Seal land with air injection for cavity purging

Information

  • Patent Application
  • 20080016871
  • Publication Number
    20080016871
  • Date Filed
    July 24, 2006
    17 years ago
  • Date Published
    January 24, 2008
    16 years ago
Abstract
An exhaust liner assembly including an interface between moveable parts includes a seal liner having a plurality of slots. The size of each slot varies with the circumferential position of the liner assembly to provide a stable cavity pressure within the interface to create a stable barrier about the entire circumference of the exhaust liner assembly.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of an example aircraft engine assembly.



FIG. 2 is a cross-sectional view of an example liner assembly interface according to this invention.



FIG. 3 is a rear view of the seal land assembly.



FIG. 3A is another rear view of another example seal land assembly.



FIG. 4 is a cross-sectional view with a portion of the example seal land assembly.



FIG. 5 is an enlarged view of a portion of the example seal land assembly.



FIG. 6 is another enlarged view of a slot disposed within the example seal land assembly.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 1, an example engine assembly 10 includes an exhaust liner assembly 12. The exhaust liner assembly 12 includes an interface 30 to provide for movement of the exhaust liner 12. The engine assembly 10 is disposed within a housing 15 that includes an inner surface 26. Air enters the engine assembly 10 into a compression module 16. Compressed air from the compression module 16 is injected into a combustion module 14. In the combustion module 14, compressed air is mixed with gas and ignited to create hot core exhaust gases that are driven past a turbine module 18. Rotation of the turbine module 18 drives the compressor module 14.


Hot core exhaust gas is exhausted through an exhaust duct assembly, schematically indicated at 12. The example exhaust duct assembly 12 includes a liner assembly 24 that defines an inner surface of the exhaust duct assembly. The example exhaust duct assembly 12 includes a first portion 50 and a second portion 52 that is movable relative to the first portion 50. An interface 30 between the first portion and the second portion 52 includes a cavity 32. The cavity 32 is injected with air that is by-passed around the compression module 16 to prevent the hot core exhaust gases from impinging into the interface 30.


As should be appreciated, the engine assembly 10 illustrated is by way of example only and other engine assemblies or moveable duct assemblies requiring a liner will benefit from the disclosures of the invention.


Referring to FIG. 2, the interface 30 of the exhaust liner assembly 12 includes the first portion 50 and the second portion 52. The first portion 50 in the example exhaust liner assembly 12 is stationary. The second portion 52 is moveable relative to the first portion 50. Movement between the first portion 50 and the second portion 52 is facilitated by a gap between the two portions 50, 52 that is filled with the cooling air 36.


The inner surface 28 of the first portion 50 is disposed at a different radial position relative to the inner surface 28 of the second portion 52. These different radial positions result in a radial distance 34 between the two inner surfaces 28. This radial distance 34 varies about the circumference of the exhaust duct assembly 12.


The second portion 52 includes a U-seal 38 that is biased against a seal land 35 by a biasing member 40. The interface between the U-seal 38 and the seal land 35 is biased by the biasing member 40 to accommodate thermal growth and movement between the first portion 50 and the second portion 52. Movement between the first portion 50 and the second portion 52 is facilitated by a cavity 32 of the interface 30. Cooling air flow 36 is injected into the cavity 32 at a rate determined to provide a desired pressure within the cavity 32 that prevents the intrusion of hot core gases 22.


The seal land 35 includes a slot 42 through which cooling air 36 flows. This slot 42 supplies cooling air 36 into a finger seal injection guide 62 that defines a flow path 64 for the cooling air 36. This flow path 64 is defined between a flow path inner liner 60 and the finger seal injection guide 62. The end portion of the finger seal injection guide 62 is held at a desired opening by a spacer 66.


The slot 42 includes a width 44 that corresponds with the specific radial distance 34 between the inner surfaces 28. As appreciated, the variation of the radial distance about the circumference of the exhaust liner assembly 12 results in a varying flow out of the cavity 32. The differing air flow out of the cavity 32 in turn, results in differing pressures within the cavity 32.


Conventional accommodation of this variation includes merely injecting cooling air at a sufficient rate to accommodate the cavity and radial distance 34 of the greatest distance thereby providing excessive air flow for some circumferential locations and just enough at other locations. As appreciated, this solution results in the inefficient use of a majority of cooling bypass air.


The example seal land 35 includes the slots 44 that vary in size about the circumference of the exhaust liner assembly 12 to tailor air flow 36 to accommodate the localized pressure within the cavity 32 to generate the barrier pressure to the hot core gasses 22.


Referring to FIG. 3 with continuing reference to FIG. 2, the seal land 35 is shown and includes a plurality of the slots 42 disposed circumferentially. Between the slots 42 are fastener lands 46. The fastener lands 46 provide a flange surface for attachment of the seal land 35 to the liner portion 50.


The size of the seal slots 42 vary according to the specific circumferential location within the seal land 35. In the example seal land 35 the slot width 44 varies every approximately 18 degrees as illustrated at 48. The angular variation is related to the variation in the radial distance 34 about the circumference of the exhaust liner assembly 12. The slots 42 vary in width 44 for each angular section 48 about the entire circumference of the seal land 35. The variation in slot size customizes and varies the cooling air flow 36 into the circumferential cavity 32 to accommodate and provide the desired pressure to prevent impingement of the hot core gases 22.


Referring to FIG. 3A, another example seal land 35′ includes a plurality of openings 42 that are the same size, but are grouped non-uniformly about the circumference of the seal land 35′. In this way a common size opening can be utilized in desired densities to provide the desired variation of airflow through the seal land 35′ in a specific circumferential sector. In the example seal land 35′ a sector 49 includes a plurality of slots 42 that are spaced a circumferential length 51 apart. This spacing of slots provides a desired airflow for that specific circumferential area. In contrast, another sector includes slots 42 spaced a circumferential distance 53 apart to provide a different airflow as is desired for that particular circumferential location.


