The present invention is directed generally to papermaking, and more specifically to suction rolls and equipment within a papermaking machine.
Paper manufacturing inherently requires at many points in the production process the removal of water. In general the paper pulp (slurry of water and wood and other fibers) rides on top of a felt (in the form of a wide belt) which acts as a carrier for the wet pulp before the actual sheet of paper is formed. Felts are used to carry the pulp in the wet section of the paper machine until enough moisture has been removed from the pulp to allow the paper sheet to be processed without the added support added by the felt.
Quite commonly on the wet end of a paper machine the first water removal is accomplished using a suction roll in a press section (be it a couch, pickup, or press suction roll) used in conjunction with a standard press roll without holes (or against a Yankee dryer in a tissue machine) that mates in alignment with the suction roll. The felt pulp carrier is pressed between these two rolls.
The main component of a suction roll 10 includes a hollow shell 12 (
The suction box 20 (
In order to take advantage of the holes in the shell, a vacuum zone 30 must be created using these ports on the inside of the suction roll shell in a zone that is directly underneath the paper pulp that is being processed. This is accomplished by the suction box 20 using a slotted holder 32 which holds a seal along the long axis of the suction box on both sides.
The seal strips 34, 34′ are usually made of rubberized polymerized graphite and are held nearly in contact with the inner surface of the shell 12 during operation (see
In actual application, in a properly functioning suction roll the seal strips 34, 34′ never directly contact the inside of the suction roll shell 12. If the seal strips 34, 34′ do contact the shell 12 they would wear away and would quickly lose their sealing ability. In order to eliminate or significantly reduce this wear and to provide a seal, water is applied along the length of the seal strips 34, 34′ with a lubrication shower formed with water flowing through a spray nozzle 24 (see
The amount of water used for lubrication should be gauged properly so that the proper amount of lubrication is applied to keep the seal strips 34, 34′ lubricated, but not so much to either become an issue for the pulp being processed or to be wasting water. In addition, process water used in a paper mill may contain chemicals and also significant particulates that may clog the lubrication shower nozzles 24 during normal operation. Since these nozzles 24 are located inside the rotating she 112 they are not visible to the paper machine operator.
As a first aspect, embodiments of the invention are directed to an assembly. The assembly comprises: a seal strip with an upper surface configured to provide a seal for a suction roll; a seal strip holder, the seal strip residing in the seal strip holder and movable relative thereto; and a wear monitoring system. The wear monitoring system comprises: a magnet mounted to one of the seal strip holder and the seal strip; a magnetic field sensor mounted to the other of the seal strip holder and the seal strip; and a controller operatively connected with the magnetic field sensor. The controller is configured to receive signals from the magnetic field sensor regarding a magnetic field generated by the magnet, wherein variations in the signals denote relative movement of the seal strip and the seal strip holder, such relative movement indicating wear on the upper surface of the seal strip.
As a second aspect, embodiments of the invention are directed to an assembly comprising: a seal strip with an upper surface configured to provide a seal for a suction roll; a seal strip holder, the seal strip residing in the seal strip holder and movable relative thereto; and a wear monitoring system. The wear monitoring system comprises: an ultrasonic wave generator mounted in the seal strip and configured to transmit ultrasonic waves toward the upper surface of the seal strip; an ultrasonic wave detector mounted in the seal strip and configured to receive ultrasonic waves returning from the upper surface of the seal strip; and a controller operatively connected with the ultrasonic wave detector. The controller is configured to receive signals from the ultrasonic wave detector, wherein variations in the signals denote wear on the upper surface of the seal strip.
Each of these assemblies may be used in connection with a suction roll of a papermaking machine.
As a third aspect, embodiments of the invention are directed to an assembly comprising: a seal strip with an upper surface configured to provide a seal for a suction roll, the seal strip including a cavity therein; a seal strip holder, the seal strip residing in the seal strip holder and movable relative thereto; and a temperature monitoring system. The temperature monitoring system comprises: an infrared radiator sensor positioned in the cavity of the seal strip, the infrared radiator sensor configured to sense infrared radiation emitted into the cavity due to operation of the suction roll; and a controller operatively connected with the infrared radiation sensor, the controller configured to receive signals from the infrared radiation sensor and process the signals to indicate a temperature of the upper surface of the seal strip.
