The present invention generally relates to a fluid injector of a reductant delivery unit (RDU), and particularly to a robust RDU fluid injector for non-purge applications.
Emissions regulations in Europe and North America are driving the implementation of new exhaust aftertreatment systems, particularly for lean-burn technologies such as compression-ignition (diesel) engines, and stratified-charge spark-ignited engines (usually with direct injection) that are operating under lean and ultra-lean conditions. Lean-burn engines exhibit high levels of nitrogen oxide emissions (NOx) that are difficult to treat in oxygen-rich exhaust environments characteristic of lean-burn combustion. Exhaust aftertreatment technologies are currently being developed that treat NOx under these conditions.
One of these technologies includes a catalyst that facilitates the reactions of ammonia (NH3) with the exhaust nitrogen oxides (NOx) to produce nitrogen (N2) and water (H2O). This technology is referred to as Selective Catalytic Reduction (SCR). Ammonia is difficult to handle in its pure form in the automotive environment, therefore it is customary with these systems to use a diesel exhaust fluid (DEF) and/or liquid aqueous urea solution, typically at a 32% concentration of urea (CO(NH2)2). The solution is referred to as AUS-32, and is also known under its commercial name of AdBlue. The reductant solution is delivered to the hot exhaust stream typically through the use of an injector, and is transformed into ammonia prior to entry in the catalyst. More specifically, the solution is delivered to the hot exhaust stream and is transformed into ammonia in the exhaust after undergoing thermolysis, or thermal decomposition, into ammonia and isocyanic acid (HNCO). The isocyanic acid then undergoes a hydrolysis with the water present in the exhaust and is transformed into ammonia and carbon dioxide (CO2), the ammonia resulting from the thermolysis and the hydrolysis then undergoes a catalyzed reaction with the nitrogen oxides as described previously.
AUS-32, or AdBlue, has a freezing point of −11 C, and system freezing is expected to occur in cold climates. Since these fluids are aqueous, volume expansion happens after the transition to the solid state upon freezing. The expanding solid can exert significant forces on any enclosed volumes, such as an injector. This expansion may cause damage to the injection unit, so different SCR strategies exist for addressing reductant expansion.
There are two known SCR system strategies in the marketplace: purge systems and non-purge systems. In purge SCR systems, the reductant urea and/or DEF solution is purged from the RDU when the vehicle engine is turned off. In non-purge SCR systems, the reductant remains in the RDUs throughout the life of the vehicle. During normal operation of a non-purge SCR system, the RDU injector operates at temperatures which are above the freezing point of the reductant such that reductant in the RDU remains in the liquid state. When the vehicle engine is turned off in the non-purge SCR system, however, the RDU injector remains filled with reductant, thereby making the RDU injector susceptible to damage from reductant expanding in freezing conditions.
Example embodiments overcome shortcomings found in existing RDU fluid injectors and provide an improved fluid injector for non-purge SCR systems in which the adverse effects from the RDU being in temperatures that are below the freezing point of reductant are reduced. According to an example embodiment, an RDU includes a fluid injector having a fluid inlet disposed at a first end of the fluid injector for receiving a reductant, and a fluid outlet disposed at a second end of the fluid injector for discharging the reductant, the fluid injector defining a fluid path from the fluid inlet to the fluid outlet. The fluid injector further includes a tube member having an end disposed at the fluid inlet of the fluid injector, the tube member configured to pass reductant along the fluid path. A cup covers the end of the tube member and includes a sidewall and an end portion extending radially inwardly from the sidewall. A seal member is disposed within the cup between the end of the tube member and the end portion of the cup. The seal member occupies a volume so as to reduce an amount of space for reductant between the tube member and the cup.
The fluid injector further includes an injector component disposed in the tube member proximal to the fluid inlet of the fluid injector, and the seal member contacts the injector component.
In an example embodiment, the injector component is at least one of a filter and a cap member therefor.
In an example embodiment, the seal member is constructed from compressible material, and the seal member is under compression in the reductant delivery unit.
The seal member may extend radially outwardly such that an outer radial sidewall of the seal member contacts the sidewall of the cup.
The seal member includes a top surface, a bottom surface and a protrusion which extends from the bottom surface and is disposed within the end of the tube member. The protrusion has an outer diameter which is smaller than a diameter of the outer radial sidewall of the seal member.
The seal member includes a bore defined therethrough, the bore defining part of the fluid path through the reductant delivery unit.
The seal member may include a protrusion which extends into the end of the tube member.
Aspects of the invention will be explained in detail below with reference to an exemplary embodiment in conjunction with the drawings, in which:
The following description of the example embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
Example embodiments are generally directed to an RDU for a non-purge SCR system in which damaging effects from a reductant, DEF and/or urea solution freezing in the RDU injector are reduced.
Fluid injector 12 is disposed in an interior carrier 18 of RDU 10, as shown in
An inlet cup structure of RDU 10, generally indicated at 24 in
Injector 12 includes an injector body structure in which the components of injector 12 are disposed. The injector body structure includes a first injector body portion 38 in which coil 14 and armature 16 are disposed, and a valve body portion 40 in which a valve assembly of injector 12 is at least partly disposed. First injector body portion 38 and valve body portion 40 are fixedly connected, either directly or indirectly, to each other.
