre-set routines through a home automation device, since as an Amazon Alexa, Google Home, or Apple HomePod. Also, as discussed herein, the window shades can be raised or lowered based on input received from sensors, such as temperature sensors. In some embodiments, these automated window coverings are powered by solar cells. Automation of window shades is taught in the following U.S. Pat. Nos. 9,605,476; 9,652,977; 9,562,390; 9,574,395; 9,834,983; 9,988,841; 10,458,179. The entire disclosures of these patents are incorporated herein by reference.
The bladder 141 can be enlarged by inflating it with pressurized air. The bladder 141 can run the length of the side frame member 106. The bladder 141 can be one continuous volume of interior space, or it can be cellular itself, having individual cells that correspond to the cells of the shade 114. The inflatable bladder seal 140 can be retrofit to an existing window and shade installation and can be used with a conventional, off-the-shelf cellular shade window covering.
The movement of the seal member 154 can be accomplished with any suitable mechanical means for linear movement including screws, gears, etc. In some embodiments the base 152 is the same shape and size as the seal member 154. In other embodiments the base 152 is one or more individual, discrete units at various locations along the vertical length of the side frame member 106 to provide support for the seal member 154.
In some embodiments the cam-operated seal 160 includes a power source 167 configured to operate the cam 166. The power source 167 can be an electric motor, a solenoid, or any other suitable form of providing mechanical power to rotate the cam 166. Other embodiments using other mechanisms for actuating the seal can also have a similar power source that operates the different seal mechanisms. In some embodiments the power source is located in the headrail of the shade.
In some embodiments the cam comprises an eccentric rod that contacts the seal member 154 along the vertical dimension continuously. In other embodiments the cam 166 comprises a round rod having a cam attachment at one or more locations along the rod. In these embodiments the seal member 154 is sufficiently rigid to maintain the seal without a continuous cam along the length. In some embodiments the base 162 can be omitted. In some embodiments the cam-operated seal 160 can also include a flexible membrane between the base 162 and the seal member 164.
The shade 114 is therefore converted into a thermal insulator by closing the cells of the shade 114 to improve insulation. Accordingly, a thermal seal is created. The shade 114 is also transformed into a more complete optical seal by blocking or impeding light passing around the shade. Without the seal, air is free to move through the cells which therefore have poor insulating qualities. Since conventional cellular shade window coverings are not designed or intended as thermal insulation it should be no surprise that they behave poorly in terms of thermal insulation. Any thermal insulation a conventional cellular shade window covering may have is incidental. The systems of the present disclosure can be applied to such conventional cellular shade window coverings to achieve excellent thermal insulation.
The headrail 112 can house a mechanism for actuating the seal. In some embodiments actuaing the seal includes rotating the cam, turning a screw, electrically actuating a solenoid, or any other suitable mechanical equivalent used to achieve linear motion to move the seal member into place, or to inflate a bladder as shown in
The headrail 112 can also include a wireless communication component 113 configured to send and receive electrical signals via wireless communication lines or wired communication lines. The seal can be actuated using electrical signals sent from a user's phone, computer, pager, or via voice commands or any other suitable method of sending and receiving electric communication. In some embodiments the seal is automatically actuated when the shade is lowered. Raising and lowering the shade can also be performed via electronic communication and in some embodiments the system is programmed to actuate the seal when the window is lowered.
The shades are raised and lowered using a cord 205 and a bottom member 208 in each. The shades 204,206 are independently operated and are not connected to one another. Each can be raised or lowered selectively and separately. The shades may be positioned closely to one another, although they are depicted here spaced apart for purposes of explanation. The light properties of the shades may vary. The first shade 204 is reflective and will therefore reflect light energy from the sun outward, preventing the light energy from warming the interior of the building. The second shade is absorptive and will therefore absorb light energy and will tend to warm the interior of the building. When it is desirable to reflect light, the first shade 204 is deployed. When it is desirable to absorb light, the second shade 206 is deployed. Accordingly, the insulation of the building can be improved to meet the needs during warm months and cold months alike.
In some embodiments the side sealing features shown and described herein in
In some embodiments the system 200 includes temperature sensors 209a and 209b which can measure temperature at various locations to determine how to operate the system 200. Temperature sensor 209a can monitor temperature between the shade and the window, and temperature sensor 209b can monitor temperature in the room. In other embodiments the interior sensor 209b can coordinate with other interior temperature sensors, and in some embodiments the interior sensor 209b can be omitted if there are sufficient interior temperature sensors to achieve the objectives disclosed herein.
In some embodiments to achieve an absorptive shade, the exterior side 231 is translucent to allow light to enter the cell 230, and the interior side 232 is absorptive to absorb energy to heat up the air within the cell 230, thereby warming the room. In other embodiments the exterior side is absorptive, and in yet other embodiments both the interior side and exterior side are both absorptive.
A comparison between internal and external temperatures can be made to determine whether or not to actuate the seal to insulate the window. Outside temperature can also be used. At 194 a determination is made whether insulation is desirable. The determination can be based on a direct user command to insulate, or it can be in response to the comparison and knowledge of whether or not insulation is desirable based on the measured temperatures. The method 190 can also be executed using information received from heating/cooling equipment as well. For example, if the external temperature is higher than a predetermined threshold, it is determined that sealing is desirable. Using a thermostat temperature defined as a user-input temperature at which the room is intended to stay, the sealing can be actuated accordingly. Actuating the seal tends to prevent the external temperature from thermally communicating with the living space inside the shade. Accordingly, on a hot day insulation from the light energy from the sun will maintain a cooler inside temperature and accordingly the seal can be actuated. Alternatively on a cold, but sunny day the external temperature may increase between the shade and the window, and that warmth may be desirable to warm the room. In such case the seal may be retracted to allow that warmth to affect the room. On a cold, dark day or night the temperature will be lower and insulation is desired to prevent the cold air from affecting inside temperatures.
With the determination of whether or not to actuate the seal in hand, the method 190 continues. At 196 if no seal is desired the seal is opened. At 198 if the seal is desirable, a check can be performed at 198 to determine whether or not the shade is down and therefore in position to form a seal. If yes, the seal is closed at 202. If no, an alert can be issued at 200 to a user, or an automatic action can execute to lower the shade. Then the seal is closed at 202. This method 190 can execute continuously to ensure that the seal provides insulation when desirable and permits thermal communication when desirable.
The temperature sensors 310 are moved into place relative to the shades 306 by actuating the side seal. Some of the thermometers are positioned within individual cells of the shades 306. There can be any number of thermometers, but in the shown embodiment there are three shades and five thermometers. Three of the thermometers are placed within the cells of the shades 306, and two are positioned between the shades. In other embodiments two more thermometers can be used: one in front of the shade and one behind the shade (between the shades 306 and the window (not pictured)). The thermometers 310 give an accurate picture of how the insulation of the shade is performing at any given time and can include a temperature within the shade.
The thermometers are shown projecting slightly into the cells; however, it is to be appreciated that the thermometers may be built flush with the sealing member 320 and can still monitor temperature within the cells. The information provided by the system 300 can be sued to operate side seals, or to raise or lower the shades to achieve a light property that best achieves the desired temperature. The information can also be used to show heating/cooling efficiency gains provided by the system 300.
All patents and published applications referenced above are incorporated in their entirety herein.
The present disclosure has been made with reference to various specific and preferred embodiments and techniques. Nevertheless, it is understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.
This application claims priority to U.S. Provisional Patent Application No. 63/132,225 entitled “SEAL FOR WINDOW COVERING” filed December 30, 2020 which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63132225 | Dec 2020 | US |