The present application is related to the following: (1) U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, attorney docket no. 25791.7.02, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, attorney docket no. 25791.9.02, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, attorney docket no. 25791.16.02, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, attorney docket no. 25791.25.02, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, attorney docket no. 25791.27, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, attorney docket no. 25791.29, filed on Sep. 16, 1999, (13) U.S. provisional patent application serial no. 60/159,082, attorney docket no. 25791.34, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, attorney docket no. 25791.36, filed on Oct. 12, 1999, (15) U.S. provisional patent application serial no. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, attorney docket no. 25791.38, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, attorney docket no. 25791.39, filed on Nov. 12, 1999, (18) U.S. provisional patent application serial no. 60/221,443, attorney docket no. 25791.45, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, attorney docket no. 25791.46, filed on Jul. 28, 2000, (20) U.S. provisional patent application Ser. No. 60/233,638, attorney docket no. 25791.47, filed on Sep. 18, 2000, (21) U.S. provisional patent application serial no. 60/237,334, attorney docket no. 25791.48, filed on Oct. 2, 2000, (22) U.S. provisional patent application Ser. No. 60/270,007, attorney docket no. 25791.50, filed on Feb. 20, 2001, (23) U.S. provisional patent application Ser. No. 60/262,434, attorney docket no. 25791.51, filed on Jan. 17, 2001, (24) U.S. provisional patent application Ser. No. 60/259,486, attorney docket no. 25791.52, filed on Jan. 3, 2001, (25) U.S. provisional patent application Ser. No. 60/303,740, attorney docket no. 25791.61, filed on Jul. 6, 2001, (26) U.S. provisional patent application Ser. No. 60/313,453, attorney docket no. 25791.59, filed on Aug. 20, 2001, (27) U.S. provisional patent application Ser. No. 60/317,985, attorney docket no. 25791.67, filed on Sep. 6, 2001, (28) U.S. provisional patent application Ser. No. 60/3318,386, attorney docket no. 25791.67.02, filed on Sep. 10, 2001, (29) U.S. utility patent application serial no. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, and (30) U.S. utility patent application Ser. No. 10/016,467, attorney docket no. 25791.70, filed on Dec. 10, 2001, the disclosures of which are incorporated herein by reference.
This invention relates generally to oil and gas exploration, and in particular to isolating certain subterranean zones to facilitate oil and gas exploration.
During oil exploration, a wellbore typically traverses a number of zones within a subterranean formation. Some of these subterranean zones will produce oil and gas, while others will not. Further, it is often necessary to isolate subterranean zones from one another in order to facilitate the exploration for and production of oil and gas. Existing methods for isolating subterranean production zones in order to facilitate the exploration for and production of oil and gas are complex and expensive.
The present invention is directed to overcoming one or more of the limitations of the existing processes for isolating subterranean zones during oil and gas exploration.
According to one aspect of the present invention, an apparatus is provided that includes a subterranean formation defining a wellbore, a tubular wellbore casing positioned within and coupled to the wellbore, a first tubular liner positioned within the wellbore overlapping with and coupled to the wellbore casing, a second tubular liner positioned within the wellbore and overlapping with and coupled to the first tubular liner. The second tubular liner is coupled to the first tubular liner by: machining an end of the first tubular liner, and inserting an end of the second tubular liner into the machined end of the first tubular liner.
According to another aspect of the present invention, a method for extracting fluidic materials from a subterranean formation including a wellbore that traverses the formation and a wellbore casing positioned within and coupled to the wellbore is provided that includes coupling an end of a tubular liner to an end of the wellbore casing, machining an end of the tubular liner, inserting an end of another tubular liner into the machined end of the tubular liner, and sealing the interface between the other tubular liner and the wellbore casing.
According to another aspect of the present invention, a system for extracting fluidic materials from a subterranean formation including a wellbore that traverses the formation and a wellbore casing positioned within and coupled to the wellbore is provided that includes means for coupling an end of a tubular liner to an end of the wellbore casing, means for machining an end of the tubular liner, means for inserting an end of another tubular liner into the machined end of the tubular liner, and means for sealing the interface between the other tubular liner and the wellbore casing.