Referring to
The actuator unit of fluid injector 12 further includes a pole piece 46 which is fixedly disposed within first injector body portion 38. Coil 14 at least partly surrounds pole piece 46 and armature 16. Pole piece 46 is disposed upstream of armature 16 within injector 12. Pole piece 46 includes a central bore defined axially therethrough.
Armature 16 includes a U-shaped section which defines a pocket in which at least part of a spring 50 is disposed. Spring 50, which is part of the actuator unit, biases movable armature 16 so that armature 16 is spaced apart from pole piece 46 when no current is passed through coil 14. Spring 50 partly extends within the central bore of pole piece 46. An end of spring 50 which extends within pole piece 46 contacts a spring adjustment tube 52. Spring adjustment tube 52 is at least partly disposed within the central bore of pole piece 46, upstream (relative to a direction of flow of reductant through injector 12) of spring 50. Spring adjustment tube 52 includes a bore defined axially therethrough. The throughbore of spring adjustment tube 52 partly defines the fluid path for reductant in fluid injector 12, and defines the only fluid path for reductant through pole piece 46. Due to its engagement with spring 50, spring adjustment tube 52 is used to calibrate the dynamic flow of reductant through fluid injector 12.
Armature 16 further includes one or more channels 60 (
Referring to
As mentioned above, RDU 10 forms part of a non-purge SCR exhaust aftertreatment system. As a result, reductant remains in fluid injector 12 following the vehicle engine being turned off. In example embodiments, fluid injector 12 is configured so that the amount of reductant in fluid injector 12 is reduced. In other words, the total volume of the fluid path for reductant through fluid injector 12 is reduced. By having less space for reductant in injector 12, the amount of reductant in RDU 10 that may potentially freeze is reduced, thereby reducing the susceptibility of injector 12 being damaged by expansion forces from frozen reductant.
In order to reduce the volume of the reductant fluid path in fluid injector 12, the thickness of valve body portion 40 is increased. In addition, pin member 58 is constructed as a solid element such that reductant flows around the outer surface of pin member 58, instead of therethrough. The spacing between the outer surface of pin 58 and the inner surface of valve body portion 40, which partly defines the fluid path for reductant through injector 12, is narrowed. This narrowed portion of the fluid path is the only fluid path for reductant between armature 16 and seat 56 in fluid injector 12. The narrowed fluid path between pin 58 and valve body portion 40 provides a sufficient reductant flow rate through fluid injector 12 for performing reductant injection during normal operation of RDU 10 while at the same time maintaining a relatively small volume of reductant within injector 12 so as to lessen the risk of injector 12 being damage from the reductant therein freezing.
Further, the diameter of the pocket of armature 16, in which spring 50 is at least partly disposed, is reduced, which allows for the thickness of pocket wall 16A of armature 16 to be increased. In an example embodiment, the thickness of pocket wall 16A is between 45% and 75% of the diameter of pocket, such as about 60%. The increase in thickness of pocket wall 16A, as well as the increased thickness of valve body portion 40 and pin member 50 being a solid pin, result in the components of injector 12 being strengthened and thus more resistant to reductant freezing forces.
Still further, the bore of spring adjustment tube 52 is sized for reducing the volume of the reductant fluid path in injector 12. In an example embodiment, the diameter of the bore of spring adjustment tube 52 is between 12% and 22% of the outer diameter of pole piece 46, and particularly between 16% and 19% thereof.
Injector 12 further includes a retaining ring 207 which is disposed in tube member 42 upstream of, and in contact with, cap member 206, as shown in
Referring to
Volume reduction member 208 further includes a bore 208A (
With reference to
According to an example embodiment, fluid injector 12 includes a plurality of orifice discs 212 disposed in a stacked arrangement. The orifice disc stack is disposed against the downstream end of seat 56. In the example embodiment illustrated in
As discussed above, fluid injector 12, and particularly the components thereof, are configured to reduce the volume of the reductant fluid path in injector 12. In example embodiments, the ratio of the volume of the fluid path in fluid injector 12 to a volume of the components of injector 12 (including but not necessarily limited to coil 14, armature 16, pole piece 46, spring adjustment tube 52, volume reduction member 208, volume compensation member 210, filter 204, retaining ring 207, spring 50, pin member 58, seal member 54, seat 56, first injector body portion 20A and valve body portion 40) is between 0.08 and 0.30, and particularly between 0.12 and 0.20, such as about 0.15. These volume amounts are calculated between orthogonal planes relative to the longitudinal axis of fluid injector 12—from a first plane along the upstream end of tube member 42 (i.e., fluid inlet 30) and a second plane along the lowermost (downstream) surface of second disc 212B (i.e., fluid outlet 32). It is understood that the particular ratio of volume of the reductant path to injector component volume within fluid injector 12 may vary depending upon a number of cost and performance related factors, and may be any value between about 0.08 and about 0.30. Providing a fluid injector having a reduced ratio of reductant fluid path volume to injector component volume to fall within the above range advantageously results in less reductant in injector 12 which reduces the susceptibility of RDU 10 being damaged if the reductant in injector 12 freezes.
