The present invention relates to a seal member installed in the end surface of each of the stationary vortex body and rotatable vortex body.
A conventional vortex compressor includes a casing in which a compression chamber and an expelling chamber are defined and separated by a stationary vortex body. The refrigerant is introduced into the compression chamber via an inlet and the rotatable vortex body is rotated relative to the stationary vortex body to compress the refrigerant. During compression, the pressure between the base board and vortex surface of the stationary vortex body and the rotatable vortex body suddenly increases such that leakage might happen in axial direction. The leakage is worse when the vortex surface is worn out. This results in less efficiency for the refrigerant in the whole air-conditioning system.
As shown in
The present invention intends to provide a seal member which includes a stepped surface defined in the first end thereof so that when the compressor is activated, the refrigerant enters the gap between the seals and the grooves to push the seal members toward the vortex boards so that the pressure is maintained. By this way, the efficiency for the compressor can be increased.
The present invention relates to a vortex compressor which comprises a casing in which a stationary vortex body and a rotatable vortex body are located so as to define a compression chamber and an expelling chamber with the stationary vortex body located between the two chambers. The stationary vortex body and the rotatable vortex body are located in the compression chamber. Each of the stationary vortex body and the rotatable vortex body has a base board and a vortex portion extends from the base board. A vortex groove is defined in an end surface of each of the vortex portion and a seal member is engaged with the vortex groove. The vortex groove includes a start end which is located close to the base board. Each of the seal members includes a cut-off portion defined in a distal end thereof and located close to the start end of the vortex groove. The cut-off portion faces an inside of the vortex groove. The refrigerant enters the gap between the cut-off portion of the seals and the grooves to push the seal members toward the vortex boards when the compressor is activated.
The present invention will become more obvious from the following description when taken in connection with the accompanying drawings which show, for purposes of illustration only, a preferred embodiment in accordance with the present invention.
Referring to
Each of the stationary vortex body 2 and the rotatable vortex body 3 has a base board 21/31 and a vortex portion 22/32 extends from the base board 21/31. A vortex groove 23/33 is defined in an end surface of each of the vortex portion 22/32. A seal member 6/7 is engaged with the vortex groove 23/33.
The vortex groove 23/33 includes a start end 24/34 which is located close to the base board 21/31. Each of the seal members 6/7 includes a cut-off portion defined in a distal end 61/71 thereof which is located close to the start end 24/34 of the vortex groove 23/33. A gap 25/35 is defined between the distal end 61/71 of the seal member 6/7 and the start end 24/34 of the vortex groove 23/33 as shown in
When the compressor is activated, the refrigerant enters into the start end 24/34 of the vortex groove 23/33 due to higher pressure and applies a force to the stepped surface 62/72, the distal end 61/71 of the seal member 6/7 is then lifted upward slightly and the refrigerant then enters the gap between the seal member 6/7 and the inside of the vortex groove 23/33 till the final end 231/331 of the vortex groove 23/33. The seal member 6/7 is pushed by the refrigerant to contact against the base board 21/31 so as to effectively seal the base board 21/31 and the vortex portion 22/32. By this way, the compression ratio can be maintained and even if the seal member 6/7 is slightly worn out, the seal member 6/7 still seals the gap by the refrigerant.
As shown in
While we have shown and described the embodiment in accordance with the present invention, it should be clear to those skilled in the art that further embodiments may be made without departing from the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
4869658 | Tsutsumi et al. | Sep 1989 | A |
Number | Date | Country |
---|---|---|
01121582 | May 1989 | JP |
03011101 | Jan 1991 | JP |
03246389 | Nov 1991 | JP |
06272679 | Sep 1994 | JP |
2002031069 | Jan 2002 | JP |