According to another aspect of the present invention, in an apparatus comprising a subterranean formation defining a wellbore that includes a wellbore casing positioned within and coupled to the wellbore and a tubular liner coupled to an end of the wellbore casing, a method of conveying fluidic materials to and from the tubular liner is provided that includes machining the end of the tubular liner, inserting and supporting an end of another tubular liner in the machined end of the tubular liner, and conveying fluidic materials to and from the tubular liner using the other tubular liner.
a is a fragmentary cross sectional illustration of the machined end of the liner of
a is a fragmentary cross sectional illustration of one of the seals of the seal assembly of
b is a fragmentary cross sectional illustration of another one of the seals of the seal assembly of
c is a fragmentary cross sectional illustration of another one of the seals of the seal assembly of
Referring to
In several exemplary embodiments, the liner 120 is radially expanded and plastically deformed into engagement with the casing 110 in a conventional manner and/or using one or more of the methods and apparatus disclosed in one or more of the following: (1) U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, attorney docket no. 25791.7.02, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, attorney docket no. 25791.9.02, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (6) U.S. patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, attorney docket no. 25791.16.02, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, attorney docket no. 25791.25.02, filed on Jul. 9, 2000, (11) U.S. provisional patent application serial no. 60/162,671, attorney docket no. 25791.27, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, attorney docket no. 25791.29, filed on Sep. 16, 1999, (13) U.S. provisional patent application serial no. 60/159,082, attorney docket no. 25791.34, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, attorney docket no. 25791.36, filed on Oct. 12, 1999, (15) U.S. provisional patent application serial no. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, attorney docket no. 25791.38, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, attorney docket no. 25791.39, filed on Nov. 12, 1999, (18) U.S. provisional patent application serial no. 60/221,443, attorney docket no. 25791.45, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, attorney docket no. 25791.46, filed on Jul. 28, 2000, (20) U.S. provisional patent application Ser. No. 60/233,638, attorney docket no. 25791.47, filed on Sep. 18, 2000, (21) U.S. provisional patent application serial no. 60/237,334, attorney docket no. 25791.48, filed on Oct. 2, 2000, (22) U.S. provisional patent application Ser. No. 60/270,007, attorney docket no. 25791.50, filed on Feb. 20, 2001; (23) U.S. provisional patent application serial no. 60/262,434, attorney docket no. 25791.51, filed on Jan. 17, 2001; (24) U.S. provisional patent application Ser. No. 60/259,486, attorney docket no. 25791.52, filed on Jan. 3, 2001; (25) U.S. provisional patent application Ser. No. 60/303,740, attorney docket no. 25791.61, filed on Jul. 6, 2001; (26) U.S. provisional patent application Ser. No. 60/313,453, attorney docket no. 25791.59, filed on Aug. 20, 2001; (27) U.S. provisional patent application Ser. No. 60/317,985, attorney docket no. 25791.67, filed on Sep. 6, 2001; (28) U.S. provisional patent application serial no. 60/3318,386, attorney docket no. 25791.67.02, filed on Sep. 10, 2001; (29) U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001; and (30) U.S. utility patent application Ser. No. 10/016,467, attorney docket no. 25791.70, filed on Dec. 10, 2001, the disclosures of which are incorporated herein by reference.
In an exemplary embodiment, as illustrated in
As illustrated in
An end 140a of a tubular seal assembly 140 that defines a passage 140b and includes external seals 140c, 140d, and 140e, is removably coupled to the external threaded connection 135d of the end 135e of the tubular locator 135 by an internal threaded connection 140f. A portion of the other end 140g of the tubular seal assembly 140 is tapered at approximately an angle of about 45 degrees in order to facilitate the insertion and removal of equipment.
As illustrated in
As illustrated in
As illustrated in
During operation, in an exemplary embodiment, after the liner 120 has been radially expanded and plastically deformed into engagement with the casing 110, the upper end 120a of the liner 120 is then machined to provide the first beveled portion 120aa and the second beveled portion 120ab. The tubular locator 135 and tubular seal assembly 140 are then inserted into the interior of the casing 110, and the end 135a of the tubular location is inserted into the upper end 120a of the tubular liner 120. The external seals 140c, 140d, and 140e of the tubular seal assembly then fluidicly seal the interface between the tubular seal assembly and the casing. In this manner, the tubular locator 135 and the tubular seal assembly 140 provide a pressure sealed tubular liner for conveying fluidic materials to and from the tubular liner 120. In this manner, the need for a tie-back liner may be eliminated thereby providing a cost effective alternative to conventional methods and apparatus for providing a pressure sealed tubular liner.
