The present invention relates to a seal ring used for sealing a clearance between a rotary shaft and a housing, and specifically relates to a seal ring used in a state in which the seal ring is attached to an annular groove, i.e., a so-called stuffing box.
Typically, a seal ring is attached to the outer periphery of a rotary shaft. A sliding surface of the seal ring slides in close contact with a sliding surface formed at the rotary shaft, and accordingly, the seal ring seals a clearance between the rotary shaft and a housing to prevent leakage of sealed fluid (liquid).
For maintaining sealing properties in the seal ring for a long period of time, conflicting conditions of “sealing” and “lubrication” need to be satisfied. Particularly in recent years, while prevention of leakage of the sealed fluid has been made for, e.g., environmental measures, a demand for friction reduction has increased for reducing a mechanical loss. Friction reduction can be accomplished by the technique of generating a dynamic pressure between the sliding surfaces by rotation of the rotary shaft to slide the sliding surfaces with a fluid film of the sealed fluid being interposed.
For example, a seal ring as described in Patent Citation 1 has been known as the seal ring configured to generate the dynamic pressure between the sliding surfaces by rotation of the rotary shaft. The seal ring of Patent Citation 1 is attached to an annular groove provided at the outer periphery of a rotary shaft. The seal ring is pressed to a housing side and one side wall surface side of the annular groove by the pressure of high-pressure sealed fluid, and a sliding surface at one side surface of the seal ring slides in close contact with a sliding surface at one side wall surface of the annular groove. Moreover, at the sliding surface at one side surface of the seal ring, multiple dynamic pressure grooves opening on an inner diameter side are provided in a circumferential direction. The dynamic pressure groove includes a deep groove at the center in the circumferential direction and shallow grooves formed continuously to both sides of the deep groove in the circumferential direction, extending in the circumferential direction, and having bottom surfaces inclined such that the shallow grooves gradually become shallower toward terminal ends. When the rotary shaft and the seal ring rotate relative to each other, the sealed fluid is introduced from the inner diameter side of the sliding surface into the deep grooves. Moreover, a negative pressure is generated in each shallow groove of the seal ring on a side opposite to a rotation direction of the rotary shaft. Meanwhile, the sealed fluid introduced into the deep grooves is supplied to each shallow groove on the same side as the rotation direction, and therefore, a positive pressure is generated in such a shallow groove. Then, the positive pressure increases due to wedge action caused by the inclined bottom surface of the rotation-direction-side shallow groove, and is generated across the entirety of the dynamic pressure groove. Accordingly, the force of slightly separating the sliding surfaces from each other, i.e., so-called buoyancy, is obtained. The sliding surfaces are slightly separated from each other, and therefore, the high-pressure sealed fluid flows into a portion between the sliding surfaces from the inner diameter side of the sliding surface and the sealed fluid flows out of the rotation-direction-side shallow grooves generating the positive pressure to the portion between the sliding surfaces. Thus, a fluid film is formed between the sliding surfaces, and lubricity between the sliding surfaces is maintained.
In the seal ring of Patent Citation 1, the sliding surface of the rotary shaft moves relative to the dynamic pressure grooves in the circumferential direction. The positive pressure increases as the number of rotations of the rotary shaft increases, and the fluid film is formed between the sliding surfaces to enhance the lubricity of the sliding surface. However, the dynamic pressure groove is configured such that both shallow grooves are positioned on the same circumference with respect to the deep groove. Thus, particularly upon high-speed rotation, cavitation is caused in a region where a great positive pressure and a great negative pressure are generated in the circumferential direction. Due to greater variation in the buoyancy generated across the circumferential direction of the sliding surface, there is a probability that an adverse effect on the fluid film, such as a non-uniform fluid film, is caused and the lubricity becomes unstable.
The present invention has been made in view of such a problem, and an object of the present invention is to provide a seal ring configured so that stable lubrication performance can be provided across a wide range of rotation speed.
