1. Field of the Invention
The present invention relates to scroll machines, and in particular, to scroll compressors.
2. Description of the Related Art
Referring to
Fixed scroll 24 is secured to separator plate 18, such as by a plurality of bolts 72 disposed radially outwardly of separator plate hole 19, and includes outer wall 46 extending from base plate 48, and an involute wrap 50 extending from base plate 48 and disposed inwardly of outer wall 46. Fixed scroll 24 further includes a plurality of mount flanges 52 spaced radially about the end of outer wall 46 opposite base plate 48, and a plurality of bolts (not shown) secure mount flanges 52 to crankcase 28. Crankcase 28 includes main bearing 54 in which the upper portion of drive shaft 30 is rotatably supported. Stator 32 is fixed within housing 12 and is connected to outboard bearing assembly 36 and crankcase 28 in a suitable manner. Drive shaft 30 is secured to rotor 34 in a suitable manner, and outboard bearing assembly 36 includes outboard bearing 56 which supports a lower end of drive shaft 30. The upper portion of drive shaft 30 includes an eccentric end mounted within annular hub 58 extending downwardly from base plate 60 of orbiting scroll 26. Orbiting scroll 26 additionally includes an involute wrap 62 extending upwardly from base plate 60 thereof, which is in meshing relationship with wrap 50 of fixed scroll 24. Oldham coupling 64 is operatively coupled between orbiting scroll 26 and crankcase 28 to prevent rotation of orbiting scroll 26, as is known.
Additionally, fixed scroll 24 includes discharge outlet 68 in base plate 48. Discharge outlet 68 may be substantially centrally located within fixed scroll 24 and may be aligned with separator plate hole 19 of separator plate 18.
In operation, electrical energization of stator 32 rotatably drives rotor 34 and drive shaft 30 to move orbiting scroll 26 in an orbiting manner with respect to fixed scroll 24. A working fluid at suction pressure is drawn from suction chamber 38 into a suction inlet 66 of fixed scroll 24, and is compressed within the plurality of variable volume, working pockets or compression chambers 55 which are defined between wraps 50 and 62 of fixed and orbiting scrolls 24 and 26, respectively, as orbiting scroll 26 rotates in a known manner. The compressed working fluid is then discharged through discharge outlet 68 in base plate 48 of fixed scroll 24, through discharge check valve assembly 70, and through separator plate hole 19 aligned with discharge outlet 68 into discharge chamber 42 at a discharge pressure. The discharge pressure working fluid exits compressor 10 through discharge port 44 to enter components of a refrigeration system (not shown).
Referring to
Additionally, internal pressure relief valve (IPRV) 76 is disposed in and threaded into separator plate 18, as shown in
The above-described potential leak paths potentially reduce the efficiency of scroll compressor 10, thereby lowering productivity of the refrigeration system as a whole.
What is needed is a scroll compressor which is an improvement over the foregoing.
The present invention provides a scroll compressor having a housing with a motor-compressor unit disposed therein. The motor-compressor unit includes a crankcase, stator, rotor, and drive shaft assembly. The motor-compressor unit further includes a fixed scroll member and an orbiting scroll member. The scroll compressor has a separator plate disposed within the housing and secured to the fixed scroll member by a plurality of fasteners. A seal member is provided between the separator plate and the fixed scroll member and is disposed radially outwardly of at least one of the fasteners. In an exemplary embodiment, the seal member is an O-ring.
An advantage of the present invention is the complete prevention of discharge pressure working fluid leakage from a discharge chamber to a suction chamber of the scroll compressor, thereby enhancing productivity of the entire refrigeration system.