An apparatus has been described that includes a subterranean formation defining a wellbore, a tubular wellbore casing positioned within and coupled to the wellbore, a first tubular liner positioned within the wellbore overlapping with and coupled to the wellbore casing, and a second tubular liner positioned within the wellbore and overlapping with and coupled to the first tubular liner. The second tubular liner is coupled to the first tubular liner by machining an end of the first tubular liner, and inserting an end of the second tubular liner into the machined end of the first tubular liner. In an exemplary embodiment, the first tubular liner is coupled to the wellbore casing by radially expanding and plastically deforming the first tubular liner into engagement with the wellbore casing.
A method for extracting fluidic materials from a subterranean formation including a wellbore that traverses the formation and a wellbore casing positioned within and coupled to the wellbore has also been described that includes coupling an end of a tubular liner to an end of the wellbore casing, machining an end of the tubular liner, inserting an end of another tubular liner into the machined end of the tubular liner, and sealing the interface between the other tubular liner and the wellbore casing. In an exemplary embodiment, the method further includes radially expanding and plastically deforming the tubular liner into engagement with the wellbore casing.
A system for extracting fluidic materials from a subterranean formation including a wellbore that traverses the formation and a wellbore casing positioned within and coupled to the wellbore has also been described that includes means for coupling an end of a tubular liner to an end of the wellbore casing, means for machining an end of the tubular liner, means for inserting an end of another tubular liner into the machined end of the tubular liner, and means for sealing the interface between the other tubular liner and the wellbore casing. In an exemplary embodiment, the system further includes means for radially expanding and plastically deforming the tubular liner into engagement with the wellbore casing.
In an apparatus comprising a subterranean formation defining a wellbore that includes a wellbore casing positioned with in and coupled to the wellbore and a tubular liner coupled to an end of the wellbore casing, a method of conveying fluidic materials to and from the tubular liner has also been described that includes machining the end of the tubular liner, inserting and supporting an end of another tubular liner in the machined end of the tubular liner, and conveying fluidic materials to and from the tubular liner using the other tubular liner. In an exemplary embodiment, the other end of the tubular liner extends through the wellbore casing. In an exemplary embodiment, the method further includes fluidicly sealing the interface between the other end of the tubular liner and the wellbore casing.
The present illustrative embodiments of the invention provide a number of advantages. For example, using the machined upper end 120a of the liner 120 as a seal receptacle eliminates more costly and complicated conventional systems for providing a seal receptacle. Furthermore, the use of the tubular locator 135 and the tubular seal assembly 140 eliminates the more costly and complicated tie-back liner. As a result, the present illustrative embodiments provide a sophisticated yet less complex system for providing a pressure sealed tubular liner for conveying fluidic materials to and from the tubular liner 120.
It is understood that variations may be made in the foregoing without departing from the scope of the invention. For example, while the present system has been described in for use with a tubular liner 120 that has been radially expanded and plastically deformed into engagement with the casing 110, the teachings of the present embodiments may also be applied to tubular liners that are coupled to a preexisting casing without radial expansion and plastic deformation. Furthermore, while illustrative embodiments of the present system have been presented for extracting oil and gas from a subterranean formation, the teachings of the present embodiments may also be applied to the extraction of geothermal energy from subterranean formations. In addition, in several exemplary embodiments, the seals 140c, 140d, and/or 140e, seal the interface between the tubular seal assembly 140 and the wellbore casing 110.
Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.
The present application claims the benefit of the filing dates of: (1) U.S. provisional patent application Ser. No. 60/343,674, attorney docket no. 25791.68, filed on Dec. 27, 2001, the disclosure of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US02/39425 | 12/10/2002 | WO | 6/24/2004 |
Number | Date | Country | |
---|---|---|---|
60343674 | Dec 2001 | US |