The present invention will now be described more fully hereinafter, in which embodiments of the invention are shown. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, like numbers refer to like elements throughout. Thicknesses and dimensions of some components may be exaggerated for clarity.
In addition, spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Well-known functions or constructions may not be described in detail for brevity and/or clarity.
Referring now to the drawings, a seal strip 100 and an accompanying wear monitoring system 120 are shown in
Referring still to
Each of the PCBs 126 incl odes magnetic fief d sensors and/or circuitry (designated at 128 in
In basic operation, the magnetic field sensors 128 on the PCBs 126 are triggered by the magnetic field produced by the magnet 124. As the suction roll 12 rotates, it will gradually begin to wear away the adjacent (upper) surface of the seal strip 100. As wear occurs, the seal strip 100 moves away from the bottom of the holder 102 (typically upwardly) due to the biasing of the load tubes 104. As the seal strip 100 moves, the PCBs 126, and in turn the magnetic field sensors 128 mounted thereon, also move relative to the magnet 124. The relative movement of the magnetic field sensors 128 and the magnet 124 causes a change in the strength of the magnetic field detected by the magnetic field sensors 128. This change in magnetic field strength indicates movement in the seal strip 100, which in turn indicates wear on the seal strip 100.
As seen in
In addition, two temperature sensors 132 extend into the seal strip 100 from each of the PCBs 126 (see
Referring now to
The wear monitoring system 220 includes a piezoelectric transducer 222 that is mounted on a PCB 224. An epoxy or other insert 226 underlies the PCB 224. The transducer 222, PCB 224 and insert 226 are positioned in the bottom portion of the seal strip 200. The PCB 224 also includes other electronic components described below (see
As illustrated in
As the seal strip 200 wears, the thickness of the seal strip 200 decreases. The load tubes 204 bias the seal strip 200 upwardly toward the shell of the suction roll. Thus, with wear the distance from the piezoelectric transducer 222 to the shell (or an underlying water layer) decreases. As a result, the TOF of the ultrasonic waves also changes. Detection of the change in TOF by the piezoelectric transducer 222 is therefore an indicator of wear in the seal strip 200.
Those skilled in this art will recognize that, in some embodiments, the piezoelectric transducer may be replaced by another source of ultrasonic waves, such as a magnetostrictive transducer.
Also, although only a single piezoelectric transducer 222 is shown therein, multiple transducers 222 may be placed on the length of the seal strip 200 to provided numerous points of wear indication.
Further, in some embodiments, an insert formed of a different material may be embedded or placed into the seal strip 222 to act as the medium through which the ultrasonic waves travel. As one example, a small hole can be formed in the seal strip 200 to embed an acrylic rod or panel that extends to the upper surface of the seal strip 200. The acrylic piece can then be used to for propagation of the ultrasonic waves through. As the acrylic piece wears with the seal strip 200, it will decrease in length, and the TOE will decrease through the acrylic to indicate wear. This embodiment may enable propagation of the ultrasonic waves to be more consistent and/or the detection to be more accurate.
Further, in some embodiments, a temperature sensor may be employed that detects the temperature of the ambient air around the seal strip 200. Such detection can enable the wear monitoring system 220 to compensate for speed of sound changes with temperature through the seal strip 200.
Referring now to
Temperature monitoring systems that measure the temperature of the seal strip may also be useful. Referring now to
The temperature monitoring system 320 includes an infrared thermopile array sensor 322 that is located within a cavity 324 in the seal strip 300 that extends axially for much of the length of the seal strip 300. The infrared thermopile array sensor 322 is a single sensor that can, from a distance, sense infrared thermal radiation being emitted by solid matter. Thermopiles typically include many thermocouples mounted on a silicon chip. The thermopiles generate a small electric voltage when exposed to infrared (IR) radiation or heat. Generally speaking, the higher the temperature of the object being measured, the more IR energy is emitted. The thermopile sensing elements absorb the energy and produce an output signal. A reference sensor is typically designed into the package as a reference for compensation. The configuration of the sensor 322 allows it to sense infrared radiation across a wide field of view (often limited or focused by a lens), which is then processed to create a temperature grid representative of the sensed temperature. An exemplary infrared thermopile array sensor is Model No. MLX90641, available from Melexis (Tessenderlo, Belgium).