Referring to FIG. 4, an enlarged cross-sectional view of a portion of several slots 42 disposed between flange members 54 is shown. Each flange member 54 is to provide for the attachment by way of a fastener to the fastener lands 46. Also disposed between the fastener lands 46 is a step flange 56 to accommodate and provide a bearing surface between the fastener lands 46 to provide a desired sealing and contact surface.


Referring to FIG. 5, an enlarged view of a section between the fastener lands 46 is illustrated with the step flanges 56. The step flanges 56 are of such a length and depth required to provide the desired cooling air flow through the slots 42 that in turn provides the desired pressurization of the cavity 32 of the interface 30.


Referring to FIG. 6, a still greater enlarged view is shown of the slot 42 disposed between two step flanges 56 that provides support of the seal land at various circumferential locations. The size of the slot 42 includes a width 43 and a depth 45. A thickness 55 in the slot 42 varies dependent on a circumferential position on the seal land 35. Variation of the thickness provides a variation in the depth 45 from the top of the step flange 56 and a corresponding fastener land 46 that is utilized to tailor airflow into each circumferential location of the seal land 35. Further, the variation of the thickness 55 changes the depth 45, but does not change an overall thickness 57 of the seal land 35. The overall thickness of the seal land 35 is maintained about the circumference to provide a desired constant mounting surface and sealing surface for the U-seal 38. Although the example seal land 35 varies the thickness 55, other dimensions, such as the width 43 could be varied to provide the desired slot size required to provide the desired airflow into the interface 30.


Accordingly, the exhaust liner assembly interface according to this invention provides for the stable maintenance of cavity pressure that generates the desired results of providing a barrier to hot core gasses.


Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.

Claims
  • 1. A liner assembly comprising: an interface between at least two portions of the liner assembly; anda plurality of inlets that supply an airflow into the interface, wherein the plurality of inlets provide an airflow that varies along the interface to provide a varying flow field through the interface.
  • 2. The assembly as recited in claim 1, wherein the plurality of inlets comprises at least one of inlet of a different size than at least one other of the plurality of inlets.
  • 3. The assembly as recited in claim 1, wherein the interface comprises a cavity disposed between the at least two portions of the liner assembly.
  • 4. The assembly as recited in claim 1, wherein the interface is disposed about an inner periphery of the liner assembly, and the airflow varies with a position of the opening along the inner periphery.
  • 5. The assembly as recited in claim 1, wherein the interface comprises a cavity disposed circumferentially about the hot core gas flow.
  • 6. The assembly as recited in claim 1, wherein the at least two portions of the liner assembly comprise an inner surface of the liner assembly, wherein the at least two portions are spaced a radial distance apart from each other.
  • 7. The assembly as recited in claim 6, wherein the radial distance between the at least two portions varies along the interface, and the size of each of the plurality of inlets varies selectively responsive to variation in the radial distance.
  • 8. The assembly as recited in claim 7, wherein the interface is circumferential and the size of the plurality of inlets varies over a circumferential length of the interface.
  • 9. The assembly as recited in claim 8, wherein the circumferential length comprise a length providing between 15 and 20 degrees of the circumference of the liner assembly.
  • 10. The assembly as recited in claim 7, wherein the interface is circumferential and the number of the plurality of openings varies about a circumferential length of the interface.
  • 11. An exhaust liner assembly comprising: a least two liner components defining an inner duct surface for directing a flow of core gases.an interface between the at least two liner components disposed about the inner duct surface;a plurality of openings disposed about the inner duct for supplying air flow into the interface at a corresponding plurality of locations, wherein the plurality of openings are provide an airflow varying about the interface.
  • 12. The assembly as recited in claim 11, wherein the plurality of openings vary in size about the interface for controlling airflow into the interface.
  • 13. The assembly as recited in claim 11, wherein the plurality of openings are grouped unequally about the interface for controlling airflow into the interface.
  • 14. The assembly as recited in claim 12, wherein the at least two liner components are spaced apart a radial distance along the inner duct surface, wherein the radial distance varies about the inner duct surface, and the size of each of the plurality of openings is related to the radial distance between the at least two liner components.
  • 15. The assembly as recited in claim 11, wherein the at least two liner components are movable relative to each other.
  • 16. The assembly as recited in claim 11, wherein the at least two liner components are fixed relative to each other.
  • 17. The assembly as recited in claim 12, wherein the interface comprises a cavity, wherein the cavity comprises the plurality of openings for supplying air into the cavity, and an outlet in communication with the hot core gases.
  • 18. The assembly as recited in claim 14, wherein the size of the plurality of openings varies to provide a desired pressure at the outlet.
  • 19. The assembly as recited in claim 15, wherein the pressure desired at the outlet varies in relation to spaced apart radial distance between the at least two liner parts.
  • 20. The assembly as recited in claim 15, wherein the desired pressure is determined to prevent the flow of hot core gases into the interface.
  • 21. A seal land comprising: a plurality of inlets that supply an airflow through the seal land, wherein at least one portion of the seal land provides a flow field different that another portion of the seal land.
  • 22. The seal land as recited in claim 21, wherein the seal land comprises at least one inlet of a different size than another of the plurality of inlets.
  • 23. The seal land as recited in claim 21, wherein the at least one portion of the seal land comprises more of the plurality of openings than said another portion of the seal land.
  • 24. The seal land as recited in claim 21, wherein the plurality of openings are disposed on an inner periphery of the seal land and the airflow varies with a position of the opening along the inner periphery.