In another example embodiment, shown in
As mentioned, the outer diameter of first portion 308A of volume reduction member 308 is less than the outer diameter of second portion 308B thereof. As shown in
Volume reduction member 308 further includes a bore 308C defined in the axial direction through volume rejection member 308, from one axial (top) end to the other axial (bottom) end. Bore 308C is located along the longitudinal axis of volume reduction member 308 and itself forms part of the reductant fluid path for passing reductant through injector 12, and the only reductant fluid path through or around volume reduction member 308. In an example embodiment, the diameter of the bore 308C is between 12% and 20% of the outer diameter of volume reduction member 308, such as about 16%. Because volume reduction member 308 extends to the inner surface of tube member 42 and because the diameter of bore 308C is relatively small relative to the outer diameter of volume reduction member 308, volume reduction member 308 occupies a volume within injector 12 which reduces the space or volume of the reductant fluid path through injector 12, thereby reducing the amount of reductant in injector 12 that could freeze and potentially damage injector 12.
Cap member 306 includes a number of the same characteristics of cap member 206 described above with respect to
In example embodiments, cap member 306 is engaged with and secured to volume reduction member 308. In this way, filter 204, cap member 306 and volume reduction member 308 form a single, unitary and integrated component, as shown in
In the example embodiments, cap member 306 fits over and engages with or otherwise attaches to at least a part of first portion 308A of volume reduction member 308, as shown in
With cap member 306 fitting over first portion 308A of volume reduction member 308, the outer diameter of sidewall 306A is the same or nearly the same as the outer diameter of second portion 308A. See
As discussed above, volume reduction member 308 is constructed from metal, such as stainless steel, according to an example embodiment. In another example embodiment, a part of second portion 308B is constructed from plastic or like compositions. Specifically, as illustrated in
During assembly of injector 12, the single assembly component (filter 204, cap member 306 and volume reduction member 308) is inserted within tube member 42 under pressure while contacting volume compensator 212. Following insertion and while still under pressure, cap member 306 is welded to tube member 42 all along the intersection thereof along the top portion of tube member 42. In an embodiment, the weld connection is a fillet weld.
In an example embodiment, injector 12 includes a seal member 402 which is disposed between the end of tube member 42 and cup 26. By being disposed between tube member 42 and cup 26, seal member 402 reduces the volume for reductant in injector 12 and/or RDU10, thus reducing the potential for damage to injector 12 and/or RDU 10 due to reductant freezing therein.
With reference to
An annular protrusion 402E extends from bottom surface 402C of seal member 402. Referring again to
In an example embodiment, seal member 402 is constructed from a resilient, compressible material, such as a rubber composition. It is understood, though, that seal member 402 may be formed from another suitable material which is compressible and resilient. Seal member 402 advantageously expands and contracts with changes in temperature so as to ensure that seal member 402 occupies most or all of the space between the end of tube member 42 and the end wall 26C of cup 26, thereby preventing any increase in the volume of reductant in RDU 10 over a wide temperature range.
During assembly of injector 12, seal member 402 is secured over the upstream end of tube member 42 such that seal member 402 is compressed in the assembled RDU 10. When in place within RDU 10, the bottom surface 402C of seal member 402 contacts and sealingly engages with the flared end of tube member 42, with protrusion 402E contacting the inner surface of the flared end of tube member 42. As shown in
It is understood that even though seal member 402 is described for use in conjunction with fluid injector 12 of RDU 10, seal member 402 may be used in other fluid injectors, particularly RDU fluid injectors which do not utilize cap member 306, filter 204 or volume reduction member 308. In such fluid injectors, seal member 402 is disposed over a tube like tube 202 described above and may contact such tube and a filter (or other injector component) disposed therein. For instance, seal member 308 may be disposed in RDU fluid injector 10′ of US patent publ. 20150122917A1, the content of which is hereby incorporated by reference herein in its entirety. Specifically, seal member 402 may be disposed above and contact the end of inlet tube 17 of fluid injector 10′, contact and engage with the inner surface of inlet cup 16, and protrude partly in inlet tube 17.
The example embodiments have been described herein in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Obviously, many modifications and variations of the invention are possible in light of the above teachings. The description above is merely exemplary in nature and, thus, variations may be made thereto without departing from the spirit and scope of the invention as defined in the appended claims.
The present application is related to U.S. patent application ______, filed ______, and titled, “INJECTOR FOR REDUCTANT DELIVERY UNIT HAVING REDUCED FLUID VOLUME” (attorney docket no. 2017P03658US); U.S. patent application ______, filed ______, and titled, “INJECTOR FOR REDUCTANT DELIVERY UNIT HAVING FLUID VOLUME REDUCTION ASSEMBLY” (attorney docket no. 2017P03659US); and U.S. patent application ______, filed ______, and titled, “INJECTOR FOR REDUCTANT DELIVERY UNIT HAVING FLUID VOLUME REDUCTION ASSEMBLY” (attorney docket no. 2017P03661 US). The content of the above applications are hereby incorporated by reference herein in their entirety.