The sensor 322 is connected via cables 326 to a series of printed circuit boards (PCBs) 328 that are also located within the cavity 324. The PCBs 328 are interconnected with each other by cables 334 (see
As shown in
The material comprising the shell 330 should be thermally transmissive, so as to have minimal impact on the temperature of the seal strip 300 being sensed by the sensor 322. The she Is 330, 330′ may be formed of a number of suitable materials. Exemplary materials for the shells 330, 330′ include, thermoset resins (e.g., epoxy, polyurethane, polyurea, polyurethane-urea, vinyl ester, polyimide, bismaleimide, phenol formaldehyde, silicone, diallyl-phthalate, melamine, acrylate, cyanate ester, furan, and benzoxazine), rubbers (e.g., natural rubber, chloroprene rubber, styrene butadiene rubber, butadiene acrylonitrile copolymer rubber, hydrogenated butadiene acrylonitrile rubber, acrylonitrile-butadiene-isoprene terpolymer rubber, carboxylated nitrile terpolymer, silicone rubber, chlorosulfonated polyethylene rubber, ethylene proplylene diene rubber, and fluoroelastomer), and thermoplastic resins (e.g., thermoplastic polyurethane, polyethylene, polypropylene, polyester, acrylic, polystyrene, polyacrylonitrile, maleimide resin, polyamide, and liquid crystal polymers). The material may be unfilled, or may include one or more fillers, such as carbides (e.g., silicon carbide, boron carbide, aluminum carbide, titanium carbide, and tungsten carbide), nitrides (e.g., silicon nitride, boron nitride, aluminum nitride, gallium nitride, chromium nitride, tungsten nitride, magnesium nitride, molybdenum nitride, and lithium nitride), carbon-based compounds (e.g., carbon black, carbon fiber, graphite, graphene, diamond, fullerenes, carbon nanotubes and carbon nanofiber), metals (e.g., aluminum, nickel, tin, iron, copper and silver), and metal oxides (e.g., beryllium oxide, aluminum oxide, magnesium oxide, silicon oxide and barium titanate). Any fillers may have high aspect ratio to increase the modulus of the composite. The fillers may also have high emissivity. Additional non-conductive fillers may also be added to modify the mechanical properties of the composite, and additional additives, solvents, and fillers may be added to modify the rheological properties of the composite before curing or cooling.
In some embodiments, the shell 330, 330′ may be pre-formed and inserted into the cavity 324. In other embodiments, the shell 330, 330′ may be formed in the cavity. One manufacturing technique is illustrated in
In operation of the papermaking machine, rotation of the suction roll 10 relative to the seal strip 300 generates heat. That heat spreads downwardly toward the base of the seal strip 300, decreasing in intensity as the distance increases. As a result of the heat, infrared radiation is emitted from the material of the seal strip 300 surrounding the cavity 324 (or from the shell 330 that lines the cavity 324), with the material nearer the contact point of the seal strip 300 generating a greater amount of infrared radiation. The sensor 322 senses the infrared radiation being emitted at multiple axial locations along the inside surface of the cavity 324. From this information, an array of temperatures is determined for the seal strip 300 at different points along the surface of the seal strip 300, which can be used to assess potential wear of the surface of the seal strip 300.
Electronic components of the temperature monitoring system 320 (some of which may be mounted on the PCBs 328) are shown in
Those skilled in this art will appreciate that the temperature monitoring system 320 may be accompanied by one or more other systems, such as the wear monitoring systems 120, 220 discussed above. Wear information may be combined with the infrared radiation sensed by the sensor 322 to arrive at an overall wear/temperature profile for the seal strip 300. It will also be understood that, in some instances, an ultrasonic transducer used for such sensing and the infrared sensor 322 may both be connected with the same PCB 328, which would include components for receiving and processing both ultrasonic and infrared signals and for transmitting processed signals to the main communications module 360 and/or the operator display 362).
Those skilled in this art will recognize that, in some embodiments, the infrared thermopile array sensor 322 may be replaced by another variety of infrared radiation sensor within the cavity 324 that can sense, then provide, information on the temperature of the seal strip 300.
Also, although only a single infrared thermopile array sensor 322 is shown therein, multiple sensors 322 may be placed on the length of the seal strip 200 to provide IR readings at numerous locations.
