The present invention relates to seals, and more particularly to lip seals operational at least partially at relatively low temperatures.
A conventional lip seal includes an annular elastomeric body with a generally semicircular lip that engages inwardly against a shaft or outwardly against a bore surface. During initial start-up of a machine incorporating the seal, the seal may experience inflexibility when the initial temperature is below the glass transition temperature of the particular elastomer. As such, the seal lip may permit leakage past the seal until the temperature increases above the glass transition temperature.
In one aspect, the present invention is a seal for sealing an annular space between an inner member and an outer member, the inner member having an outer circumferential surface and the outer member having an inner circumferential surface. The annular space is defined between the inner and outer circumferential surfaces and one of the inner and outer members is displaceable through a stroke length along a central axis. The seal comprises an annular seal body formed of an elastomeric material, coupled with the inner member or with the outer member, and having a first circumferential surface, an opposing second circumferential surface, and a sealing projection extending radially from the first circumferential surface, the projection having a generally frustoconical primary sealing surface with a first axial end, a second axial end and an axial length between the first and second ends. Further, the projection is sealingly engageable with the inner surface of the outer member when the seal body is coupled with the inner member, such that substantially the entire axial length of the primary sealing surface is disposed against the inner surface of the outer member. Alternatively, the projection is sealingly engageable with the outer surface of the inner member when the seal body is coupled with the outer member, such that substantially the entire axial length of the primary sealing surface is disposed against the outer surface of the inner member.
In another aspect, the present invention is again a seal for sealing an annular space between an inner member and an outer member, the inner member having an outer circumferential surface and the outer member having an inner circumferential surface and an axial end. The annular space is defined between the inner and outer circumferential surfaces and one of the inner and outer members is linearly displaceable through a stroke length along a central axis. The seal comprises an annular seal body formed of an elastomeric material and having an inner circumferential surface and an opposing outer circumferential surface, the outer circumferential surface being disposed on the inner surface of the outer member, and a generally cantilever-like sealing projection extending radially inwardly from the inner circumferential surface and axially beyond the axial end of the outer member. The projection has a generally frustoconical primary sealing surface having a first axial end, a second axial end and an axial length between the first and second ends. The projection is sealingly engageable with the outer surface of the inner member such that substantially the entire axial length of the primary sealing surface is disposed against the outer circumferential surface of the inner member.
In yet another aspect, the present invention is again a seal for sealing an annular space between an inner member and an outer member, the inner member having an outer circumferential surface and an axial end and the outer member having an inner circumferential surface. The annular space is defined between the inner and outer circumferential surfaces and one of the inner and outer members is linearly displaceable through a stroke length along a central axis. The seal comprises an annular seal body formed of an elastomeric material and having an inner circumferential surface and an opposing outer circumferential surface, the inner circumferential surface being disposed on the outer surface of the inner member, and a generally cantilever-like sealing projection extending radially outwardly from the outer circumferential surface of the seal body and axially beyond the axial end of the inner member. The projection has a generally frustoconical primary sealing surface having a first axial end, a second axial end and an axial length between the first and second ends. The projection is sealingly engageable with the inner surface of the outer member such that substantially the entire axial length of the primary sealing surface is disposed against the inner circumferential surface of the outer member.
The foregoing summary, as well as the detailed description of the preferred embodiments of the present invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings, which are diagrammatic, embodiments that are presently preferred. It should be understood, however, that the present invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:
Certain terminology is used in the following description for convenience only and is not limiting. The words “inner”, “inwardly” and “outer”, “outwardly” refer to directions toward and away from, respectively, a designated centerline or a geometric center of an element being described, the particular meaning being readily apparent from the context of the description. Further, as used herein, the words “connected” and “coupled” are each intended to include direct connections between two members without any other members interposed therebetween and indirect connections between members in which one or more other members are interposed therebetween. The terminology includes the words specifically mentioned above, derivatives thereof, and words of similar import.
Referring now to the drawings in detail, wherein like numbers are used to indicate like elements throughout, there is shown in
In any case, the inner member 1 has an outer circumferential surface 1a and the outer member 2 has an inner circumferential surface 2a, the annular space AS being defined between the inner and outer circumferential surfaces 1a, 2a, respectively. As best shown in
The seal 10 comprises an annular seal body 12, which is formed of an elastomeric material and has a first circumferential surface 14 and an opposing second circumferential surface 16, and a sealing projection 18. Preferably, the second circumferential surface 16 of the seal body 12 is either disposed on the inner surface 2a of the outer member 2 or disposed on the outer surface 1a of the inner member 1 so as to couple the seal 10 with the particular member 1 or 2. Alternatively, the seal body 12 may be disposed within an annular groove (not shown) of either member 1, 2. Further, the seal 10 may be coupled with the movable one of the members 1, 2 or coupled with the other, non-movable or “static” member 2, 1, respectively.