In one form thereof, the present invention provides a scroll compressor including a housing; a motor-compressor unit disposed within the housing, including a crankcase and a stator, rotor, and drive shaft assembly, the drive shaft rotatably supported by the crankcase, the motor-compressor unit further including a first scroll member fixed with respect to the housing and defining perpendicular axial and radial directions, the first scroll member including a base wall and a first wrap extending from the base wall; and a second scroll member coupled to the drive shaft for orbital movement, the second scroll member including a second wrap intermeshed with the first wrap; a separator plate disposed within the housing and secured to the first scroll member by a plurality of fasteners; and a seal member between the separator plate and the first scroll member, the seal member disposed radially outwardly of at least one of the fasteners.
In another form thereof, the present invention provides a scroll compressor including a housing; a motor-compressor unit disposed within the housing, including a crankcase and a stator, rotor, and drive shaft assembly, the drive shaft rotatably supported by the crankcase, the motor-compressor unit further including a first scroll member fixed with respect to the housing and defining perpendicular axial and radial directions, the first scroll member including a base wall having a discharge outlet located substantially centrally therein, and a first wrap extending from the base wall; and a second scroll member coupled to the drive shaft for orbital movement, the second scroll member including a second wrap intermeshed with the first wrap; a separator plate disposed within the housing and including an opening aligned with the discharge outlet, the separator plate secured to the first scroll member by a plurality of fasteners disposed radially outwardly of the opening; and a continuous seal member captured between the separator plate and the first scroll member, the seal member disposed radially outwardly of the fasteners.
In a further form thereof, the present invention provides a scroll compressor including a housing; a motor-compressor unit disposed within the housing including a crankcase; a stator, rotor, and drive shaft assembly, the drive shaft rotatably supported by the crankcase; a first scroll member fixed with respect to the housing and defining perpendicular axial and radial directions, the first scroll member including a base wall and a first wrap extending from the base wall; and a second scroll member coupled to the drive shaft for orbital movement, the second scroll member including a second wrap intermeshed with the first wrap; a separator plate disposed within the housing and dividing the housing into a suction chamber and a discharge chamber, the separator plate secured to the first scroll member by a plurality of fasteners; and sealing means between the separator plate and the first scroll member to prevent passage of a working fluid therebetween.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates one preferred embodiment of the invention, in one form, and such exemplification is not to be construed as limiting the scope of the invention in any manner.
Referring to
Scroll compressor 110 further includes a first, fixed scroll 24 and a second, orbiting scroll 26. Fixed scroll 24 is fixed with respect to housing 12 and defines perpendicular axial and radial directions. The axial direction of fixed scroll 24 is aligned with the central, longitudinal axis of housing 12. Separator plate 18 is secured around its perimeter to the interior of housing 12, such as by welding, and divides the interior of the housing 12 into a suction chamber 38 in fluid communication with suction port 40 (
Referring now to
The operation of scroll compressor 110 is substantially similar to that described above for scroll compressor 10 and is not described further herein.
Referring now to
The fluidtight seal between separator plate 18 and fixed scroll 24 prevents leakage of discharge pressure working fluid from discharge chamber 42 into suction chamber 38. Advantageously, the fluidtight seal is radially outside the perimeter of fasteners 72 such that, even if leakage were to occur around fasteners 72, seal member 78 would prevent the discharge pressure working fluid from entering suction chamber 38.
In an alternative embodiment (not shown), separator plate 18 may include an annular groove located in a bottom surface thereof to accommodate seal member or O-ring 78. Seal member 78 would preferably extend a distance below the bottom surface of separator plate 18 and be captured under compression between separator plate 18 and fixed scroll 24 to form a fluidtight seal between separator plate 18 and fixed scroll 24.
In another alternative embodiment (not shown), both separator plate 18 and fixed scroll 24 may each include annular grooves to accommodate seal member or O-ring 78. Seal member 78 would be captured under compression between separator plate 18 and fixed scroll 24. Separator plate 18 and fixed scroll 24 compress seal member 78 upon torque of fasteners 72 when separator plate 18 is attached to fixed scroll 24 to form a fluidtight seal between separator plate 18 and fixed scroll 24.
Referring now to
Referring now to
While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.