Further, in some embodiments, temperature and/or humidity sensors may be employed that sense the temperature and/or humidity of the ambient air around the seal strip 300. Such sensing can enable the temperature monitoring system 320 to compensate for any changes in infrared radiation through the seal strip 300 due to environmental factors.
Regarding the electronics and microcontrollers discussed above, embodiments of the present inventive concepts may be embodied in hardware and/or in software (including firmware, resident software, micro-code, etc.). Furthermore, exemplary embodiments of the present inventive concepts may take the form of a computer program product comprising a non-transitory computer-usable or computer-readable storage medium having computer-usable or computer-readable program code embodied in the medium for use by or in connection with an instruction execution system. In the context of this document, a computer-usable or computer-readable medium may be any medium that can contain, store, communicate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
The computer-usable or computer-readable medium may be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device. More specific examples (a nonexhaustive list) of the computer-readable medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, and a portable compact disc read-only memory (CD-ROM). Note that the computer-usable or computer-readable medium could even be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via, for instance, optical scanning of the paper or other medium, then compiled, interpreted, or otherwise processed in a suitable manner, if necessary, and then stored in a computer memory.
Exemplary embodiments of the present inventive concepts are described herein with reference to flowchart and/or block diagram illustrations. It will be understood that each block of the flowchart and/or block diagram illustrations, and combinations of blocks in the flowchart and/or block diagram illustrations, may be implemented by computer program instructions and/or hardware operations. These computer program instructions may be provided to a processor of a general purpose computer, a special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means and/or circuits for implementing the functions specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions that execute on the computer or other programmable apparatus provide steps for implementing the functions specified in the flowchart and/or block diagram block or blocks.
In some embodiments the controller may be connected to or associated with (either hard-wired or wirelessly) a display device (e.g., a monitor, tablet, smart phone, laptop, etc.) that can produce one or more visual displays regarding the temperature, wear and/or lubrication parameters of the system. Also, in some embodiments, the controller is configured to make recommendations regarding the amount of lubrication based on the “wear” signals and/or the temperature signals from the temperature sensors within the seal strips. The controller may also be configured to provide an alert or alarm (visual, auditory, or otherwise) to signal that a certain threshold parameter has been reached (e.g., a threshold temperature or wear level) so that the parameter of interest can be addressed.
In addition, in some embodiments, a temperature sensor for the internal bearing may be installed inside the lubrication line for the internal bearing. This temperature sensor may detect the temperature of the lubricant and can indicate a change in bearing temperature. Further, in some embodiments a vibration sensor may be installed in proximity to the internal bearing to detect vibration in the internal bearing. Other possibilities are discussed in U.S. Pat. No. 10,822,744 to Reaves et al., the disclosure of which is hereby incorporated herein in its entirety.
It should also be noted that the wear monitoring systems 120, 220 and the temperature monitoring system 320 may employ different components for performing different functions. For example, the load tubes 104, 204, 304 may be replaced with other components (e.g., springs, resilient pads, or the like) that bias the seal strips 100, 200, 300 toward the shell of the suction roll. The seal strip holders 102, 202, 302 may take different configurations.
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as recited in the claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
The present application claims priority from and the benefit of U.S. Provisional Patent Application Nos. 63/111,849, filed Nov. 10, 2020, and 63/229,679, filed Aug. 5, 2021, the disclosures of which are hereby incorporated herein by reference in full.
Number | Name | Date | Kind |
---|---|---|---|
6358370 | Huttunen | Mar 2002 | B1 |
6436241 | Persson et al. | Aug 2002 | B1 |
10344864 | Schotge et al. | Jul 2019 | B2 |
10822744 | Reaves et al. | Nov 2020 | B2 |
20050126732 | Gleason | Jun 2005 | A1 |
20170254019 | Keinberger | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
3623526 | Mar 2020 | EP |
3623526 | Mar 2020 | EP |
Entry |
---|
“international Search Report and Written Opinion corresponding to International Application No. PCT/US2021/057509 dated Feb. 16, 2022”. |
Number | Date | Country | |
---|---|---|---|
20220145538 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
63229679 | Aug 2021 | US | |
63111849 | Nov 2020 | US |