For solving the above-described problem, a seal ring according to the present invention is a seal ring for sealing a clearance between a rotary shaft and a housing, including dynamic pressure grooves formed at a sliding surface of the seal ring and arranged in a circumferential direction so as to be configured to generate dynamic pressure, the dynamic pressure grooves including deep grooves having openings on a sealed fluid side and shallow grooves being shallower than the deep grooves, the shallower grooves being formed continuously to the deep grooves and extending to at least one side in the circumferential direction, wherein at least adjacent two of the deep grooves of the dynamic pressure grooves in the circumferential direction are formed as a dynamic pressure groove unit configured such that the adjacent two of the deep grooves communicate with each other through a communication groove extending in the circumferential direction on an opposite side of the openings of the deep grooves in a radial direction. According to the aforesaid feature of the present invention, high-pressure sealed fluid is introduced to the deep groove of the dynamic pressure groove on one side in the circumferential direction through the opening, and the sealed fluid introduced to the deep groove of the dynamic pressure groove on the other side in the circumferential direction is supplied to the deep groove of the dynamic pressure groove on one side in the circumferential direction from the opposite side of the opening in the radial direction through the communication groove. Thus, in the deep groove of the dynamic pressure groove on one side in the circumferential direction, the sealed fluid is more easily held than in the deep groove of the dynamic pressure groove on the other side in the circumferential direction. The sealed fluid is sufficiently supplied from the deep groove of the dynamic pressure groove on one side in the circumferential direction to the shallow groove of the same dynamic pressure groove. Thus, in the shallow groove of the dynamic pressure groove on one side in the circumferential direction, a relatively-high dynamic pressure can be generated. Moreover, in the shallow groove, on an outer diameter side of which the communication groove is arranged, of the dynamic pressure groove on the other side in the circumferential direction, a relatively-low dynamic pressure can be generated. A fluid film can be formed with favorable balance in the circumferential direction, and stable lubrication performance can be provided across a wide range of rotation speed. Further, in the region of the dynamic pressure groove unit defined by the multiple dynamic pressure grooves and the communication groove at the sliding surface, the thickness of the fluid film is relatively equal across the circumferential direction, and therefore, the fluid film is easily formed with favorable balance in the circumferential direction.
It may be preferable that the shallow grooves are provided continuously to both sides of deep grooves in the circumferential direction. According to such a preferable configuration of the present invention, the seal ring can be rotated in both directions upon use.
It may be preferable that the dynamic pressure groove unit consists of two of the dynamic pressure grooves and the communication groove. According to such a preferable configuration of the present invention, two of the dynamic pressure grooves and the single communication groove form the dynamic pressure groove unit, and therefore, balance in supply of the sealed fluid between the dynamic pressure grooves communicated with each other through the communication groove is easily adjusted. Thus, the fluid film can be formed with favorable balance in the circumferential direction.
It may be preferable that all of the dynamic pressure grooves are formed as dynamic pressure groove units at the sliding surface. According to such a preferable configuration of the present invention, each of all of the dynamic pressure grooves provided at the sliding surface forms each of the dynamic pressure groove units, and therefore, the fluid film can be formed with more favorable balance in the circumferential direction.
Hereinafter, a mode for carrying out a seal ring according to the present invention will be described based on an embodiment.