Also, when used in an application having a central member, such as the piston 4, the present seal 10 is preferably used in pairs in which one seal 10 seals inwardly against the shaft 3 and the other seal 10 seals outwardly against the housing 5 (structure not shown). However, to simplify the description of the details of the seal 10, the inwardly sealing and outwardly sealing versions of the seal 10 are described separately and each shown in combination with a standard seal 6 in
Further, the sealing projection 18 extends radially from the first circumferential surface 14 and has a generally frustoconical primary sealing surface 20. Preferably, the sealing projection 18 is generally cantilever-like and extends axially beyond an axial end 1b or 2b of the particular member 1, 2, respectively, to which the seal body 12 is coupled. That is, axially beyond the axial end 2b when coupled with the outer member 2, as shown in
The projection 18 is sealingly engaged with the outer surface 1a of the inner member 1 when the seal body 12 is coupled with the outer member 2, as shown in
In either case, the axial length LA of the primary sealing surface 20 has a value of at least a value of the stroke length LS of the movable member 1 or 2, i.e., LA is equal to or greater than the length LS. As such, no section of the surface 1a or 2a against which the projection 18 seals is ever located in both chambers C1 and C2 during displacement of the movable member 1 or 2. In other words, any section of the engaged surface 1a or 2a will always be located in the first chamber C1, always located in the second chamber C2, located in the first chamber C1 for part of the “stroke” and otherwise engaged by the sealing projection 18, located in the second chamber C2 for part of the “stroke” and otherwise engaged by the sealing projection 18, or always engaged by the projection 18. Thus, any fluid, such as oil, which may become disposed within an imperfection, e.g., a void, cavity, etc., in the surface 1a or 2a being sealed against is prevented from “leaking” past the seal 10.
The structure of the present seal 10 is particularly beneficial for low temperature applications, specifically operating in ambient temperatures below the glass-transition temperature of the particular elastomer of the seal body 12, which is most often experienced at the initial “start-up” of a machine incorporating the two members 1 and 2. More specifically, the glass transition temperature is the temperature below which the seal material has become brittle and inflexible. As such, seal material at or below the glass-transition temperature is unable to expand and fill such surface imperfections or to fill a void/space between the seal 10 and the surface 1a or 2a being sealed against caused by relative misalignment or “cocking” of the members 1, 2. Therefore, having the sealing surface 20 with an axial length LA equal to or greater than the stroke length LS will ensure that no leakage of fluid through the seal 10 occurs even when the seal material is below the glass transition temperature.
With previously known seals having a conventional semi-circular profile, the seal “band”, i.e., the axial length of the contact surface of a seal with a surface is generally too narrow and enables surface imperfections to be exposed to both chambers C1 and C2. In order to increase the seal band, certain prior art seals have operated with increased radial loading to cause greater interference, which also substantially increases friction between the seal and the surface, particularly when the temperature of a machine increases during operation.
Referring to
Referring specifically to
Further, the primary sealing surface 20 is preferably substantially “flat”, although frustoconical or axially tapered in the free or uninstalled state. Specifically, the primary sealing surface 20 has a diameter Ds (
Referring again to
In other words, when the seal 10 is formed to be inwardly sealing, a seal 10 formed on the diametrically greater end of the tolerance range will engage the inner member 1 with only the primary sealing surface 20, as shown in
Referring to
Further, the second circumferential surface 16 of the seal body 12 is preferably bonded to either the outer member inner surface 2a or the inner member outer surface 1a, as well as bonding the radial surface 36 of the section 32 to a radial surface (not indicated) of the coupled body 1 or 2 when the seal body 12 includes the radial section 32. However, the seal body 12 may be coupled with the member 1 or 2 by any appropriate means, such as fasteners, friction, etc. Furthermore, as mentioned above, the seal body 12 may alternatively be formed as a substantially annular ring (not shown) without a radial section, and sized to be installed within a groove of the inner member 1 or a groove in the outer member 2 (neither structure depicted).
The benefits of the present invention are readily apparent from a comparison with previously known seal designs, as shown in
Clearly,
Next,
As shown in
Representative, non-limiting examples of the present invention were described above in detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention.
Moreover, combinations of features and steps disclosed in the above detailed description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe representative examples of the invention. Furthermore, various features of the above-described representative examples, as well as the various independent and dependent claims below, may be combined in ways that are not specifically and explicitly enumerated in order to provide additional useful embodiments of the present teachings.
All features disclosed in the description and/or the claims are intended to be disclosed separately and independently from each other for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter, independent of the compositions of the features in the embodiments and/or the claims. In addition, all value ranges or indications of groups of entities are intended to disclose every possible intermediate value or intermediate entity for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter. The invention is not restricted to the above-described embodiments, and may be varied within the scope of the following claims.
This application claims the benefit of U.S. Provisional Application No. 62/902,767, filed Sep. 19, 2019.
Number | Name | Date | Kind |
---|---|---|---|
2806725 | Kosatka | Sep 1957 | A |
3903584 | Evans | Sep 1975 | A |
4410189 | Myers | Oct 1983 | A |
5865442 | Iwashita | Feb 1999 | A |
6056293 | Visconti | May 2000 | A |
6547250 | Noble | Apr 2003 | B1 |
6575471 | Grosspietsch | Jun 2003 | B1 |
6676132 | Takebayashi | Jan 2004 | B1 |
9194496 | Pecak | Nov 2015 | B2 |
9482292 | Ozawa | Nov 2016 | B2 |
10100931 | Pecak | Oct 2018 | B2 |
10119573 | Arnault | Nov 2018 | B2 |
11111969 | Arnault | Sep 2021 | B2 |
20040150168 | Heathcott | Aug 2004 | A1 |
20050284724 | Hagenow | Dec 2005 | A1 |
20070251380 | Kanzaki | Nov 2007 | A1 |
20090032366 | Goto | Feb 2009 | A1 |
20090282972 | Schmidt | Nov 2009 | A1 |
20100025937 | Morishita | Feb 2010 | A1 |
20100200355 | Nishimura | Aug 2010 | A1 |
20130285333 | Foti | Oct 2013 | A1 |
20160010750 | Colineau | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
09210088 | Aug 1997 | JP |
10331983 | Dec 1998 | JP |
2008106902 | May 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20210088143 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62902767 | Sep 2019 | US |