A seal ring according to an embodiment of the present invention will be described with reference to
The seal ring 1 according to the present embodiment seals a portion between a rotary shaft 2 and a housing 3 of a rotary machine, the rotary shaft 2 and the housing 3 rotating relative to each other. In this manner, the seal ring 1 partitions the inside of the housing 3 into the sealed fluid side L and the atmosphere side A (see
As illustrated in
Note that the sliding surfaces S1, S2 form a substantial sliding region between the side surface 10 of the seal ring 1 and the side wall surface 21 of the annular groove 20 of the rotary shaft 2. Moreover, a non-sliding surface S1′ is formed continuously to an outer diameter side of the sliding surface S1 on the side surface 10 side, and a non-sliding surface S2′ is formed continuously to an inner diameter side of the sliding surface S2 on the side wall surface 21 side (see
As illustrated in
The flat surface 16 includes a seal portion 16a positioned on the outer diameter side and formed continuously in a substantially annular shape across the joint portion 1a, and a lubrication portion 16b positioned on the inner diameter side, sandwiched by adjacent ones of the dynamic pressure grooves 12 in the circumferential direction, and formed continuously to the seal portion 16a (see
As illustrated in
Specifically, as illustrated in
Moreover, as specifically illustrated in
In addition, as illustrated in
Next, fluid film formation between the sliding surfaces S1, S2 upon rotation of the rotary shaft 2 will be described. Note that a case where the rotary shaft 2 rotates clockwise as indicated by a white arrow in
According to such a configuration, in the dynamic pressure groove unit 100, the sealed fluid is more easily held in the deep groove 120 of the dynamic pressure groove 12 than in the deep groove 120′ of the dynamic pressure groove 12′, and is sufficiently supplied from the deep groove 120 to the shallow groove 121 as a positive pressure generator in the dynamic pressure groove 12. Thus, a relatively-high dynamic pressure can be generated in the shallow groove 121 of the dynamic pressure groove 12, and a relatively-low dynamic pressure can be generated in the shallow groove 121′ of the dynamic pressure groove 12′ on the outer diameter side of which the communication groove 14 is arranged. A fluid film can be formed with favorable balance in the circumferential direction, and stable lubrication performance can be provided across a wide range of rotation speed.
Further, the communication groove 14 is provided on the outer diameter side of the dynamic pressure grooves 12, 12′, and in the region of the dynamic pressure groove unit 100 defined by the dynamic pressure grooves 12, 12′ and the communication groove 14 at the sliding surface S1, the sealed fluid is supplied from the communication groove 14 to the flat surface 16 (e.g., the lubrication portion 16b) between the dynamic pressure grooves 12, 12′ by a resting pressure. Thus, in the region of the dynamic pressure groove unit 100, the thickness of the fluid film is relatively equal across the circumferential direction, and therefore, the fluid film is easily formed with favorable balance in the circumferential direction.
Moreover, the shallow grooves 122, 122′ of the dynamic pressure grooves 12, 12′ open on the inner diameter side (i.e., the sealed fluid side), and the sealed fluid is introduced from the inner diameter side of the sliding surface S1. Thus, the sealed fluid is easily held on the shallow groove 122.
Further, in the dynamic pressure groove unit 100, the sealed fluid is supplied from the deep groove 120′ of the dynamic pressure groove 12′ to the deep groove 120 of the dynamic pressure groove 12 through the communication groove 14, and is sufficiently held in the deep groove 120 of the dynamic pressure groove 12. Thus, the negative pressure generated in the shallow groove 122 of the dynamic pressure groove 12 is reduced, and therefore, a pressure difference between the shallow groove 122 of the dynamic pressure groove 12 and the shallow groove 121′ of the dynamic pressure groove 12 adjacent to each other in the circumferential direction can be decreased. Thus, in the portion between the sliding surfaces S1, S2, the dynamic pressure can be generated with pressure (i.e., the positive pressure and the negative pressure) variation in the circumferential direction being reduced in the region of the dynamic pressure groove unit 100. While vibration due to, e.g., cavitation can be prevented, lubricity of the seal ring 1 can be enhanced.
Moreover, the dynamic pressure groove unit 100 configured such that two dynamic pressure grooves 12, 12′ adjacent to each other in the circumferential direction are communicated with each other through the single communication groove 14 is formed, and therefore, balance in supply of the sealed fluid between the dynamic pressure grooves 12, 12′ communicated with each other through the communication groove 14 is easily adjusted. Thus, the fluid film can be formed with favorable balance in the circumferential direction. Further, all of the dynamic pressure grooves 12 are formed as the dynamic pressure groove units 100 at the sliding surface S1, and therefore, the fluid film can be formed with more favorable balance in the circumferential direction.
Moreover, the dynamic pressure groove 12 includes the deep groove 120 opening on the inner diameter side and provided at the center in the circumferential direction, and the shallow grooves 121, 122 formed continuously to both sides of the deep groove 120 in the circumferential direction, extending in the circumferential direction, and having the bottom surfaces inclined such that the shallow grooves 121, 122 gradually become shallower toward the terminal ends in the circumferential direction. Thus, the seal ring 1 can be rotated in both directions upon use, and even upon high-speed rotation, the sealed fluid can be reliably supplied to any of the shallow grooves 121, 122 through the deep groove 120.
Further, the communication groove 14 is provided so that the sealed fluid can flow out to a wide area between the sliding surfaces S1, S2 on the outer diameter side and the lubricity of the seal ring 1 can be enhanced.
Moreover, the seal ring 1 is in the C-shape, and therefore, seal performance can be stably maintained even when the circumferential length of the seal ring 1 changes due to thermal expansion/contraction.
Note that as in a variation of the seal ring 1 illustrated in
The embodiments of the present invention have been described above with reference to the drawings, but specific configurations are not limited to these embodiments. The present invention also includes even changes and additions made without departing from the scope of the present invention.
For example, the communication groove may be formed to extend in the circumferential direction from multiple spots in the radial direction (e.g., a double threaded shape). Moreover, the communication groove is not limited to the arc shape, and may be formed straight or formed in a wave shape, for example.
Moreover, all of the dynamic pressure grooves 12 formed at the sliding surface S1 do not necessarily form the dynamic pressure groove units 100. In this case, the dynamic pressure groove units 100 and the independent dynamic pressure grooves 12 are preferably arranged at equal intervals in the circumferential direction. Further, the multiple dynamic pressure groove units 100 formed at the sliding surface S1 are preferably arranged at equal intervals in the circumferential direction. According to such a configuration, the dynamic pressure can be equally generated in the circumferential direction. In addition, as long as the multiple dynamic pressure groove units are arranged at equal intervals in the circumferential direction at the sliding surface S1, the dynamic pressure grooves 12 themselves are not necessarily arranged at equal intervals in the circumferential direction.
Further, the dynamic pressure groove unit is not limited to one including two dynamic pressure grooves, and three or more dynamic pressure grooves may be communicated with each other through a single communication groove to form a dynamic pressure groove unit. Note that
Moreover, the number and shape of dynamic pressure grooves provided at the sliding surface S1 of the seal ring may be changed as necessary such that a desired dynamic pressure effect is obtained. As long as the shallow groove formed continuously to the deep groove and extending to at least one side in the circumferential direction is formed, e.g., a T-shaped groove or a Rayleigh step may be employed. Note that the location and shape of the deep groove of the dynamic pressure groove to which the sealed fluid is introduced may be changed as necessary according to the assumed degree of abrasion of the sliding surface.
Further, the seal ring may be formed in an annular shape without the joint portion 1a, and the outer shape thereof is not limited to a circular shape as viewed from the side. The seal ring may be formed in a polygonal shape.
Moreover, the seal ring is not limited to the rectangular sectional shape, and for example, may have a trapezoidal sectional shape or a polygonal sectional shape. The seal ring may be configured such that the side surface forming the sliding surface S1 is inclined.
Further, the grooves described in the above-described embodiments may be formed at the sliding surface S2 of the annular groove 20 of the rotary shaft 2.
Moreover, the oil has been described as the example of the sealed fluid, but the sealed fluid may be liquid such as water or coolant or gas such as air or nitrogen.
Number | Date | Country | Kind |
---|---|---|---|
2018-095700 | May 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/019505 | 5/16/2019 | WO | 00 |